peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/sequence
/layer.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import torch | |
from typing import Any, Tuple | |
from torch import Tensor | |
from torch.nn import Module | |
import deepspeed.comm as dist | |
def single_all_to_all(input, scatter_idx, gather_idx, group): | |
seq_world_size = dist.get_world_size(group) | |
inp_shape = list(input.shape) | |
inp_shape[scatter_idx] = inp_shape[scatter_idx] // seq_world_size | |
if scatter_idx < 2: | |
input_t = input.reshape( | |
[seq_world_size, inp_shape[scatter_idx]] + \ | |
inp_shape[scatter_idx + 1:] | |
).contiguous() | |
else: | |
# transpose groups of heads with the seq-len parallel dimension, so that we can scatter them! | |
input_t = input.reshape( | |
[-1, seq_world_size, inp_shape[scatter_idx]] + \ | |
inp_shape[scatter_idx + 1:] | |
).transpose(0, 1).contiguous() | |
output = torch.empty_like(input_t) | |
dist.all_to_all_single(output, input_t, group=group) | |
# if scattering the seq-dim, transpose the heads back to the original dimension | |
if scatter_idx < 2: | |
output = output.transpose(0, 1).contiguous() | |
return output.reshape( | |
inp_shape[: gather_idx] + \ | |
[inp_shape[gather_idx] * seq_world_size,] + \ | |
inp_shape[gather_idx + 1:]).contiguous() | |
class _SeqAllToAll(torch.autograd.Function): | |
def forward(ctx: Any, group: dist.ProcessGroup, input: Tensor, scatter_idx: int, gather_idx: int) -> Tensor: | |
ctx.group = group | |
ctx.scatter_idx = scatter_idx | |
ctx.gather_idx = gather_idx | |
return single_all_to_all(input, scatter_idx, gather_idx, group) | |
def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]: | |
return (None, _SeqAllToAll.apply(ctx.group, *grad_output, ctx.gather_idx, ctx.scatter_idx), None, None) | |
class DistributedAttention(torch.nn.Module): | |
"""Initialization. | |
Arguments: | |
local_attention (Module): local attention with q,k,v | |
sequence_process_group (ProcessGroup): sequence parallel process group | |
scatter_idx (int): scatter_idx for all2all comm | |
gather_idx (int): gather_idx for all2all comm | |
""" | |
def __init__( | |
self, | |
local_attention: Module, | |
sequence_process_group: dist.ProcessGroup, | |
scatter_idx: int = 2, | |
gather_idx: int = 0, | |
) -> None: | |
super(DistributedAttention, self).__init__() | |
self.local_attn = local_attention | |
self.spg = sequence_process_group | |
self.scatter_idx = scatter_idx | |
self.gather_idx = gather_idx | |
def forward(self, query: Tensor, key: Tensor, value: Tensor, *args: Any) -> Tensor: | |
""" forward | |
Arguments: | |
query (Tensor): query input to the layer | |
key (Tensor): key input to the layer | |
value (Tensor): value input to the layer | |
args: other args | |
Returns: | |
* output (Tensor): context output | |
""" | |
# TODO Merge three alltoall calls into one | |
# TODO (Reza): change the api on the megatron-deepspeed side so that we only receive all data (q,k, and v) together! | |
#in shape : e.g., [s/p:h:] | |
query_layer = _SeqAllToAll.apply(self.spg, query, self.scatter_idx, self.gather_idx) | |
key_layer = _SeqAllToAll.apply(self.spg, key, self.scatter_idx, self.gather_idx) | |
value_layer = _SeqAllToAll.apply(self.spg, value, self.scatter_idx, self.gather_idx) | |
#out shape : e.g., [s:h/p:] | |
context_layer = self.local_attn(query_layer, key_layer, value_layer, *args) | |
output = _SeqAllToAll.apply(self.spg, context_layer, self.gather_idx, self.scatter_idx) | |
#out e.g., [s/p::h] | |
return output | |