peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/cluster
/hierarchy.py
""" | |
Hierarchical clustering (:mod:`scipy.cluster.hierarchy`) | |
======================================================== | |
.. currentmodule:: scipy.cluster.hierarchy | |
These functions cut hierarchical clusterings into flat clusterings | |
or find the roots of the forest formed by a cut by providing the flat | |
cluster ids of each observation. | |
.. autosummary:: | |
:toctree: generated/ | |
fcluster | |
fclusterdata | |
leaders | |
These are routines for agglomerative clustering. | |
.. autosummary:: | |
:toctree: generated/ | |
linkage | |
single | |
complete | |
average | |
weighted | |
centroid | |
median | |
ward | |
These routines compute statistics on hierarchies. | |
.. autosummary:: | |
:toctree: generated/ | |
cophenet | |
from_mlab_linkage | |
inconsistent | |
maxinconsts | |
maxdists | |
maxRstat | |
to_mlab_linkage | |
Routines for visualizing flat clusters. | |
.. autosummary:: | |
:toctree: generated/ | |
dendrogram | |
These are data structures and routines for representing hierarchies as | |
tree objects. | |
.. autosummary:: | |
:toctree: generated/ | |
ClusterNode | |
leaves_list | |
to_tree | |
cut_tree | |
optimal_leaf_ordering | |
These are predicates for checking the validity of linkage and | |
inconsistency matrices as well as for checking isomorphism of two | |
flat cluster assignments. | |
.. autosummary:: | |
:toctree: generated/ | |
is_valid_im | |
is_valid_linkage | |
is_isomorphic | |
is_monotonic | |
correspond | |
num_obs_linkage | |
Utility routines for plotting: | |
.. autosummary:: | |
:toctree: generated/ | |
set_link_color_palette | |
Utility classes: | |
.. autosummary:: | |
:toctree: generated/ | |
DisjointSet -- data structure for incremental connectivity queries | |
""" | |
# Copyright (C) Damian Eads, 2007-2008. New BSD License. | |
# hierarchy.py (derived from cluster.py, http://scipy-cluster.googlecode.com) | |
# | |
# Author: Damian Eads | |
# Date: September 22, 2007 | |
# | |
# Copyright (c) 2007, 2008, Damian Eads | |
# | |
# All rights reserved. | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions | |
# are met: | |
# - Redistributions of source code must retain the above | |
# copyright notice, this list of conditions and the | |
# following disclaimer. | |
# - Redistributions in binary form must reproduce the above copyright | |
# notice, this list of conditions and the following disclaimer | |
# in the documentation and/or other materials provided with the | |
# distribution. | |
# - Neither the name of the author nor the names of its | |
# contributors may be used to endorse or promote products derived | |
# from this software without specific prior written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
import warnings | |
import bisect | |
from collections import deque | |
import numpy as np | |
from . import _hierarchy, _optimal_leaf_ordering | |
import scipy.spatial.distance as distance | |
from scipy._lib._array_api import array_namespace, _asarray, copy | |
from scipy._lib._disjoint_set import DisjointSet | |
_LINKAGE_METHODS = {'single': 0, 'complete': 1, 'average': 2, 'centroid': 3, | |
'median': 4, 'ward': 5, 'weighted': 6} | |
_EUCLIDEAN_METHODS = ('centroid', 'median', 'ward') | |
__all__ = ['ClusterNode', 'DisjointSet', 'average', 'centroid', 'complete', | |
'cophenet', 'correspond', 'cut_tree', 'dendrogram', 'fcluster', | |
'fclusterdata', 'from_mlab_linkage', 'inconsistent', | |
'is_isomorphic', 'is_monotonic', 'is_valid_im', 'is_valid_linkage', | |
'leaders', 'leaves_list', 'linkage', 'maxRstat', 'maxdists', | |
'maxinconsts', 'median', 'num_obs_linkage', 'optimal_leaf_ordering', | |
'set_link_color_palette', 'single', 'to_mlab_linkage', 'to_tree', | |
'ward', 'weighted'] | |
class ClusterWarning(UserWarning): | |
pass | |
def _warning(s): | |
warnings.warn('scipy.cluster: %s' % s, ClusterWarning, stacklevel=3) | |
def int_floor(arr, xp): | |
# array_api_strict is strict about not allowing `int()` on a float array. | |
# That's typically not needed, here it is - so explicitly convert | |
return int(xp.astype(xp.asarray(arr), xp.int64)) | |
def single(y): | |
""" | |
Perform single/min/nearest linkage on the condensed distance matrix ``y``. | |
Parameters | |
---------- | |
y : ndarray | |
The upper triangular of the distance matrix. The result of | |
``pdist`` is returned in this form. | |
Returns | |
------- | |
Z : ndarray | |
The linkage matrix. | |
See Also | |
-------- | |
linkage : for advanced creation of hierarchical clusterings. | |
scipy.spatial.distance.pdist : pairwise distance metrics | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import single, fcluster | |
>>> from scipy.spatial.distance import pdist | |
First, we need a toy dataset to play with:: | |
x x x x | |
x x | |
x x | |
x x x x | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
Then, we get a condensed distance matrix from this dataset: | |
>>> y = pdist(X) | |
Finally, we can perform the clustering: | |
>>> Z = single(y) | |
>>> Z | |
array([[ 0., 1., 1., 2.], | |
[ 2., 12., 1., 3.], | |
[ 3., 4., 1., 2.], | |
[ 5., 14., 1., 3.], | |
[ 6., 7., 1., 2.], | |
[ 8., 16., 1., 3.], | |
[ 9., 10., 1., 2.], | |
[11., 18., 1., 3.], | |
[13., 15., 2., 6.], | |
[17., 20., 2., 9.], | |
[19., 21., 2., 12.]]) | |
The linkage matrix ``Z`` represents a dendrogram - see | |
`scipy.cluster.hierarchy.linkage` for a detailed explanation of its | |
contents. | |
We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster | |
each initial point would belong given a distance threshold: | |
>>> fcluster(Z, 0.9, criterion='distance') | |
array([ 7, 8, 9, 10, 11, 12, 4, 5, 6, 1, 2, 3], dtype=int32) | |
>>> fcluster(Z, 1, criterion='distance') | |
array([3, 3, 3, 4, 4, 4, 2, 2, 2, 1, 1, 1], dtype=int32) | |
>>> fcluster(Z, 2, criterion='distance') | |
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32) | |
Also, `scipy.cluster.hierarchy.dendrogram` can be used to generate a | |
plot of the dendrogram. | |
""" | |
return linkage(y, method='single', metric='euclidean') | |
def complete(y): | |
""" | |
Perform complete/max/farthest point linkage on a condensed distance matrix. | |
Parameters | |
---------- | |
y : ndarray | |
The upper triangular of the distance matrix. The result of | |
``pdist`` is returned in this form. | |
Returns | |
------- | |
Z : ndarray | |
A linkage matrix containing the hierarchical clustering. See | |
the `linkage` function documentation for more information | |
on its structure. | |
See Also | |
-------- | |
linkage : for advanced creation of hierarchical clusterings. | |
scipy.spatial.distance.pdist : pairwise distance metrics | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import complete, fcluster | |
>>> from scipy.spatial.distance import pdist | |
First, we need a toy dataset to play with:: | |
x x x x | |
x x | |
x x | |
x x x x | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
Then, we get a condensed distance matrix from this dataset: | |
>>> y = pdist(X) | |
Finally, we can perform the clustering: | |
>>> Z = complete(y) | |
>>> Z | |
array([[ 0. , 1. , 1. , 2. ], | |
[ 3. , 4. , 1. , 2. ], | |
[ 6. , 7. , 1. , 2. ], | |
[ 9. , 10. , 1. , 2. ], | |
[ 2. , 12. , 1.41421356, 3. ], | |
[ 5. , 13. , 1.41421356, 3. ], | |
[ 8. , 14. , 1.41421356, 3. ], | |
[11. , 15. , 1.41421356, 3. ], | |
[16. , 17. , 4.12310563, 6. ], | |
[18. , 19. , 4.12310563, 6. ], | |
[20. , 21. , 5.65685425, 12. ]]) | |
The linkage matrix ``Z`` represents a dendrogram - see | |
`scipy.cluster.hierarchy.linkage` for a detailed explanation of its | |
contents. | |
We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster | |
each initial point would belong given a distance threshold: | |
>>> fcluster(Z, 0.9, criterion='distance') | |
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int32) | |
>>> fcluster(Z, 1.5, criterion='distance') | |
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32) | |
>>> fcluster(Z, 4.5, criterion='distance') | |
array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2], dtype=int32) | |
>>> fcluster(Z, 6, criterion='distance') | |
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32) | |
Also, `scipy.cluster.hierarchy.dendrogram` can be used to generate a | |
plot of the dendrogram. | |
""" | |
return linkage(y, method='complete', metric='euclidean') | |
def average(y): | |
""" | |
Perform average/UPGMA linkage on a condensed distance matrix. | |
Parameters | |
---------- | |
y : ndarray | |
The upper triangular of the distance matrix. The result of | |
``pdist`` is returned in this form. | |
Returns | |
------- | |
Z : ndarray | |
A linkage matrix containing the hierarchical clustering. See | |
`linkage` for more information on its structure. | |
See Also | |
-------- | |
linkage : for advanced creation of hierarchical clusterings. | |
scipy.spatial.distance.pdist : pairwise distance metrics | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import average, fcluster | |
>>> from scipy.spatial.distance import pdist | |
First, we need a toy dataset to play with:: | |
x x x x | |
x x | |
x x | |
x x x x | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
Then, we get a condensed distance matrix from this dataset: | |
>>> y = pdist(X) | |
Finally, we can perform the clustering: | |
>>> Z = average(y) | |
>>> Z | |
array([[ 0. , 1. , 1. , 2. ], | |
[ 3. , 4. , 1. , 2. ], | |
[ 6. , 7. , 1. , 2. ], | |
[ 9. , 10. , 1. , 2. ], | |
[ 2. , 12. , 1.20710678, 3. ], | |
[ 5. , 13. , 1.20710678, 3. ], | |
[ 8. , 14. , 1.20710678, 3. ], | |
[11. , 15. , 1.20710678, 3. ], | |
[16. , 17. , 3.39675184, 6. ], | |
[18. , 19. , 3.39675184, 6. ], | |
[20. , 21. , 4.09206523, 12. ]]) | |
The linkage matrix ``Z`` represents a dendrogram - see | |
`scipy.cluster.hierarchy.linkage` for a detailed explanation of its | |
contents. | |
We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster | |
each initial point would belong given a distance threshold: | |
>>> fcluster(Z, 0.9, criterion='distance') | |
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int32) | |
>>> fcluster(Z, 1.5, criterion='distance') | |
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32) | |
>>> fcluster(Z, 4, criterion='distance') | |
array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2], dtype=int32) | |
>>> fcluster(Z, 6, criterion='distance') | |
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32) | |
Also, `scipy.cluster.hierarchy.dendrogram` can be used to generate a | |
plot of the dendrogram. | |
""" | |
return linkage(y, method='average', metric='euclidean') | |
def weighted(y): | |
""" | |
Perform weighted/WPGMA linkage on the condensed distance matrix. | |
See `linkage` for more information on the return | |
structure and algorithm. | |
Parameters | |
---------- | |
y : ndarray | |
The upper triangular of the distance matrix. The result of | |
``pdist`` is returned in this form. | |
Returns | |
------- | |
Z : ndarray | |
A linkage matrix containing the hierarchical clustering. See | |
`linkage` for more information on its structure. | |
See Also | |
-------- | |
linkage : for advanced creation of hierarchical clusterings. | |
scipy.spatial.distance.pdist : pairwise distance metrics | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import weighted, fcluster | |
>>> from scipy.spatial.distance import pdist | |
First, we need a toy dataset to play with:: | |
x x x x | |
x x | |
x x | |
x x x x | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
Then, we get a condensed distance matrix from this dataset: | |
>>> y = pdist(X) | |
Finally, we can perform the clustering: | |
>>> Z = weighted(y) | |
>>> Z | |
array([[ 0. , 1. , 1. , 2. ], | |
[ 6. , 7. , 1. , 2. ], | |
[ 3. , 4. , 1. , 2. ], | |
[ 9. , 11. , 1. , 2. ], | |
[ 2. , 12. , 1.20710678, 3. ], | |
[ 8. , 13. , 1.20710678, 3. ], | |
[ 5. , 14. , 1.20710678, 3. ], | |
[10. , 15. , 1.20710678, 3. ], | |
[18. , 19. , 3.05595762, 6. ], | |
[16. , 17. , 3.32379407, 6. ], | |
[20. , 21. , 4.06357713, 12. ]]) | |
The linkage matrix ``Z`` represents a dendrogram - see | |
`scipy.cluster.hierarchy.linkage` for a detailed explanation of its | |
contents. | |
We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster | |
each initial point would belong given a distance threshold: | |
>>> fcluster(Z, 0.9, criterion='distance') | |
array([ 7, 8, 9, 1, 2, 3, 10, 11, 12, 4, 6, 5], dtype=int32) | |
>>> fcluster(Z, 1.5, criterion='distance') | |
array([3, 3, 3, 1, 1, 1, 4, 4, 4, 2, 2, 2], dtype=int32) | |
>>> fcluster(Z, 4, criterion='distance') | |
array([2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1], dtype=int32) | |
>>> fcluster(Z, 6, criterion='distance') | |
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32) | |
Also, `scipy.cluster.hierarchy.dendrogram` can be used to generate a | |
plot of the dendrogram. | |
""" | |
return linkage(y, method='weighted', metric='euclidean') | |
def centroid(y): | |
""" | |
Perform centroid/UPGMC linkage. | |
See `linkage` for more information on the input matrix, | |
return structure, and algorithm. | |
The following are common calling conventions: | |
1. ``Z = centroid(y)`` | |
Performs centroid/UPGMC linkage on the condensed distance | |
matrix ``y``. | |
2. ``Z = centroid(X)`` | |
Performs centroid/UPGMC linkage on the observation matrix ``X`` | |
using Euclidean distance as the distance metric. | |
Parameters | |
---------- | |
y : ndarray | |
A condensed distance matrix. A condensed | |
distance matrix is a flat array containing the upper | |
triangular of the distance matrix. This is the form that | |
``pdist`` returns. Alternatively, a collection of | |
m observation vectors in n dimensions may be passed as | |
an m by n array. | |
Returns | |
------- | |
Z : ndarray | |
A linkage matrix containing the hierarchical clustering. See | |
the `linkage` function documentation for more information | |
on its structure. | |
See Also | |
-------- | |
linkage : for advanced creation of hierarchical clusterings. | |
scipy.spatial.distance.pdist : pairwise distance metrics | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import centroid, fcluster | |
>>> from scipy.spatial.distance import pdist | |
First, we need a toy dataset to play with:: | |
x x x x | |
x x | |
x x | |
x x x x | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
Then, we get a condensed distance matrix from this dataset: | |
>>> y = pdist(X) | |
Finally, we can perform the clustering: | |
>>> Z = centroid(y) | |
>>> Z | |
array([[ 0. , 1. , 1. , 2. ], | |
[ 3. , 4. , 1. , 2. ], | |
[ 9. , 10. , 1. , 2. ], | |
[ 6. , 7. , 1. , 2. ], | |
[ 2. , 12. , 1.11803399, 3. ], | |
[ 5. , 13. , 1.11803399, 3. ], | |
[ 8. , 15. , 1.11803399, 3. ], | |
[11. , 14. , 1.11803399, 3. ], | |
[18. , 19. , 3.33333333, 6. ], | |
[16. , 17. , 3.33333333, 6. ], | |
[20. , 21. , 3.33333333, 12. ]]) # may vary | |
The linkage matrix ``Z`` represents a dendrogram - see | |
`scipy.cluster.hierarchy.linkage` for a detailed explanation of its | |
contents. | |
We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster | |
each initial point would belong given a distance threshold: | |
>>> fcluster(Z, 0.9, criterion='distance') | |
array([ 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6], dtype=int32) # may vary | |
>>> fcluster(Z, 1.1, criterion='distance') | |
array([5, 5, 6, 7, 7, 8, 1, 1, 2, 3, 3, 4], dtype=int32) # may vary | |
>>> fcluster(Z, 2, criterion='distance') | |
array([3, 3, 3, 4, 4, 4, 1, 1, 1, 2, 2, 2], dtype=int32) # may vary | |
>>> fcluster(Z, 4, criterion='distance') | |
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32) | |
Also, `scipy.cluster.hierarchy.dendrogram` can be used to generate a | |
plot of the dendrogram. | |
""" | |
return linkage(y, method='centroid', metric='euclidean') | |
def median(y): | |
""" | |
Perform median/WPGMC linkage. | |
See `linkage` for more information on the return structure | |
and algorithm. | |
The following are common calling conventions: | |
1. ``Z = median(y)`` | |
Performs median/WPGMC linkage on the condensed distance matrix | |
``y``. See ``linkage`` for more information on the return | |
structure and algorithm. | |
2. ``Z = median(X)`` | |
Performs median/WPGMC linkage on the observation matrix ``X`` | |
using Euclidean distance as the distance metric. See `linkage` | |
for more information on the return structure and algorithm. | |
Parameters | |
---------- | |
y : ndarray | |
A condensed distance matrix. A condensed | |
distance matrix is a flat array containing the upper | |
triangular of the distance matrix. This is the form that | |
``pdist`` returns. Alternatively, a collection of | |
m observation vectors in n dimensions may be passed as | |
an m by n array. | |
Returns | |
------- | |
Z : ndarray | |
The hierarchical clustering encoded as a linkage matrix. | |
See Also | |
-------- | |
linkage : for advanced creation of hierarchical clusterings. | |
scipy.spatial.distance.pdist : pairwise distance metrics | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import median, fcluster | |
>>> from scipy.spatial.distance import pdist | |
First, we need a toy dataset to play with:: | |
x x x x | |
x x | |
x x | |
x x x x | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
Then, we get a condensed distance matrix from this dataset: | |
>>> y = pdist(X) | |
Finally, we can perform the clustering: | |
>>> Z = median(y) | |
>>> Z | |
array([[ 0. , 1. , 1. , 2. ], | |
[ 3. , 4. , 1. , 2. ], | |
[ 9. , 10. , 1. , 2. ], | |
[ 6. , 7. , 1. , 2. ], | |
[ 2. , 12. , 1.11803399, 3. ], | |
[ 5. , 13. , 1.11803399, 3. ], | |
[ 8. , 15. , 1.11803399, 3. ], | |
[11. , 14. , 1.11803399, 3. ], | |
[18. , 19. , 3. , 6. ], | |
[16. , 17. , 3.5 , 6. ], | |
[20. , 21. , 3.25 , 12. ]]) | |
The linkage matrix ``Z`` represents a dendrogram - see | |
`scipy.cluster.hierarchy.linkage` for a detailed explanation of its | |
contents. | |
We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster | |
each initial point would belong given a distance threshold: | |
>>> fcluster(Z, 0.9, criterion='distance') | |
array([ 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6], dtype=int32) | |
>>> fcluster(Z, 1.1, criterion='distance') | |
array([5, 5, 6, 7, 7, 8, 1, 1, 2, 3, 3, 4], dtype=int32) | |
>>> fcluster(Z, 2, criterion='distance') | |
array([3, 3, 3, 4, 4, 4, 1, 1, 1, 2, 2, 2], dtype=int32) | |
>>> fcluster(Z, 4, criterion='distance') | |
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32) | |
Also, `scipy.cluster.hierarchy.dendrogram` can be used to generate a | |
plot of the dendrogram. | |
""" | |
return linkage(y, method='median', metric='euclidean') | |
def ward(y): | |
""" | |
Perform Ward's linkage on a condensed distance matrix. | |
See `linkage` for more information on the return structure | |
and algorithm. | |
The following are common calling conventions: | |
1. ``Z = ward(y)`` | |
Performs Ward's linkage on the condensed distance matrix ``y``. | |
2. ``Z = ward(X)`` | |
Performs Ward's linkage on the observation matrix ``X`` using | |
Euclidean distance as the distance metric. | |
Parameters | |
---------- | |
y : ndarray | |
A condensed distance matrix. A condensed | |
distance matrix is a flat array containing the upper | |
triangular of the distance matrix. This is the form that | |
``pdist`` returns. Alternatively, a collection of | |
m observation vectors in n dimensions may be passed as | |
an m by n array. | |
Returns | |
------- | |
Z : ndarray | |
The hierarchical clustering encoded as a linkage matrix. See | |
`linkage` for more information on the return structure and | |
algorithm. | |
See Also | |
-------- | |
linkage : for advanced creation of hierarchical clusterings. | |
scipy.spatial.distance.pdist : pairwise distance metrics | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import ward, fcluster | |
>>> from scipy.spatial.distance import pdist | |
First, we need a toy dataset to play with:: | |
x x x x | |
x x | |
x x | |
x x x x | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
Then, we get a condensed distance matrix from this dataset: | |
>>> y = pdist(X) | |
Finally, we can perform the clustering: | |
>>> Z = ward(y) | |
>>> Z | |
array([[ 0. , 1. , 1. , 2. ], | |
[ 3. , 4. , 1. , 2. ], | |
[ 6. , 7. , 1. , 2. ], | |
[ 9. , 10. , 1. , 2. ], | |
[ 2. , 12. , 1.29099445, 3. ], | |
[ 5. , 13. , 1.29099445, 3. ], | |
[ 8. , 14. , 1.29099445, 3. ], | |
[11. , 15. , 1.29099445, 3. ], | |
[16. , 17. , 5.77350269, 6. ], | |
[18. , 19. , 5.77350269, 6. ], | |
[20. , 21. , 8.16496581, 12. ]]) | |
The linkage matrix ``Z`` represents a dendrogram - see | |
`scipy.cluster.hierarchy.linkage` for a detailed explanation of its | |
contents. | |
We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster | |
each initial point would belong given a distance threshold: | |
>>> fcluster(Z, 0.9, criterion='distance') | |
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int32) | |
>>> fcluster(Z, 1.1, criterion='distance') | |
array([1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8], dtype=int32) | |
>>> fcluster(Z, 3, criterion='distance') | |
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32) | |
>>> fcluster(Z, 9, criterion='distance') | |
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32) | |
Also, `scipy.cluster.hierarchy.dendrogram` can be used to generate a | |
plot of the dendrogram. | |
""" | |
return linkage(y, method='ward', metric='euclidean') | |
def linkage(y, method='single', metric='euclidean', optimal_ordering=False): | |
""" | |
Perform hierarchical/agglomerative clustering. | |
The input y may be either a 1-D condensed distance matrix | |
or a 2-D array of observation vectors. | |
If y is a 1-D condensed distance matrix, | |
then y must be a :math:`\\binom{n}{2}` sized | |
vector, where n is the number of original observations paired | |
in the distance matrix. The behavior of this function is very | |
similar to the MATLAB linkage function. | |
A :math:`(n-1)` by 4 matrix ``Z`` is returned. At the | |
:math:`i`-th iteration, clusters with indices ``Z[i, 0]`` and | |
``Z[i, 1]`` are combined to form cluster :math:`n + i`. A | |
cluster with an index less than :math:`n` corresponds to one of | |
the :math:`n` original observations. The distance between | |
clusters ``Z[i, 0]`` and ``Z[i, 1]`` is given by ``Z[i, 2]``. The | |
fourth value ``Z[i, 3]`` represents the number of original | |
observations in the newly formed cluster. | |
The following linkage methods are used to compute the distance | |
:math:`d(s, t)` between two clusters :math:`s` and | |
:math:`t`. The algorithm begins with a forest of clusters that | |
have yet to be used in the hierarchy being formed. When two | |
clusters :math:`s` and :math:`t` from this forest are combined | |
into a single cluster :math:`u`, :math:`s` and :math:`t` are | |
removed from the forest, and :math:`u` is added to the | |
forest. When only one cluster remains in the forest, the algorithm | |
stops, and this cluster becomes the root. | |
A distance matrix is maintained at each iteration. The ``d[i,j]`` | |
entry corresponds to the distance between cluster :math:`i` and | |
:math:`j` in the original forest. | |
At each iteration, the algorithm must update the distance matrix | |
to reflect the distance of the newly formed cluster u with the | |
remaining clusters in the forest. | |
Suppose there are :math:`|u|` original observations | |
:math:`u[0], \\ldots, u[|u|-1]` in cluster :math:`u` and | |
:math:`|v|` original objects :math:`v[0], \\ldots, v[|v|-1]` in | |
cluster :math:`v`. Recall, :math:`s` and :math:`t` are | |
combined to form cluster :math:`u`. Let :math:`v` be any | |
remaining cluster in the forest that is not :math:`u`. | |
The following are methods for calculating the distance between the | |
newly formed cluster :math:`u` and each :math:`v`. | |
* method='single' assigns | |
.. math:: | |
d(u,v) = \\min(dist(u[i],v[j])) | |
for all points :math:`i` in cluster :math:`u` and | |
:math:`j` in cluster :math:`v`. This is also known as the | |
Nearest Point Algorithm. | |
* method='complete' assigns | |
.. math:: | |
d(u, v) = \\max(dist(u[i],v[j])) | |
for all points :math:`i` in cluster u and :math:`j` in | |
cluster :math:`v`. This is also known by the Farthest Point | |
Algorithm or Voor Hees Algorithm. | |
* method='average' assigns | |
.. math:: | |
d(u,v) = \\sum_{ij} \\frac{d(u[i], v[j])} | |
{(|u|*|v|)} | |
for all points :math:`i` and :math:`j` where :math:`|u|` | |
and :math:`|v|` are the cardinalities of clusters :math:`u` | |
and :math:`v`, respectively. This is also called the UPGMA | |
algorithm. | |
* method='weighted' assigns | |
.. math:: | |
d(u,v) = (dist(s,v) + dist(t,v))/2 | |
where cluster u was formed with cluster s and t and v | |
is a remaining cluster in the forest (also called WPGMA). | |
* method='centroid' assigns | |
.. math:: | |
dist(s,t) = ||c_s-c_t||_2 | |
where :math:`c_s` and :math:`c_t` are the centroids of | |
clusters :math:`s` and :math:`t`, respectively. When two | |
clusters :math:`s` and :math:`t` are combined into a new | |
cluster :math:`u`, the new centroid is computed over all the | |
original objects in clusters :math:`s` and :math:`t`. The | |
distance then becomes the Euclidean distance between the | |
centroid of :math:`u` and the centroid of a remaining cluster | |
:math:`v` in the forest. This is also known as the UPGMC | |
algorithm. | |
* method='median' assigns :math:`d(s,t)` like the ``centroid`` | |
method. When two clusters :math:`s` and :math:`t` are combined | |
into a new cluster :math:`u`, the average of centroids s and t | |
give the new centroid :math:`u`. This is also known as the | |
WPGMC algorithm. | |
* method='ward' uses the Ward variance minimization algorithm. | |
The new entry :math:`d(u,v)` is computed as follows, | |
.. math:: | |
d(u,v) = \\sqrt{\\frac{|v|+|s|} | |
{T}d(v,s)^2 | |
+ \\frac{|v|+|t|} | |
{T}d(v,t)^2 | |
- \\frac{|v|} | |
{T}d(s,t)^2} | |
where :math:`u` is the newly joined cluster consisting of | |
clusters :math:`s` and :math:`t`, :math:`v` is an unused | |
cluster in the forest, :math:`T=|v|+|s|+|t|`, and | |
:math:`|*|` is the cardinality of its argument. This is also | |
known as the incremental algorithm. | |
Warning: When the minimum distance pair in the forest is chosen, there | |
may be two or more pairs with the same minimum distance. This | |
implementation may choose a different minimum than the MATLAB | |
version. | |
Parameters | |
---------- | |
y : ndarray | |
A condensed distance matrix. A condensed distance matrix | |
is a flat array containing the upper triangular of the distance matrix. | |
This is the form that ``pdist`` returns. Alternatively, a collection of | |
:math:`m` observation vectors in :math:`n` dimensions may be passed as | |
an :math:`m` by :math:`n` array. All elements of the condensed distance | |
matrix must be finite, i.e., no NaNs or infs. | |
method : str, optional | |
The linkage algorithm to use. See the ``Linkage Methods`` section below | |
for full descriptions. | |
metric : str or function, optional | |
The distance metric to use in the case that y is a collection of | |
observation vectors; ignored otherwise. See the ``pdist`` | |
function for a list of valid distance metrics. A custom distance | |
function can also be used. | |
optimal_ordering : bool, optional | |
If True, the linkage matrix will be reordered so that the distance | |
between successive leaves is minimal. This results in a more intuitive | |
tree structure when the data are visualized. defaults to False, because | |
this algorithm can be slow, particularly on large datasets [2]_. See | |
also the `optimal_leaf_ordering` function. | |
.. versionadded:: 1.0.0 | |
Returns | |
------- | |
Z : ndarray | |
The hierarchical clustering encoded as a linkage matrix. | |
Notes | |
----- | |
1. For method 'single', an optimized algorithm based on minimum spanning | |
tree is implemented. It has time complexity :math:`O(n^2)`. | |
For methods 'complete', 'average', 'weighted' and 'ward', an algorithm | |
called nearest-neighbors chain is implemented. It also has time | |
complexity :math:`O(n^2)`. | |
For other methods, a naive algorithm is implemented with :math:`O(n^3)` | |
time complexity. | |
All algorithms use :math:`O(n^2)` memory. | |
Refer to [1]_ for details about the algorithms. | |
2. Methods 'centroid', 'median', and 'ward' are correctly defined only if | |
Euclidean pairwise metric is used. If `y` is passed as precomputed | |
pairwise distances, then it is the user's responsibility to assure that | |
these distances are in fact Euclidean, otherwise the produced result | |
will be incorrect. | |
See Also | |
-------- | |
scipy.spatial.distance.pdist : pairwise distance metrics | |
References | |
---------- | |
.. [1] Daniel Mullner, "Modern hierarchical, agglomerative clustering | |
algorithms", :arXiv:`1109.2378v1`. | |
.. [2] Ziv Bar-Joseph, David K. Gifford, Tommi S. Jaakkola, "Fast optimal | |
leaf ordering for hierarchical clustering", 2001. Bioinformatics | |
:doi:`10.1093/bioinformatics/17.suppl_1.S22` | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import dendrogram, linkage | |
>>> from matplotlib import pyplot as plt | |
>>> X = [[i] for i in [2, 8, 0, 4, 1, 9, 9, 0]] | |
>>> Z = linkage(X, 'ward') | |
>>> fig = plt.figure(figsize=(25, 10)) | |
>>> dn = dendrogram(Z) | |
>>> Z = linkage(X, 'single') | |
>>> fig = plt.figure(figsize=(25, 10)) | |
>>> dn = dendrogram(Z) | |
>>> plt.show() | |
""" | |
xp = array_namespace(y) | |
y = _asarray(y, order='C', dtype=xp.float64, xp=xp) | |
if method not in _LINKAGE_METHODS: | |
raise ValueError(f"Invalid method: {method}") | |
if method in _EUCLIDEAN_METHODS and metric != 'euclidean' and y.ndim == 2: | |
msg = f"`method={method}` requires the distance metric to be Euclidean" | |
raise ValueError(msg) | |
if y.ndim == 1: | |
distance.is_valid_y(y, throw=True, name='y') | |
elif y.ndim == 2: | |
if (y.shape[0] == y.shape[1] and np.allclose(np.diag(y), 0) and | |
xp.all(y >= 0) and np.allclose(y, y.T)): | |
warnings.warn('The symmetric non-negative hollow observation ' | |
'matrix looks suspiciously like an uncondensed ' | |
'distance matrix', | |
ClusterWarning, stacklevel=2) | |
y = distance.pdist(y, metric) | |
y = xp.asarray(y) | |
else: | |
raise ValueError("`y` must be 1 or 2 dimensional.") | |
if not xp.all(xp.isfinite(y)): | |
raise ValueError("The condensed distance matrix must contain only " | |
"finite values.") | |
n = int(distance.num_obs_y(y)) | |
method_code = _LINKAGE_METHODS[method] | |
y = np.asarray(y) | |
if method == 'single': | |
result = _hierarchy.mst_single_linkage(y, n) | |
elif method in ['complete', 'average', 'weighted', 'ward']: | |
result = _hierarchy.nn_chain(y, n, method_code) | |
else: | |
result = _hierarchy.fast_linkage(y, n, method_code) | |
result = xp.asarray(result) | |
if optimal_ordering: | |
y = xp.asarray(y) | |
return optimal_leaf_ordering(result, y) | |
else: | |
return result | |
class ClusterNode: | |
""" | |
A tree node class for representing a cluster. | |
Leaf nodes correspond to original observations, while non-leaf nodes | |
correspond to non-singleton clusters. | |
The `to_tree` function converts a matrix returned by the linkage | |
function into an easy-to-use tree representation. | |
All parameter names are also attributes. | |
Parameters | |
---------- | |
id : int | |
The node id. | |
left : ClusterNode instance, optional | |
The left child tree node. | |
right : ClusterNode instance, optional | |
The right child tree node. | |
dist : float, optional | |
Distance for this cluster in the linkage matrix. | |
count : int, optional | |
The number of samples in this cluster. | |
See Also | |
-------- | |
to_tree : for converting a linkage matrix ``Z`` into a tree object. | |
""" | |
def __init__(self, id, left=None, right=None, dist=0, count=1): | |
if id < 0: | |
raise ValueError('The id must be non-negative.') | |
if dist < 0: | |
raise ValueError('The distance must be non-negative.') | |
if (left is None and right is not None) or \ | |
(left is not None and right is None): | |
raise ValueError('Only full or proper binary trees are permitted.' | |
' This node has one child.') | |
if count < 1: | |
raise ValueError('A cluster must contain at least one original ' | |
'observation.') | |
self.id = id | |
self.left = left | |
self.right = right | |
self.dist = dist | |
if self.left is None: | |
self.count = count | |
else: | |
self.count = left.count + right.count | |
def __lt__(self, node): | |
if not isinstance(node, ClusterNode): | |
raise ValueError("Can't compare ClusterNode " | |
f"to type {type(node)}") | |
return self.dist < node.dist | |
def __gt__(self, node): | |
if not isinstance(node, ClusterNode): | |
raise ValueError("Can't compare ClusterNode " | |
f"to type {type(node)}") | |
return self.dist > node.dist | |
def __eq__(self, node): | |
if not isinstance(node, ClusterNode): | |
raise ValueError("Can't compare ClusterNode " | |
f"to type {type(node)}") | |
return self.dist == node.dist | |
def get_id(self): | |
""" | |
The identifier of the target node. | |
For ``0 <= i < n``, `i` corresponds to original observation i. | |
For ``n <= i < 2n-1``, `i` corresponds to non-singleton cluster formed | |
at iteration ``i-n``. | |
Returns | |
------- | |
id : int | |
The identifier of the target node. | |
""" | |
return self.id | |
def get_count(self): | |
""" | |
The number of leaf nodes (original observations) belonging to | |
the cluster node nd. If the target node is a leaf, 1 is | |
returned. | |
Returns | |
------- | |
get_count : int | |
The number of leaf nodes below the target node. | |
""" | |
return self.count | |
def get_left(self): | |
""" | |
Return a reference to the left child tree object. | |
Returns | |
------- | |
left : ClusterNode | |
The left child of the target node. If the node is a leaf, | |
None is returned. | |
""" | |
return self.left | |
def get_right(self): | |
""" | |
Return a reference to the right child tree object. | |
Returns | |
------- | |
right : ClusterNode | |
The left child of the target node. If the node is a leaf, | |
None is returned. | |
""" | |
return self.right | |
def is_leaf(self): | |
""" | |
Return True if the target node is a leaf. | |
Returns | |
------- | |
leafness : bool | |
True if the target node is a leaf node. | |
""" | |
return self.left is None | |
def pre_order(self, func=(lambda x: x.id)): | |
""" | |
Perform pre-order traversal without recursive function calls. | |
When a leaf node is first encountered, ``func`` is called with | |
the leaf node as its argument, and its result is appended to | |
the list. | |
For example, the statement:: | |
ids = root.pre_order(lambda x: x.id) | |
returns a list of the node ids corresponding to the leaf nodes | |
of the tree as they appear from left to right. | |
Parameters | |
---------- | |
func : function | |
Applied to each leaf ClusterNode object in the pre-order traversal. | |
Given the ``i``-th leaf node in the pre-order traversal ``n[i]``, | |
the result of ``func(n[i])`` is stored in ``L[i]``. If not | |
provided, the index of the original observation to which the node | |
corresponds is used. | |
Returns | |
------- | |
L : list | |
The pre-order traversal. | |
""" | |
# Do a preorder traversal, caching the result. To avoid having to do | |
# recursion, we'll store the previous index we've visited in a vector. | |
n = self.count | |
curNode = [None] * (2 * n) | |
lvisited = set() | |
rvisited = set() | |
curNode[0] = self | |
k = 0 | |
preorder = [] | |
while k >= 0: | |
nd = curNode[k] | |
ndid = nd.id | |
if nd.is_leaf(): | |
preorder.append(func(nd)) | |
k = k - 1 | |
else: | |
if ndid not in lvisited: | |
curNode[k + 1] = nd.left | |
lvisited.add(ndid) | |
k = k + 1 | |
elif ndid not in rvisited: | |
curNode[k + 1] = nd.right | |
rvisited.add(ndid) | |
k = k + 1 | |
# If we've visited the left and right of this non-leaf | |
# node already, go up in the tree. | |
else: | |
k = k - 1 | |
return preorder | |
_cnode_bare = ClusterNode(0) | |
_cnode_type = type(ClusterNode) | |
def _order_cluster_tree(Z): | |
""" | |
Return clustering nodes in bottom-up order by distance. | |
Parameters | |
---------- | |
Z : scipy.cluster.linkage array | |
The linkage matrix. | |
Returns | |
------- | |
nodes : list | |
A list of ClusterNode objects. | |
""" | |
q = deque() | |
tree = to_tree(Z) | |
q.append(tree) | |
nodes = [] | |
while q: | |
node = q.popleft() | |
if not node.is_leaf(): | |
bisect.insort_left(nodes, node) | |
q.append(node.get_right()) | |
q.append(node.get_left()) | |
return nodes | |
def cut_tree(Z, n_clusters=None, height=None): | |
""" | |
Given a linkage matrix Z, return the cut tree. | |
Parameters | |
---------- | |
Z : scipy.cluster.linkage array | |
The linkage matrix. | |
n_clusters : array_like, optional | |
Number of clusters in the tree at the cut point. | |
height : array_like, optional | |
The height at which to cut the tree. Only possible for ultrametric | |
trees. | |
Returns | |
------- | |
cutree : array | |
An array indicating group membership at each agglomeration step. I.e., | |
for a full cut tree, in the first column each data point is in its own | |
cluster. At the next step, two nodes are merged. Finally, all | |
singleton and non-singleton clusters are in one group. If `n_clusters` | |
or `height` are given, the columns correspond to the columns of | |
`n_clusters` or `height`. | |
Examples | |
-------- | |
>>> from scipy import cluster | |
>>> import numpy as np | |
>>> from numpy.random import default_rng | |
>>> rng = default_rng() | |
>>> X = rng.random((50, 4)) | |
>>> Z = cluster.hierarchy.ward(X) | |
>>> cutree = cluster.hierarchy.cut_tree(Z, n_clusters=[5, 10]) | |
>>> cutree[:10] | |
array([[0, 0], | |
[1, 1], | |
[2, 2], | |
[3, 3], | |
[3, 4], | |
[2, 2], | |
[0, 0], | |
[1, 5], | |
[3, 6], | |
[4, 7]]) # random | |
""" | |
xp = array_namespace(Z) | |
nobs = num_obs_linkage(Z) | |
nodes = _order_cluster_tree(Z) | |
if height is not None and n_clusters is not None: | |
raise ValueError("At least one of either height or n_clusters " | |
"must be None") | |
elif height is None and n_clusters is None: # return the full cut tree | |
cols_idx = xp.arange(nobs) | |
elif height is not None: | |
height = xp.asarray(height) | |
heights = xp.asarray([x.dist for x in nodes]) | |
cols_idx = xp.searchsorted(heights, height) | |
else: | |
n_clusters = xp.asarray(n_clusters) | |
cols_idx = nobs - xp.searchsorted(xp.arange(nobs), n_clusters) | |
try: | |
n_cols = len(cols_idx) | |
except TypeError: # scalar | |
n_cols = 1 | |
cols_idx = xp.asarray([cols_idx]) | |
groups = xp.zeros((n_cols, nobs), dtype=xp.int64) | |
last_group = xp.arange(nobs) | |
if 0 in cols_idx: | |
groups[0] = last_group | |
for i, node in enumerate(nodes): | |
idx = node.pre_order() | |
this_group = copy(last_group, xp=xp) | |
# TODO ARRAY_API complex indexing not supported | |
this_group[idx] = xp.min(last_group[idx]) | |
this_group[this_group > xp.max(last_group[idx])] -= 1 | |
if i + 1 in cols_idx: | |
groups[np.nonzero(i + 1 == cols_idx)[0]] = this_group | |
last_group = this_group | |
return groups.T | |
def to_tree(Z, rd=False): | |
""" | |
Convert a linkage matrix into an easy-to-use tree object. | |
The reference to the root `ClusterNode` object is returned (by default). | |
Each `ClusterNode` object has a ``left``, ``right``, ``dist``, ``id``, | |
and ``count`` attribute. The left and right attributes point to | |
ClusterNode objects that were combined to generate the cluster. | |
If both are None then the `ClusterNode` object is a leaf node, its count | |
must be 1, and its distance is meaningless but set to 0. | |
*Note: This function is provided for the convenience of the library | |
user. ClusterNodes are not used as input to any of the functions in this | |
library.* | |
Parameters | |
---------- | |
Z : ndarray | |
The linkage matrix in proper form (see the `linkage` | |
function documentation). | |
rd : bool, optional | |
When False (default), a reference to the root `ClusterNode` object is | |
returned. Otherwise, a tuple ``(r, d)`` is returned. ``r`` is a | |
reference to the root node while ``d`` is a list of `ClusterNode` | |
objects - one per original entry in the linkage matrix plus entries | |
for all clustering steps. If a cluster id is | |
less than the number of samples ``n`` in the data that the linkage | |
matrix describes, then it corresponds to a singleton cluster (leaf | |
node). | |
See `linkage` for more information on the assignment of cluster ids | |
to clusters. | |
Returns | |
------- | |
tree : ClusterNode or tuple (ClusterNode, list of ClusterNode) | |
If ``rd`` is False, a `ClusterNode`. | |
If ``rd`` is True, a list of length ``2*n - 1``, with ``n`` the number | |
of samples. See the description of `rd` above for more details. | |
See Also | |
-------- | |
linkage, is_valid_linkage, ClusterNode | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.cluster import hierarchy | |
>>> rng = np.random.default_rng() | |
>>> x = rng.random((5, 2)) | |
>>> Z = hierarchy.linkage(x) | |
>>> hierarchy.to_tree(Z) | |
<scipy.cluster.hierarchy.ClusterNode object at ... | |
>>> rootnode, nodelist = hierarchy.to_tree(Z, rd=True) | |
>>> rootnode | |
<scipy.cluster.hierarchy.ClusterNode object at ... | |
>>> len(nodelist) | |
9 | |
""" | |
xp = array_namespace(Z) | |
Z = _asarray(Z, order='c', xp=xp) | |
is_valid_linkage(Z, throw=True, name='Z') | |
# Number of original objects is equal to the number of rows plus 1. | |
n = Z.shape[0] + 1 | |
# Create a list full of None's to store the node objects | |
d = [None] * (n * 2 - 1) | |
# Create the nodes corresponding to the n original objects. | |
for i in range(0, n): | |
d[i] = ClusterNode(i) | |
nd = None | |
for i in range(Z.shape[0]): | |
row = Z[i, :] | |
fi = int_floor(row[0], xp) | |
fj = int_floor(row[1], xp) | |
if fi > i + n: | |
raise ValueError(('Corrupt matrix Z. Index to derivative cluster ' | |
'is used before it is formed. See row %d, ' | |
'column 0') % fi) | |
if fj > i + n: | |
raise ValueError(('Corrupt matrix Z. Index to derivative cluster ' | |
'is used before it is formed. See row %d, ' | |
'column 1') % fj) | |
nd = ClusterNode(i + n, d[fi], d[fj], row[2]) | |
# ^ id ^ left ^ right ^ dist | |
if row[3] != nd.count: | |
raise ValueError(('Corrupt matrix Z. The count Z[%d,3] is ' | |
'incorrect.') % i) | |
d[n + i] = nd | |
if rd: | |
return (nd, d) | |
else: | |
return nd | |
def optimal_leaf_ordering(Z, y, metric='euclidean'): | |
""" | |
Given a linkage matrix Z and distance, reorder the cut tree. | |
Parameters | |
---------- | |
Z : ndarray | |
The hierarchical clustering encoded as a linkage matrix. See | |
`linkage` for more information on the return structure and | |
algorithm. | |
y : ndarray | |
The condensed distance matrix from which Z was generated. | |
Alternatively, a collection of m observation vectors in n | |
dimensions may be passed as an m by n array. | |
metric : str or function, optional | |
The distance metric to use in the case that y is a collection of | |
observation vectors; ignored otherwise. See the ``pdist`` | |
function for a list of valid distance metrics. A custom distance | |
function can also be used. | |
Returns | |
------- | |
Z_ordered : ndarray | |
A copy of the linkage matrix Z, reordered to minimize the distance | |
between adjacent leaves. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.cluster import hierarchy | |
>>> rng = np.random.default_rng() | |
>>> X = rng.standard_normal((10, 10)) | |
>>> Z = hierarchy.ward(X) | |
>>> hierarchy.leaves_list(Z) | |
array([0, 3, 1, 9, 2, 5, 7, 4, 6, 8], dtype=int32) | |
>>> hierarchy.leaves_list(hierarchy.optimal_leaf_ordering(Z, X)) | |
array([3, 0, 2, 5, 7, 4, 8, 6, 9, 1], dtype=int32) | |
""" | |
xp = array_namespace(Z, y) | |
Z = _asarray(Z, order='C', xp=xp) | |
is_valid_linkage(Z, throw=True, name='Z') | |
y = _asarray(y, order='C', dtype=xp.float64, xp=xp) | |
if y.ndim == 1: | |
distance.is_valid_y(y, throw=True, name='y') | |
elif y.ndim == 2: | |
if (y.shape[0] == y.shape[1] and np.allclose(np.diag(y), 0) and | |
np.all(y >= 0) and np.allclose(y, y.T)): | |
warnings.warn('The symmetric non-negative hollow observation ' | |
'matrix looks suspiciously like an uncondensed ' | |
'distance matrix', | |
ClusterWarning, stacklevel=2) | |
y = distance.pdist(y, metric) | |
y = xp.asarray(y) | |
else: | |
raise ValueError("`y` must be 1 or 2 dimensional.") | |
if not xp.all(xp.isfinite(y)): | |
raise ValueError("The condensed distance matrix must contain only " | |
"finite values.") | |
Z = np.asarray(Z) | |
y = np.asarray(y) | |
return xp.asarray(_optimal_leaf_ordering.optimal_leaf_ordering(Z, y)) | |
def cophenet(Z, Y=None): | |
""" | |
Calculate the cophenetic distances between each observation in | |
the hierarchical clustering defined by the linkage ``Z``. | |
Suppose ``p`` and ``q`` are original observations in | |
disjoint clusters ``s`` and ``t``, respectively and | |
``s`` and ``t`` are joined by a direct parent cluster | |
``u``. The cophenetic distance between observations | |
``i`` and ``j`` is simply the distance between | |
clusters ``s`` and ``t``. | |
Parameters | |
---------- | |
Z : ndarray | |
The hierarchical clustering encoded as an array | |
(see `linkage` function). | |
Y : ndarray (optional) | |
Calculates the cophenetic correlation coefficient ``c`` of a | |
hierarchical clustering defined by the linkage matrix `Z` | |
of a set of :math:`n` observations in :math:`m` | |
dimensions. `Y` is the condensed distance matrix from which | |
`Z` was generated. | |
Returns | |
------- | |
c : ndarray | |
The cophentic correlation distance (if ``Y`` is passed). | |
d : ndarray | |
The cophenetic distance matrix in condensed form. The | |
:math:`ij` th entry is the cophenetic distance between | |
original observations :math:`i` and :math:`j`. | |
See Also | |
-------- | |
linkage : | |
for a description of what a linkage matrix is. | |
scipy.spatial.distance.squareform : | |
transforming condensed matrices into square ones. | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import single, cophenet | |
>>> from scipy.spatial.distance import pdist, squareform | |
Given a dataset ``X`` and a linkage matrix ``Z``, the cophenetic distance | |
between two points of ``X`` is the distance between the largest two | |
distinct clusters that each of the points: | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
``X`` corresponds to this dataset :: | |
x x x x | |
x x | |
x x | |
x x x x | |
>>> Z = single(pdist(X)) | |
>>> Z | |
array([[ 0., 1., 1., 2.], | |
[ 2., 12., 1., 3.], | |
[ 3., 4., 1., 2.], | |
[ 5., 14., 1., 3.], | |
[ 6., 7., 1., 2.], | |
[ 8., 16., 1., 3.], | |
[ 9., 10., 1., 2.], | |
[11., 18., 1., 3.], | |
[13., 15., 2., 6.], | |
[17., 20., 2., 9.], | |
[19., 21., 2., 12.]]) | |
>>> cophenet(Z) | |
array([1., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 2., 2., 2., 2., 2., | |
2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 1., 2., 2., | |
2., 2., 2., 2., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., | |
1., 1., 2., 2., 2., 1., 2., 2., 2., 2., 2., 2., 1., 1., 1.]) | |
The output of the `scipy.cluster.hierarchy.cophenet` method is | |
represented in condensed form. We can use | |
`scipy.spatial.distance.squareform` to see the output as a | |
regular matrix (where each element ``ij`` denotes the cophenetic distance | |
between each ``i``, ``j`` pair of points in ``X``): | |
>>> squareform(cophenet(Z)) | |
array([[0., 1., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2.], | |
[1., 0., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2.], | |
[1., 1., 0., 2., 2., 2., 2., 2., 2., 2., 2., 2.], | |
[2., 2., 2., 0., 1., 1., 2., 2., 2., 2., 2., 2.], | |
[2., 2., 2., 1., 0., 1., 2., 2., 2., 2., 2., 2.], | |
[2., 2., 2., 1., 1., 0., 2., 2., 2., 2., 2., 2.], | |
[2., 2., 2., 2., 2., 2., 0., 1., 1., 2., 2., 2.], | |
[2., 2., 2., 2., 2., 2., 1., 0., 1., 2., 2., 2.], | |
[2., 2., 2., 2., 2., 2., 1., 1., 0., 2., 2., 2.], | |
[2., 2., 2., 2., 2., 2., 2., 2., 2., 0., 1., 1.], | |
[2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 0., 1.], | |
[2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 1., 0.]]) | |
In this example, the cophenetic distance between points on ``X`` that are | |
very close (i.e., in the same corner) is 1. For other pairs of points is 2, | |
because the points will be located in clusters at different | |
corners - thus, the distance between these clusters will be larger. | |
""" | |
xp = array_namespace(Z, Y) | |
# Ensure float64 C-contiguous array. Cython code doesn't deal with striding. | |
Z = _asarray(Z, order='C', dtype=xp.float64, xp=xp) | |
is_valid_linkage(Z, throw=True, name='Z') | |
n = Z.shape[0] + 1 | |
zz = np.zeros((n * (n-1)) // 2, dtype=np.float64) | |
Z = np.asarray(Z) | |
_hierarchy.cophenetic_distances(Z, zz, int(n)) | |
zz = xp.asarray(zz) | |
if Y is None: | |
return zz | |
Y = _asarray(Y, order='C', xp=xp) | |
distance.is_valid_y(Y, throw=True, name='Y') | |
z = xp.mean(zz) | |
y = xp.mean(Y) | |
Yy = Y - y | |
Zz = zz - z | |
numerator = (Yy * Zz) | |
denomA = Yy**2 | |
denomB = Zz**2 | |
c = xp.sum(numerator) / xp.sqrt(xp.sum(denomA) * xp.sum(denomB)) | |
return (c, zz) | |
def inconsistent(Z, d=2): | |
r""" | |
Calculate inconsistency statistics on a linkage matrix. | |
Parameters | |
---------- | |
Z : ndarray | |
The :math:`(n-1)` by 4 matrix encoding the linkage (hierarchical | |
clustering). See `linkage` documentation for more information on its | |
form. | |
d : int, optional | |
The number of links up to `d` levels below each non-singleton cluster. | |
Returns | |
------- | |
R : ndarray | |
A :math:`(n-1)` by 4 matrix where the ``i``'th row contains the link | |
statistics for the non-singleton cluster ``i``. The link statistics are | |
computed over the link heights for links :math:`d` levels below the | |
cluster ``i``. ``R[i,0]`` and ``R[i,1]`` are the mean and standard | |
deviation of the link heights, respectively; ``R[i,2]`` is the number | |
of links included in the calculation; and ``R[i,3]`` is the | |
inconsistency coefficient, | |
.. math:: \frac{\mathtt{Z[i,2]} - \mathtt{R[i,0]}} {R[i,1]} | |
Notes | |
----- | |
This function behaves similarly to the MATLAB(TM) ``inconsistent`` | |
function. | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import inconsistent, linkage | |
>>> from matplotlib import pyplot as plt | |
>>> X = [[i] for i in [2, 8, 0, 4, 1, 9, 9, 0]] | |
>>> Z = linkage(X, 'ward') | |
>>> print(Z) | |
[[ 5. 6. 0. 2. ] | |
[ 2. 7. 0. 2. ] | |
[ 0. 4. 1. 2. ] | |
[ 1. 8. 1.15470054 3. ] | |
[ 9. 10. 2.12132034 4. ] | |
[ 3. 12. 4.11096096 5. ] | |
[11. 13. 14.07183949 8. ]] | |
>>> inconsistent(Z) | |
array([[ 0. , 0. , 1. , 0. ], | |
[ 0. , 0. , 1. , 0. ], | |
[ 1. , 0. , 1. , 0. ], | |
[ 0.57735027, 0.81649658, 2. , 0.70710678], | |
[ 1.04044011, 1.06123822, 3. , 1.01850858], | |
[ 3.11614065, 1.40688837, 2. , 0.70710678], | |
[ 6.44583366, 6.76770586, 3. , 1.12682288]]) | |
""" | |
xp = array_namespace(Z) | |
Z = _asarray(Z, order='C', dtype=xp.float64, xp=xp) | |
is_valid_linkage(Z, throw=True, name='Z') | |
if (not d == np.floor(d)) or d < 0: | |
raise ValueError('The second argument d must be a nonnegative ' | |
'integer value.') | |
n = Z.shape[0] + 1 | |
R = np.zeros((n - 1, 4), dtype=np.float64) | |
Z = np.asarray(Z) | |
_hierarchy.inconsistent(Z, R, int(n), int(d)) | |
R = xp.asarray(R) | |
return R | |
def from_mlab_linkage(Z): | |
""" | |
Convert a linkage matrix generated by MATLAB(TM) to a new | |
linkage matrix compatible with this module. | |
The conversion does two things: | |
* the indices are converted from ``1..N`` to ``0..(N-1)`` form, | |
and | |
* a fourth column ``Z[:,3]`` is added where ``Z[i,3]`` represents the | |
number of original observations (leaves) in the non-singleton | |
cluster ``i``. | |
This function is useful when loading in linkages from legacy data | |
files generated by MATLAB. | |
Parameters | |
---------- | |
Z : ndarray | |
A linkage matrix generated by MATLAB(TM). | |
Returns | |
------- | |
ZS : ndarray | |
A linkage matrix compatible with ``scipy.cluster.hierarchy``. | |
See Also | |
-------- | |
linkage : for a description of what a linkage matrix is. | |
to_mlab_linkage : transform from SciPy to MATLAB format. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.cluster.hierarchy import ward, from_mlab_linkage | |
Given a linkage matrix in MATLAB format ``mZ``, we can use | |
`scipy.cluster.hierarchy.from_mlab_linkage` to import | |
it into SciPy format: | |
>>> mZ = np.array([[1, 2, 1], [4, 5, 1], [7, 8, 1], | |
... [10, 11, 1], [3, 13, 1.29099445], | |
... [6, 14, 1.29099445], | |
... [9, 15, 1.29099445], | |
... [12, 16, 1.29099445], | |
... [17, 18, 5.77350269], | |
... [19, 20, 5.77350269], | |
... [21, 22, 8.16496581]]) | |
>>> Z = from_mlab_linkage(mZ) | |
>>> Z | |
array([[ 0. , 1. , 1. , 2. ], | |
[ 3. , 4. , 1. , 2. ], | |
[ 6. , 7. , 1. , 2. ], | |
[ 9. , 10. , 1. , 2. ], | |
[ 2. , 12. , 1.29099445, 3. ], | |
[ 5. , 13. , 1.29099445, 3. ], | |
[ 8. , 14. , 1.29099445, 3. ], | |
[ 11. , 15. , 1.29099445, 3. ], | |
[ 16. , 17. , 5.77350269, 6. ], | |
[ 18. , 19. , 5.77350269, 6. ], | |
[ 20. , 21. , 8.16496581, 12. ]]) | |
As expected, the linkage matrix ``Z`` returned includes an | |
additional column counting the number of original samples in | |
each cluster. Also, all cluster indices are reduced by 1 | |
(MATLAB format uses 1-indexing, whereas SciPy uses 0-indexing). | |
""" | |
xp = array_namespace(Z) | |
Z = _asarray(Z, dtype=xp.float64, order='C', xp=xp) | |
Zs = Z.shape | |
# If it's empty, return it. | |
if len(Zs) == 0 or (len(Zs) == 1 and Zs[0] == 0): | |
return copy(Z, xp=xp) | |
if len(Zs) != 2: | |
raise ValueError("The linkage array must be rectangular.") | |
# If it contains no rows, return it. | |
if Zs[0] == 0: | |
return copy(Z, xp=xp) | |
Zpart = copy(Z, xp=xp) | |
if xp.min(Zpart[:, 0:2]) != 1.0 and xp.max(Zpart[:, 0:2]) != 2 * Zs[0]: | |
raise ValueError('The format of the indices is not 1..N') | |
Zpart[:, 0:2] -= 1.0 | |
CS = np.zeros((Zs[0],), dtype=np.float64) | |
Zpart = np.asarray(Zpart) | |
_hierarchy.calculate_cluster_sizes(Zpart, CS, int(Zs[0]) + 1) | |
res = np.hstack([Zpart, CS.reshape(Zs[0], 1)]) | |
return xp.asarray(res) | |
def to_mlab_linkage(Z): | |
""" | |
Convert a linkage matrix to a MATLAB(TM) compatible one. | |
Converts a linkage matrix ``Z`` generated by the linkage function | |
of this module to a MATLAB(TM) compatible one. The return linkage | |
matrix has the last column removed and the cluster indices are | |
converted to ``1..N`` indexing. | |
Parameters | |
---------- | |
Z : ndarray | |
A linkage matrix generated by ``scipy.cluster.hierarchy``. | |
Returns | |
------- | |
to_mlab_linkage : ndarray | |
A linkage matrix compatible with MATLAB(TM)'s hierarchical | |
clustering functions. | |
The return linkage matrix has the last column removed | |
and the cluster indices are converted to ``1..N`` indexing. | |
See Also | |
-------- | |
linkage : for a description of what a linkage matrix is. | |
from_mlab_linkage : transform from Matlab to SciPy format. | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import ward, to_mlab_linkage | |
>>> from scipy.spatial.distance import pdist | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
>>> Z = ward(pdist(X)) | |
>>> Z | |
array([[ 0. , 1. , 1. , 2. ], | |
[ 3. , 4. , 1. , 2. ], | |
[ 6. , 7. , 1. , 2. ], | |
[ 9. , 10. , 1. , 2. ], | |
[ 2. , 12. , 1.29099445, 3. ], | |
[ 5. , 13. , 1.29099445, 3. ], | |
[ 8. , 14. , 1.29099445, 3. ], | |
[11. , 15. , 1.29099445, 3. ], | |
[16. , 17. , 5.77350269, 6. ], | |
[18. , 19. , 5.77350269, 6. ], | |
[20. , 21. , 8.16496581, 12. ]]) | |
After a linkage matrix ``Z`` has been created, we can use | |
`scipy.cluster.hierarchy.to_mlab_linkage` to convert it | |
into MATLAB format: | |
>>> mZ = to_mlab_linkage(Z) | |
>>> mZ | |
array([[ 1. , 2. , 1. ], | |
[ 4. , 5. , 1. ], | |
[ 7. , 8. , 1. ], | |
[ 10. , 11. , 1. ], | |
[ 3. , 13. , 1.29099445], | |
[ 6. , 14. , 1.29099445], | |
[ 9. , 15. , 1.29099445], | |
[ 12. , 16. , 1.29099445], | |
[ 17. , 18. , 5.77350269], | |
[ 19. , 20. , 5.77350269], | |
[ 21. , 22. , 8.16496581]]) | |
The new linkage matrix ``mZ`` uses 1-indexing for all the | |
clusters (instead of 0-indexing). Also, the last column of | |
the original linkage matrix has been dropped. | |
""" | |
xp = array_namespace(Z) | |
Z = _asarray(Z, order='C', dtype=xp.float64, xp=xp) | |
Zs = Z.shape | |
if len(Zs) == 0 or (len(Zs) == 1 and Zs[0] == 0): | |
return copy(Z, xp=xp) | |
is_valid_linkage(Z, throw=True, name='Z') | |
ZP = copy(Z[:, 0:3], xp=xp) | |
ZP[:, 0:2] += 1.0 | |
return ZP | |
def is_monotonic(Z): | |
""" | |
Return True if the linkage passed is monotonic. | |
The linkage is monotonic if for every cluster :math:`s` and :math:`t` | |
joined, the distance between them is no less than the distance | |
between any previously joined clusters. | |
Parameters | |
---------- | |
Z : ndarray | |
The linkage matrix to check for monotonicity. | |
Returns | |
------- | |
b : bool | |
A boolean indicating whether the linkage is monotonic. | |
See Also | |
-------- | |
linkage : for a description of what a linkage matrix is. | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import median, ward, is_monotonic | |
>>> from scipy.spatial.distance import pdist | |
By definition, some hierarchical clustering algorithms - such as | |
`scipy.cluster.hierarchy.ward` - produce monotonic assignments of | |
samples to clusters; however, this is not always true for other | |
hierarchical methods - e.g. `scipy.cluster.hierarchy.median`. | |
Given a linkage matrix ``Z`` (as the result of a hierarchical clustering | |
method) we can test programmatically whether it has the monotonicity | |
property or not, using `scipy.cluster.hierarchy.is_monotonic`: | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
>>> Z = ward(pdist(X)) | |
>>> Z | |
array([[ 0. , 1. , 1. , 2. ], | |
[ 3. , 4. , 1. , 2. ], | |
[ 6. , 7. , 1. , 2. ], | |
[ 9. , 10. , 1. , 2. ], | |
[ 2. , 12. , 1.29099445, 3. ], | |
[ 5. , 13. , 1.29099445, 3. ], | |
[ 8. , 14. , 1.29099445, 3. ], | |
[11. , 15. , 1.29099445, 3. ], | |
[16. , 17. , 5.77350269, 6. ], | |
[18. , 19. , 5.77350269, 6. ], | |
[20. , 21. , 8.16496581, 12. ]]) | |
>>> is_monotonic(Z) | |
True | |
>>> Z = median(pdist(X)) | |
>>> Z | |
array([[ 0. , 1. , 1. , 2. ], | |
[ 3. , 4. , 1. , 2. ], | |
[ 9. , 10. , 1. , 2. ], | |
[ 6. , 7. , 1. , 2. ], | |
[ 2. , 12. , 1.11803399, 3. ], | |
[ 5. , 13. , 1.11803399, 3. ], | |
[ 8. , 15. , 1.11803399, 3. ], | |
[11. , 14. , 1.11803399, 3. ], | |
[18. , 19. , 3. , 6. ], | |
[16. , 17. , 3.5 , 6. ], | |
[20. , 21. , 3.25 , 12. ]]) | |
>>> is_monotonic(Z) | |
False | |
Note that this method is equivalent to just verifying that the distances | |
in the third column of the linkage matrix appear in a monotonically | |
increasing order. | |
""" | |
xp = array_namespace(Z) | |
Z = _asarray(Z, order='c', xp=xp) | |
is_valid_linkage(Z, throw=True, name='Z') | |
# We expect the i'th value to be greater than its successor. | |
return xp.all(Z[1:, 2] >= Z[:-1, 2]) | |
def is_valid_im(R, warning=False, throw=False, name=None): | |
"""Return True if the inconsistency matrix passed is valid. | |
It must be a :math:`n` by 4 array of doubles. The standard | |
deviations ``R[:,1]`` must be nonnegative. The link counts | |
``R[:,2]`` must be positive and no greater than :math:`n-1`. | |
Parameters | |
---------- | |
R : ndarray | |
The inconsistency matrix to check for validity. | |
warning : bool, optional | |
When True, issues a Python warning if the linkage | |
matrix passed is invalid. | |
throw : bool, optional | |
When True, throws a Python exception if the linkage | |
matrix passed is invalid. | |
name : str, optional | |
This string refers to the variable name of the invalid | |
linkage matrix. | |
Returns | |
------- | |
b : bool | |
True if the inconsistency matrix is valid. | |
See Also | |
-------- | |
linkage : for a description of what a linkage matrix is. | |
inconsistent : for the creation of a inconsistency matrix. | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import ward, inconsistent, is_valid_im | |
>>> from scipy.spatial.distance import pdist | |
Given a data set ``X``, we can apply a clustering method to obtain a | |
linkage matrix ``Z``. `scipy.cluster.hierarchy.inconsistent` can | |
be also used to obtain the inconsistency matrix ``R`` associated to | |
this clustering process: | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
>>> Z = ward(pdist(X)) | |
>>> R = inconsistent(Z) | |
>>> Z | |
array([[ 0. , 1. , 1. , 2. ], | |
[ 3. , 4. , 1. , 2. ], | |
[ 6. , 7. , 1. , 2. ], | |
[ 9. , 10. , 1. , 2. ], | |
[ 2. , 12. , 1.29099445, 3. ], | |
[ 5. , 13. , 1.29099445, 3. ], | |
[ 8. , 14. , 1.29099445, 3. ], | |
[11. , 15. , 1.29099445, 3. ], | |
[16. , 17. , 5.77350269, 6. ], | |
[18. , 19. , 5.77350269, 6. ], | |
[20. , 21. , 8.16496581, 12. ]]) | |
>>> R | |
array([[1. , 0. , 1. , 0. ], | |
[1. , 0. , 1. , 0. ], | |
[1. , 0. , 1. , 0. ], | |
[1. , 0. , 1. , 0. ], | |
[1.14549722, 0.20576415, 2. , 0.70710678], | |
[1.14549722, 0.20576415, 2. , 0.70710678], | |
[1.14549722, 0.20576415, 2. , 0.70710678], | |
[1.14549722, 0.20576415, 2. , 0.70710678], | |
[2.78516386, 2.58797734, 3. , 1.15470054], | |
[2.78516386, 2.58797734, 3. , 1.15470054], | |
[6.57065706, 1.38071187, 3. , 1.15470054]]) | |
Now we can use `scipy.cluster.hierarchy.is_valid_im` to verify that | |
``R`` is correct: | |
>>> is_valid_im(R) | |
True | |
However, if ``R`` is wrongly constructed (e.g., one of the standard | |
deviations is set to a negative value), then the check will fail: | |
>>> R[-1,1] = R[-1,1] * -1 | |
>>> is_valid_im(R) | |
False | |
""" | |
xp = array_namespace(R) | |
R = _asarray(R, order='c', xp=xp) | |
valid = True | |
name_str = "%r " % name if name else '' | |
try: | |
if R.dtype != xp.float64: | |
raise TypeError('Inconsistency matrix %smust contain doubles ' | |
'(double).' % name_str) | |
if len(R.shape) != 2: | |
raise ValueError('Inconsistency matrix %smust have shape=2 (i.e. ' | |
'be two-dimensional).' % name_str) | |
if R.shape[1] != 4: | |
raise ValueError('Inconsistency matrix %smust have 4 columns.' % | |
name_str) | |
if R.shape[0] < 1: | |
raise ValueError('Inconsistency matrix %smust have at least one ' | |
'row.' % name_str) | |
if xp.any(R[:, 0] < 0): | |
raise ValueError('Inconsistency matrix %scontains negative link ' | |
'height means.' % name_str) | |
if xp.any(R[:, 1] < 0): | |
raise ValueError('Inconsistency matrix %scontains negative link ' | |
'height standard deviations.' % name_str) | |
if xp.any(R[:, 2] < 0): | |
raise ValueError('Inconsistency matrix %scontains negative link ' | |
'counts.' % name_str) | |
except Exception as e: | |
if throw: | |
raise | |
if warning: | |
_warning(str(e)) | |
valid = False | |
return valid | |
def is_valid_linkage(Z, warning=False, throw=False, name=None): | |
""" | |
Check the validity of a linkage matrix. | |
A linkage matrix is valid if it is a 2-D array (type double) | |
with :math:`n` rows and 4 columns. The first two columns must contain | |
indices between 0 and :math:`2n-1`. For a given row ``i``, the following | |
two expressions have to hold: | |
.. math:: | |
0 \\leq \\mathtt{Z[i,0]} \\leq i+n-1 | |
0 \\leq Z[i,1] \\leq i+n-1 | |
I.e., a cluster cannot join another cluster unless the cluster being joined | |
has been generated. | |
Parameters | |
---------- | |
Z : array_like | |
Linkage matrix. | |
warning : bool, optional | |
When True, issues a Python warning if the linkage | |
matrix passed is invalid. | |
throw : bool, optional | |
When True, throws a Python exception if the linkage | |
matrix passed is invalid. | |
name : str, optional | |
This string refers to the variable name of the invalid | |
linkage matrix. | |
Returns | |
------- | |
b : bool | |
True if the inconsistency matrix is valid. | |
See Also | |
-------- | |
linkage: for a description of what a linkage matrix is. | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import ward, is_valid_linkage | |
>>> from scipy.spatial.distance import pdist | |
All linkage matrices generated by the clustering methods in this module | |
will be valid (i.e., they will have the appropriate dimensions and the two | |
required expressions will hold for all the rows). | |
We can check this using `scipy.cluster.hierarchy.is_valid_linkage`: | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
>>> Z = ward(pdist(X)) | |
>>> Z | |
array([[ 0. , 1. , 1. , 2. ], | |
[ 3. , 4. , 1. , 2. ], | |
[ 6. , 7. , 1. , 2. ], | |
[ 9. , 10. , 1. , 2. ], | |
[ 2. , 12. , 1.29099445, 3. ], | |
[ 5. , 13. , 1.29099445, 3. ], | |
[ 8. , 14. , 1.29099445, 3. ], | |
[11. , 15. , 1.29099445, 3. ], | |
[16. , 17. , 5.77350269, 6. ], | |
[18. , 19. , 5.77350269, 6. ], | |
[20. , 21. , 8.16496581, 12. ]]) | |
>>> is_valid_linkage(Z) | |
True | |
However, if we create a linkage matrix in a wrong way - or if we modify | |
a valid one in a way that any of the required expressions don't hold | |
anymore, then the check will fail: | |
>>> Z[3][1] = 20 # the cluster number 20 is not defined at this point | |
>>> is_valid_linkage(Z) | |
False | |
""" | |
xp = array_namespace(Z) | |
Z = _asarray(Z, order='c', xp=xp) | |
valid = True | |
name_str = "%r " % name if name else '' | |
try: | |
if Z.dtype != xp.float64: | |
raise TypeError('Linkage matrix %smust contain doubles.' % name_str) | |
if len(Z.shape) != 2: | |
raise ValueError('Linkage matrix %smust have shape=2 (i.e. be ' | |
'two-dimensional).' % name_str) | |
if Z.shape[1] != 4: | |
raise ValueError('Linkage matrix %smust have 4 columns.' % name_str) | |
if Z.shape[0] == 0: | |
raise ValueError('Linkage must be computed on at least two ' | |
'observations.') | |
n = Z.shape[0] | |
if n > 1: | |
if (xp.any(Z[:, 0] < 0) or xp.any(Z[:, 1] < 0)): | |
raise ValueError('Linkage %scontains negative indices.' % | |
name_str) | |
if xp.any(Z[:, 2] < 0): | |
raise ValueError('Linkage %scontains negative distances.' % | |
name_str) | |
if xp.any(Z[:, 3] < 0): | |
raise ValueError('Linkage %scontains negative counts.' % | |
name_str) | |
if _check_hierarchy_uses_cluster_before_formed(Z): | |
raise ValueError('Linkage %suses non-singleton cluster before ' | |
'it is formed.' % name_str) | |
if _check_hierarchy_uses_cluster_more_than_once(Z): | |
raise ValueError('Linkage %suses the same cluster more than once.' | |
% name_str) | |
except Exception as e: | |
if throw: | |
raise | |
if warning: | |
_warning(str(e)) | |
valid = False | |
return valid | |
def _check_hierarchy_uses_cluster_before_formed(Z): | |
n = Z.shape[0] + 1 | |
for i in range(0, n - 1): | |
if Z[i, 0] >= n + i or Z[i, 1] >= n + i: | |
return True | |
return False | |
def _check_hierarchy_uses_cluster_more_than_once(Z): | |
n = Z.shape[0] + 1 | |
chosen = set() | |
for i in range(0, n - 1): | |
used_more_than_once = ( | |
(float(Z[i, 0]) in chosen) | |
or (float(Z[i, 1]) in chosen) | |
or Z[i, 0] == Z[i, 1] | |
) | |
if used_more_than_once: | |
return True | |
chosen.add(float(Z[i, 0])) | |
chosen.add(float(Z[i, 1])) | |
return False | |
def _check_hierarchy_not_all_clusters_used(Z): | |
n = Z.shape[0] + 1 | |
chosen = set() | |
for i in range(0, n - 1): | |
chosen.add(int(Z[i, 0])) | |
chosen.add(int(Z[i, 1])) | |
must_chosen = set(range(0, 2 * n - 2)) | |
return len(must_chosen.difference(chosen)) > 0 | |
def num_obs_linkage(Z): | |
""" | |
Return the number of original observations of the linkage matrix passed. | |
Parameters | |
---------- | |
Z : ndarray | |
The linkage matrix on which to perform the operation. | |
Returns | |
------- | |
n : int | |
The number of original observations in the linkage. | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import ward, num_obs_linkage | |
>>> from scipy.spatial.distance import pdist | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
>>> Z = ward(pdist(X)) | |
``Z`` is a linkage matrix obtained after using the Ward clustering method | |
with ``X``, a dataset with 12 data points. | |
>>> num_obs_linkage(Z) | |
12 | |
""" | |
xp = array_namespace(Z) | |
Z = _asarray(Z, order='c', xp=xp) | |
is_valid_linkage(Z, throw=True, name='Z') | |
return (Z.shape[0] + 1) | |
def correspond(Z, Y): | |
""" | |
Check for correspondence between linkage and condensed distance matrices. | |
They must have the same number of original observations for | |
the check to succeed. | |
This function is useful as a sanity check in algorithms that make | |
extensive use of linkage and distance matrices that must | |
correspond to the same set of original observations. | |
Parameters | |
---------- | |
Z : array_like | |
The linkage matrix to check for correspondence. | |
Y : array_like | |
The condensed distance matrix to check for correspondence. | |
Returns | |
------- | |
b : bool | |
A boolean indicating whether the linkage matrix and distance | |
matrix could possibly correspond to one another. | |
See Also | |
-------- | |
linkage : for a description of what a linkage matrix is. | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import ward, correspond | |
>>> from scipy.spatial.distance import pdist | |
This method can be used to check if a given linkage matrix ``Z`` has been | |
obtained from the application of a cluster method over a dataset ``X``: | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
>>> X_condensed = pdist(X) | |
>>> Z = ward(X_condensed) | |
Here, we can compare ``Z`` and ``X`` (in condensed form): | |
>>> correspond(Z, X_condensed) | |
True | |
""" | |
is_valid_linkage(Z, throw=True) | |
distance.is_valid_y(Y, throw=True) | |
xp = array_namespace(Z, Y) | |
Z = _asarray(Z, order='c', xp=xp) | |
Y = _asarray(Y, order='c', xp=xp) | |
return distance.num_obs_y(Y) == num_obs_linkage(Z) | |
def fcluster(Z, t, criterion='inconsistent', depth=2, R=None, monocrit=None): | |
""" | |
Form flat clusters from the hierarchical clustering defined by | |
the given linkage matrix. | |
Parameters | |
---------- | |
Z : ndarray | |
The hierarchical clustering encoded with the matrix returned | |
by the `linkage` function. | |
t : scalar | |
For criteria 'inconsistent', 'distance' or 'monocrit', | |
this is the threshold to apply when forming flat clusters. | |
For 'maxclust' or 'maxclust_monocrit' criteria, | |
this would be max number of clusters requested. | |
criterion : str, optional | |
The criterion to use in forming flat clusters. This can | |
be any of the following values: | |
``inconsistent`` : | |
If a cluster node and all its | |
descendants have an inconsistent value less than or equal | |
to `t`, then all its leaf descendants belong to the | |
same flat cluster. When no non-singleton cluster meets | |
this criterion, every node is assigned to its own | |
cluster. (Default) | |
``distance`` : | |
Forms flat clusters so that the original | |
observations in each flat cluster have no greater a | |
cophenetic distance than `t`. | |
``maxclust`` : | |
Finds a minimum threshold ``r`` so that | |
the cophenetic distance between any two original | |
observations in the same flat cluster is no more than | |
``r`` and no more than `t` flat clusters are formed. | |
``monocrit`` : | |
Forms a flat cluster from a cluster node c | |
with index i when ``monocrit[j] <= t``. | |
For example, to threshold on the maximum mean distance | |
as computed in the inconsistency matrix R with a | |
threshold of 0.8 do:: | |
MR = maxRstat(Z, R, 3) | |
fcluster(Z, t=0.8, criterion='monocrit', monocrit=MR) | |
``maxclust_monocrit`` : | |
Forms a flat cluster from a | |
non-singleton cluster node ``c`` when ``monocrit[i] <= | |
r`` for all cluster indices ``i`` below and including | |
``c``. ``r`` is minimized such that no more than ``t`` | |
flat clusters are formed. monocrit must be | |
monotonic. For example, to minimize the threshold t on | |
maximum inconsistency values so that no more than 3 flat | |
clusters are formed, do:: | |
MI = maxinconsts(Z, R) | |
fcluster(Z, t=3, criterion='maxclust_monocrit', monocrit=MI) | |
depth : int, optional | |
The maximum depth to perform the inconsistency calculation. | |
It has no meaning for the other criteria. Default is 2. | |
R : ndarray, optional | |
The inconsistency matrix to use for the ``'inconsistent'`` | |
criterion. This matrix is computed if not provided. | |
monocrit : ndarray, optional | |
An array of length n-1. `monocrit[i]` is the | |
statistics upon which non-singleton i is thresholded. The | |
monocrit vector must be monotonic, i.e., given a node c with | |
index i, for all node indices j corresponding to nodes | |
below c, ``monocrit[i] >= monocrit[j]``. | |
Returns | |
------- | |
fcluster : ndarray | |
An array of length ``n``. ``T[i]`` is the flat cluster number to | |
which original observation ``i`` belongs. | |
See Also | |
-------- | |
linkage : for information about hierarchical clustering methods work. | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import ward, fcluster | |
>>> from scipy.spatial.distance import pdist | |
All cluster linkage methods - e.g., `scipy.cluster.hierarchy.ward` | |
generate a linkage matrix ``Z`` as their output: | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
>>> Z = ward(pdist(X)) | |
>>> Z | |
array([[ 0. , 1. , 1. , 2. ], | |
[ 3. , 4. , 1. , 2. ], | |
[ 6. , 7. , 1. , 2. ], | |
[ 9. , 10. , 1. , 2. ], | |
[ 2. , 12. , 1.29099445, 3. ], | |
[ 5. , 13. , 1.29099445, 3. ], | |
[ 8. , 14. , 1.29099445, 3. ], | |
[11. , 15. , 1.29099445, 3. ], | |
[16. , 17. , 5.77350269, 6. ], | |
[18. , 19. , 5.77350269, 6. ], | |
[20. , 21. , 8.16496581, 12. ]]) | |
This matrix represents a dendrogram, where the first and second elements | |
are the two clusters merged at each step, the third element is the | |
distance between these clusters, and the fourth element is the size of | |
the new cluster - the number of original data points included. | |
`scipy.cluster.hierarchy.fcluster` can be used to flatten the | |
dendrogram, obtaining as a result an assignation of the original data | |
points to single clusters. | |
This assignation mostly depends on a distance threshold ``t`` - the maximum | |
inter-cluster distance allowed: | |
>>> fcluster(Z, t=0.9, criterion='distance') | |
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int32) | |
>>> fcluster(Z, t=1.1, criterion='distance') | |
array([1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8], dtype=int32) | |
>>> fcluster(Z, t=3, criterion='distance') | |
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32) | |
>>> fcluster(Z, t=9, criterion='distance') | |
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32) | |
In the first case, the threshold ``t`` is too small to allow any two | |
samples in the data to form a cluster, so 12 different clusters are | |
returned. | |
In the second case, the threshold is large enough to allow the first | |
4 points to be merged with their nearest neighbors. So, here, only 8 | |
clusters are returned. | |
The third case, with a much higher threshold, allows for up to 8 data | |
points to be connected - so 4 clusters are returned here. | |
Lastly, the threshold of the fourth case is large enough to allow for | |
all data points to be merged together - so a single cluster is returned. | |
""" | |
xp = array_namespace(Z) | |
Z = _asarray(Z, order='C', dtype=xp.float64, xp=xp) | |
is_valid_linkage(Z, throw=True, name='Z') | |
n = Z.shape[0] + 1 | |
T = np.zeros((n,), dtype='i') | |
if monocrit is not None: | |
monocrit = np.asarray(monocrit, order='C', dtype=np.float64) | |
Z = np.asarray(Z) | |
monocrit = np.asarray(monocrit) | |
if criterion == 'inconsistent': | |
if R is None: | |
R = inconsistent(Z, depth) | |
else: | |
R = _asarray(R, order='C', dtype=xp.float64, xp=xp) | |
is_valid_im(R, throw=True, name='R') | |
# Since the C code does not support striding using strides. | |
# The dimensions are used instead. | |
R = np.asarray(R) | |
_hierarchy.cluster_in(Z, R, T, float(t), int(n)) | |
elif criterion == 'distance': | |
_hierarchy.cluster_dist(Z, T, float(t), int(n)) | |
elif criterion == 'maxclust': | |
_hierarchy.cluster_maxclust_dist(Z, T, int(n), t) | |
elif criterion == 'monocrit': | |
_hierarchy.cluster_monocrit(Z, monocrit, T, float(t), int(n)) | |
elif criterion == 'maxclust_monocrit': | |
_hierarchy.cluster_maxclust_monocrit(Z, monocrit, T, int(n), int(t)) | |
else: | |
raise ValueError('Invalid cluster formation criterion: %s' | |
% str(criterion)) | |
return xp.asarray(T) | |
def fclusterdata(X, t, criterion='inconsistent', | |
metric='euclidean', depth=2, method='single', R=None): | |
""" | |
Cluster observation data using a given metric. | |
Clusters the original observations in the n-by-m data | |
matrix X (n observations in m dimensions), using the euclidean | |
distance metric to calculate distances between original observations, | |
performs hierarchical clustering using the single linkage algorithm, | |
and forms flat clusters using the inconsistency method with `t` as the | |
cut-off threshold. | |
A 1-D array ``T`` of length ``n`` is returned. ``T[i]`` is | |
the index of the flat cluster to which the original observation ``i`` | |
belongs. | |
Parameters | |
---------- | |
X : (N, M) ndarray | |
N by M data matrix with N observations in M dimensions. | |
t : scalar | |
For criteria 'inconsistent', 'distance' or 'monocrit', | |
this is the threshold to apply when forming flat clusters. | |
For 'maxclust' or 'maxclust_monocrit' criteria, | |
this would be max number of clusters requested. | |
criterion : str, optional | |
Specifies the criterion for forming flat clusters. Valid | |
values are 'inconsistent' (default), 'distance', or 'maxclust' | |
cluster formation algorithms. See `fcluster` for descriptions. | |
metric : str or function, optional | |
The distance metric for calculating pairwise distances. See | |
``distance.pdist`` for descriptions and linkage to verify | |
compatibility with the linkage method. | |
depth : int, optional | |
The maximum depth for the inconsistency calculation. See | |
`inconsistent` for more information. | |
method : str, optional | |
The linkage method to use (single, complete, average, | |
weighted, median centroid, ward). See `linkage` for more | |
information. Default is "single". | |
R : ndarray, optional | |
The inconsistency matrix. It will be computed if necessary | |
if it is not passed. | |
Returns | |
------- | |
fclusterdata : ndarray | |
A vector of length n. T[i] is the flat cluster number to | |
which original observation i belongs. | |
See Also | |
-------- | |
scipy.spatial.distance.pdist : pairwise distance metrics | |
Notes | |
----- | |
This function is similar to the MATLAB function ``clusterdata``. | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import fclusterdata | |
This is a convenience method that abstracts all the steps to perform in a | |
typical SciPy's hierarchical clustering workflow. | |
* Transform the input data into a condensed matrix with | |
`scipy.spatial.distance.pdist`. | |
* Apply a clustering method. | |
* Obtain flat clusters at a user defined distance threshold ``t`` using | |
`scipy.cluster.hierarchy.fcluster`. | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
>>> fclusterdata(X, t=1) | |
array([3, 3, 3, 4, 4, 4, 2, 2, 2, 1, 1, 1], dtype=int32) | |
The output here (for the dataset ``X``, distance threshold ``t``, and the | |
default settings) is four clusters with three data points each. | |
""" | |
xp = array_namespace(X) | |
X = _asarray(X, order='C', dtype=xp.float64, xp=xp) | |
if X.ndim != 2: | |
raise TypeError('The observation matrix X must be an n by m ' | |
'array.') | |
Y = distance.pdist(X, metric=metric) | |
Y = xp.asarray(Y) | |
Z = linkage(Y, method=method) | |
if R is None: | |
R = inconsistent(Z, d=depth) | |
else: | |
R = _asarray(R, order='c', xp=xp) | |
T = fcluster(Z, criterion=criterion, depth=depth, R=R, t=t) | |
return T | |
def leaves_list(Z): | |
""" | |
Return a list of leaf node ids. | |
The return corresponds to the observation vector index as it appears | |
in the tree from left to right. Z is a linkage matrix. | |
Parameters | |
---------- | |
Z : ndarray | |
The hierarchical clustering encoded as a matrix. `Z` is | |
a linkage matrix. See `linkage` for more information. | |
Returns | |
------- | |
leaves_list : ndarray | |
The list of leaf node ids. | |
See Also | |
-------- | |
dendrogram : for information about dendrogram structure. | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import ward, dendrogram, leaves_list | |
>>> from scipy.spatial.distance import pdist | |
>>> from matplotlib import pyplot as plt | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
>>> Z = ward(pdist(X)) | |
The linkage matrix ``Z`` represents a dendrogram, that is, a tree that | |
encodes the structure of the clustering performed. | |
`scipy.cluster.hierarchy.leaves_list` shows the mapping between | |
indices in the ``X`` dataset and leaves in the dendrogram: | |
>>> leaves_list(Z) | |
array([ 2, 0, 1, 5, 3, 4, 8, 6, 7, 11, 9, 10], dtype=int32) | |
>>> fig = plt.figure(figsize=(25, 10)) | |
>>> dn = dendrogram(Z) | |
>>> plt.show() | |
""" | |
xp = array_namespace(Z) | |
Z = _asarray(Z, order='C', xp=xp) | |
is_valid_linkage(Z, throw=True, name='Z') | |
n = Z.shape[0] + 1 | |
ML = np.zeros((n,), dtype='i') | |
Z = np.asarray(Z) | |
_hierarchy.prelist(Z, ML, n) | |
return xp.asarray(ML) | |
# Maps number of leaves to text size. | |
# | |
# p <= 20, size="12" | |
# 20 < p <= 30, size="10" | |
# 30 < p <= 50, size="8" | |
# 50 < p <= np.inf, size="6" | |
_dtextsizes = {20: 12, 30: 10, 50: 8, 85: 6, np.inf: 5} | |
_drotation = {20: 0, 40: 45, np.inf: 90} | |
_dtextsortedkeys = list(_dtextsizes.keys()) | |
_dtextsortedkeys.sort() | |
_drotationsortedkeys = list(_drotation.keys()) | |
_drotationsortedkeys.sort() | |
def _remove_dups(L): | |
""" | |
Remove duplicates AND preserve the original order of the elements. | |
The set class is not guaranteed to do this. | |
""" | |
seen_before = set() | |
L2 = [] | |
for i in L: | |
if i not in seen_before: | |
seen_before.add(i) | |
L2.append(i) | |
return L2 | |
def _get_tick_text_size(p): | |
for k in _dtextsortedkeys: | |
if p <= k: | |
return _dtextsizes[k] | |
def _get_tick_rotation(p): | |
for k in _drotationsortedkeys: | |
if p <= k: | |
return _drotation[k] | |
def _plot_dendrogram(icoords, dcoords, ivl, p, n, mh, orientation, | |
no_labels, color_list, leaf_font_size=None, | |
leaf_rotation=None, contraction_marks=None, | |
ax=None, above_threshold_color='C0'): | |
# Import matplotlib here so that it's not imported unless dendrograms | |
# are plotted. Raise an informative error if importing fails. | |
try: | |
# if an axis is provided, don't use pylab at all | |
if ax is None: | |
import matplotlib.pylab | |
import matplotlib.patches | |
import matplotlib.collections | |
except ImportError as e: | |
raise ImportError("You must install the matplotlib library to plot " | |
"the dendrogram. Use no_plot=True to calculate the " | |
"dendrogram without plotting.") from e | |
if ax is None: | |
ax = matplotlib.pylab.gca() | |
# if we're using pylab, we want to trigger a draw at the end | |
trigger_redraw = True | |
else: | |
trigger_redraw = False | |
# Independent variable plot width | |
ivw = len(ivl) * 10 | |
# Dependent variable plot height | |
dvw = mh + mh * 0.05 | |
iv_ticks = np.arange(5, len(ivl) * 10 + 5, 10) | |
if orientation in ('top', 'bottom'): | |
if orientation == 'top': | |
ax.set_ylim([0, dvw]) | |
ax.set_xlim([0, ivw]) | |
else: | |
ax.set_ylim([dvw, 0]) | |
ax.set_xlim([0, ivw]) | |
xlines = icoords | |
ylines = dcoords | |
if no_labels: | |
ax.set_xticks([]) | |
ax.set_xticklabels([]) | |
else: | |
ax.set_xticks(iv_ticks) | |
if orientation == 'top': | |
ax.xaxis.set_ticks_position('bottom') | |
else: | |
ax.xaxis.set_ticks_position('top') | |
# Make the tick marks invisible because they cover up the links | |
for line in ax.get_xticklines(): | |
line.set_visible(False) | |
leaf_rot = (float(_get_tick_rotation(len(ivl))) | |
if (leaf_rotation is None) else leaf_rotation) | |
leaf_font = (float(_get_tick_text_size(len(ivl))) | |
if (leaf_font_size is None) else leaf_font_size) | |
ax.set_xticklabels(ivl, rotation=leaf_rot, size=leaf_font) | |
elif orientation in ('left', 'right'): | |
if orientation == 'left': | |
ax.set_xlim([dvw, 0]) | |
ax.set_ylim([0, ivw]) | |
else: | |
ax.set_xlim([0, dvw]) | |
ax.set_ylim([0, ivw]) | |
xlines = dcoords | |
ylines = icoords | |
if no_labels: | |
ax.set_yticks([]) | |
ax.set_yticklabels([]) | |
else: | |
ax.set_yticks(iv_ticks) | |
if orientation == 'left': | |
ax.yaxis.set_ticks_position('right') | |
else: | |
ax.yaxis.set_ticks_position('left') | |
# Make the tick marks invisible because they cover up the links | |
for line in ax.get_yticklines(): | |
line.set_visible(False) | |
leaf_font = (float(_get_tick_text_size(len(ivl))) | |
if (leaf_font_size is None) else leaf_font_size) | |
if leaf_rotation is not None: | |
ax.set_yticklabels(ivl, rotation=leaf_rotation, size=leaf_font) | |
else: | |
ax.set_yticklabels(ivl, size=leaf_font) | |
# Let's use collections instead. This way there is a separate legend item | |
# for each tree grouping, rather than stupidly one for each line segment. | |
colors_used = _remove_dups(color_list) | |
color_to_lines = {} | |
for color in colors_used: | |
color_to_lines[color] = [] | |
for (xline, yline, color) in zip(xlines, ylines, color_list): | |
color_to_lines[color].append(list(zip(xline, yline))) | |
colors_to_collections = {} | |
# Construct the collections. | |
for color in colors_used: | |
coll = matplotlib.collections.LineCollection(color_to_lines[color], | |
colors=(color,)) | |
colors_to_collections[color] = coll | |
# Add all the groupings below the color threshold. | |
for color in colors_used: | |
if color != above_threshold_color: | |
ax.add_collection(colors_to_collections[color]) | |
# If there's a grouping of links above the color threshold, it goes last. | |
if above_threshold_color in colors_to_collections: | |
ax.add_collection(colors_to_collections[above_threshold_color]) | |
if contraction_marks is not None: | |
Ellipse = matplotlib.patches.Ellipse | |
for (x, y) in contraction_marks: | |
if orientation in ('left', 'right'): | |
e = Ellipse((y, x), width=dvw / 100, height=1.0) | |
else: | |
e = Ellipse((x, y), width=1.0, height=dvw / 100) | |
ax.add_artist(e) | |
e.set_clip_box(ax.bbox) | |
e.set_alpha(0.5) | |
e.set_facecolor('k') | |
if trigger_redraw: | |
matplotlib.pylab.draw_if_interactive() | |
# C0 is used for above threshold color | |
_link_line_colors_default = ('C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9') | |
_link_line_colors = list(_link_line_colors_default) | |
def set_link_color_palette(palette): | |
""" | |
Set list of matplotlib color codes for use by dendrogram. | |
Note that this palette is global (i.e., setting it once changes the colors | |
for all subsequent calls to `dendrogram`) and that it affects only the | |
the colors below ``color_threshold``. | |
Note that `dendrogram` also accepts a custom coloring function through its | |
``link_color_func`` keyword, which is more flexible and non-global. | |
Parameters | |
---------- | |
palette : list of str or None | |
A list of matplotlib color codes. The order of the color codes is the | |
order in which the colors are cycled through when color thresholding in | |
the dendrogram. | |
If ``None``, resets the palette to its default (which are matplotlib | |
default colors C1 to C9). | |
Returns | |
------- | |
None | |
See Also | |
-------- | |
dendrogram | |
Notes | |
----- | |
Ability to reset the palette with ``None`` added in SciPy 0.17.0. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.cluster import hierarchy | |
>>> ytdist = np.array([662., 877., 255., 412., 996., 295., 468., 268., | |
... 400., 754., 564., 138., 219., 869., 669.]) | |
>>> Z = hierarchy.linkage(ytdist, 'single') | |
>>> dn = hierarchy.dendrogram(Z, no_plot=True) | |
>>> dn['color_list'] | |
['C1', 'C0', 'C0', 'C0', 'C0'] | |
>>> hierarchy.set_link_color_palette(['c', 'm', 'y', 'k']) | |
>>> dn = hierarchy.dendrogram(Z, no_plot=True, above_threshold_color='b') | |
>>> dn['color_list'] | |
['c', 'b', 'b', 'b', 'b'] | |
>>> dn = hierarchy.dendrogram(Z, no_plot=True, color_threshold=267, | |
... above_threshold_color='k') | |
>>> dn['color_list'] | |
['c', 'm', 'm', 'k', 'k'] | |
Now, reset the color palette to its default: | |
>>> hierarchy.set_link_color_palette(None) | |
""" | |
if palette is None: | |
# reset to its default | |
palette = _link_line_colors_default | |
elif not isinstance(palette, (list, tuple)): | |
raise TypeError("palette must be a list or tuple") | |
_ptypes = [isinstance(p, str) for p in palette] | |
if False in _ptypes: | |
raise TypeError("all palette list elements must be color strings") | |
global _link_line_colors | |
_link_line_colors = palette | |
def dendrogram(Z, p=30, truncate_mode=None, color_threshold=None, | |
get_leaves=True, orientation='top', labels=None, | |
count_sort=False, distance_sort=False, show_leaf_counts=True, | |
no_plot=False, no_labels=False, leaf_font_size=None, | |
leaf_rotation=None, leaf_label_func=None, | |
show_contracted=False, link_color_func=None, ax=None, | |
above_threshold_color='C0'): | |
""" | |
Plot the hierarchical clustering as a dendrogram. | |
The dendrogram illustrates how each cluster is | |
composed by drawing a U-shaped link between a non-singleton | |
cluster and its children. The top of the U-link indicates a | |
cluster merge. The two legs of the U-link indicate which clusters | |
were merged. The length of the two legs of the U-link represents | |
the distance between the child clusters. It is also the | |
cophenetic distance between original observations in the two | |
children clusters. | |
Parameters | |
---------- | |
Z : ndarray | |
The linkage matrix encoding the hierarchical clustering to | |
render as a dendrogram. See the ``linkage`` function for more | |
information on the format of ``Z``. | |
p : int, optional | |
The ``p`` parameter for ``truncate_mode``. | |
truncate_mode : str, optional | |
The dendrogram can be hard to read when the original | |
observation matrix from which the linkage is derived is | |
large. Truncation is used to condense the dendrogram. There | |
are several modes: | |
``None`` | |
No truncation is performed (default). | |
Note: ``'none'`` is an alias for ``None`` that's kept for | |
backward compatibility. | |
``'lastp'`` | |
The last ``p`` non-singleton clusters formed in the linkage are the | |
only non-leaf nodes in the linkage; they correspond to rows | |
``Z[n-p-2:end]`` in ``Z``. All other non-singleton clusters are | |
contracted into leaf nodes. | |
``'level'`` | |
No more than ``p`` levels of the dendrogram tree are displayed. | |
A "level" includes all nodes with ``p`` merges from the final merge. | |
Note: ``'mtica'`` is an alias for ``'level'`` that's kept for | |
backward compatibility. | |
color_threshold : double, optional | |
For brevity, let :math:`t` be the ``color_threshold``. | |
Colors all the descendent links below a cluster node | |
:math:`k` the same color if :math:`k` is the first node below | |
the cut threshold :math:`t`. All links connecting nodes with | |
distances greater than or equal to the threshold are colored | |
with de default matplotlib color ``'C0'``. If :math:`t` is less | |
than or equal to zero, all nodes are colored ``'C0'``. | |
If ``color_threshold`` is None or 'default', | |
corresponding with MATLAB(TM) behavior, the threshold is set to | |
``0.7*max(Z[:,2])``. | |
get_leaves : bool, optional | |
Includes a list ``R['leaves']=H`` in the result | |
dictionary. For each :math:`i`, ``H[i] == j``, cluster node | |
``j`` appears in position ``i`` in the left-to-right traversal | |
of the leaves, where :math:`j < 2n-1` and :math:`i < n`. | |
orientation : str, optional | |
The direction to plot the dendrogram, which can be any | |
of the following strings: | |
``'top'`` | |
Plots the root at the top, and plot descendent links going downwards. | |
(default). | |
``'bottom'`` | |
Plots the root at the bottom, and plot descendent links going | |
upwards. | |
``'left'`` | |
Plots the root at the left, and plot descendent links going right. | |
``'right'`` | |
Plots the root at the right, and plot descendent links going left. | |
labels : ndarray, optional | |
By default, ``labels`` is None so the index of the original observation | |
is used to label the leaf nodes. Otherwise, this is an :math:`n`-sized | |
sequence, with ``n == Z.shape[0] + 1``. The ``labels[i]`` value is the | |
text to put under the :math:`i` th leaf node only if it corresponds to | |
an original observation and not a non-singleton cluster. | |
count_sort : str or bool, optional | |
For each node n, the order (visually, from left-to-right) n's | |
two descendent links are plotted is determined by this | |
parameter, which can be any of the following values: | |
``False`` | |
Nothing is done. | |
``'ascending'`` or ``True`` | |
The child with the minimum number of original objects in its cluster | |
is plotted first. | |
``'descending'`` | |
The child with the maximum number of original objects in its cluster | |
is plotted first. | |
Note, ``distance_sort`` and ``count_sort`` cannot both be True. | |
distance_sort : str or bool, optional | |
For each node n, the order (visually, from left-to-right) n's | |
two descendent links are plotted is determined by this | |
parameter, which can be any of the following values: | |
``False`` | |
Nothing is done. | |
``'ascending'`` or ``True`` | |
The child with the minimum distance between its direct descendents is | |
plotted first. | |
``'descending'`` | |
The child with the maximum distance between its direct descendents is | |
plotted first. | |
Note ``distance_sort`` and ``count_sort`` cannot both be True. | |
show_leaf_counts : bool, optional | |
When True, leaf nodes representing :math:`k>1` original | |
observation are labeled with the number of observations they | |
contain in parentheses. | |
no_plot : bool, optional | |
When True, the final rendering is not performed. This is | |
useful if only the data structures computed for the rendering | |
are needed or if matplotlib is not available. | |
no_labels : bool, optional | |
When True, no labels appear next to the leaf nodes in the | |
rendering of the dendrogram. | |
leaf_rotation : double, optional | |
Specifies the angle (in degrees) to rotate the leaf | |
labels. When unspecified, the rotation is based on the number of | |
nodes in the dendrogram (default is 0). | |
leaf_font_size : int, optional | |
Specifies the font size (in points) of the leaf labels. When | |
unspecified, the size based on the number of nodes in the | |
dendrogram. | |
leaf_label_func : lambda or function, optional | |
When ``leaf_label_func`` is a callable function, for each | |
leaf with cluster index :math:`k < 2n-1`. The function | |
is expected to return a string with the label for the | |
leaf. | |
Indices :math:`k < n` correspond to original observations | |
while indices :math:`k \\geq n` correspond to non-singleton | |
clusters. | |
For example, to label singletons with their node id and | |
non-singletons with their id, count, and inconsistency | |
coefficient, simply do:: | |
# First define the leaf label function. | |
def llf(id): | |
if id < n: | |
return str(id) | |
else: | |
return '[%d %d %1.2f]' % (id, count, R[n-id,3]) | |
# The text for the leaf nodes is going to be big so force | |
# a rotation of 90 degrees. | |
dendrogram(Z, leaf_label_func=llf, leaf_rotation=90) | |
# leaf_label_func can also be used together with ``truncate_mode``, | |
# in which case you will get your leaves labeled after truncation: | |
dendrogram(Z, leaf_label_func=llf, leaf_rotation=90, | |
truncate_mode='level', p=2) | |
show_contracted : bool, optional | |
When True the heights of non-singleton nodes contracted | |
into a leaf node are plotted as crosses along the link | |
connecting that leaf node. This really is only useful when | |
truncation is used (see ``truncate_mode`` parameter). | |
link_color_func : callable, optional | |
If given, `link_color_function` is called with each non-singleton id | |
corresponding to each U-shaped link it will paint. The function is | |
expected to return the color to paint the link, encoded as a matplotlib | |
color string code. For example:: | |
dendrogram(Z, link_color_func=lambda k: colors[k]) | |
colors the direct links below each untruncated non-singleton node | |
``k`` using ``colors[k]``. | |
ax : matplotlib Axes instance, optional | |
If None and `no_plot` is not True, the dendrogram will be plotted | |
on the current axes. Otherwise if `no_plot` is not True the | |
dendrogram will be plotted on the given ``Axes`` instance. This can be | |
useful if the dendrogram is part of a more complex figure. | |
above_threshold_color : str, optional | |
This matplotlib color string sets the color of the links above the | |
color_threshold. The default is ``'C0'``. | |
Returns | |
------- | |
R : dict | |
A dictionary of data structures computed to render the | |
dendrogram. Its has the following keys: | |
``'color_list'`` | |
A list of color names. The k'th element represents the color of the | |
k'th link. | |
``'icoord'`` and ``'dcoord'`` | |
Each of them is a list of lists. Let ``icoord = [I1, I2, ..., Ip]`` | |
where ``Ik = [xk1, xk2, xk3, xk4]`` and ``dcoord = [D1, D2, ..., Dp]`` | |
where ``Dk = [yk1, yk2, yk3, yk4]``, then the k'th link painted is | |
``(xk1, yk1)`` - ``(xk2, yk2)`` - ``(xk3, yk3)`` - ``(xk4, yk4)``. | |
``'ivl'`` | |
A list of labels corresponding to the leaf nodes. | |
``'leaves'`` | |
For each i, ``H[i] == j``, cluster node ``j`` appears in position | |
``i`` in the left-to-right traversal of the leaves, where | |
:math:`j < 2n-1` and :math:`i < n`. If ``j`` is less than ``n``, the | |
``i``-th leaf node corresponds to an original observation. | |
Otherwise, it corresponds to a non-singleton cluster. | |
``'leaves_color_list'`` | |
A list of color names. The k'th element represents the color of the | |
k'th leaf. | |
See Also | |
-------- | |
linkage, set_link_color_palette | |
Notes | |
----- | |
It is expected that the distances in ``Z[:,2]`` be monotonic, otherwise | |
crossings appear in the dendrogram. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.cluster import hierarchy | |
>>> import matplotlib.pyplot as plt | |
A very basic example: | |
>>> ytdist = np.array([662., 877., 255., 412., 996., 295., 468., 268., | |
... 400., 754., 564., 138., 219., 869., 669.]) | |
>>> Z = hierarchy.linkage(ytdist, 'single') | |
>>> plt.figure() | |
>>> dn = hierarchy.dendrogram(Z) | |
Now, plot in given axes, improve the color scheme and use both vertical and | |
horizontal orientations: | |
>>> hierarchy.set_link_color_palette(['m', 'c', 'y', 'k']) | |
>>> fig, axes = plt.subplots(1, 2, figsize=(8, 3)) | |
>>> dn1 = hierarchy.dendrogram(Z, ax=axes[0], above_threshold_color='y', | |
... orientation='top') | |
>>> dn2 = hierarchy.dendrogram(Z, ax=axes[1], | |
... above_threshold_color='#bcbddc', | |
... orientation='right') | |
>>> hierarchy.set_link_color_palette(None) # reset to default after use | |
>>> plt.show() | |
""" | |
# This feature was thought about but never implemented (still useful?): | |
# | |
# ... = dendrogram(..., leaves_order=None) | |
# | |
# Plots the leaves in the order specified by a vector of | |
# original observation indices. If the vector contains duplicates | |
# or results in a crossing, an exception will be thrown. Passing | |
# None orders leaf nodes based on the order they appear in the | |
# pre-order traversal. | |
xp = array_namespace(Z) | |
Z = _asarray(Z, order='c', xp=xp) | |
if orientation not in ["top", "left", "bottom", "right"]: | |
raise ValueError("orientation must be one of 'top', 'left', " | |
"'bottom', or 'right'") | |
if labels is not None: | |
try: | |
len_labels = len(labels) | |
except (TypeError, AttributeError): | |
len_labels = labels.shape[0] | |
if Z.shape[0] + 1 != len_labels: | |
raise ValueError("Dimensions of Z and labels must be consistent.") | |
is_valid_linkage(Z, throw=True, name='Z') | |
Zs = Z.shape | |
n = Zs[0] + 1 | |
if isinstance(p, (int, float)): | |
p = int(p) | |
else: | |
raise TypeError('The second argument must be a number') | |
if truncate_mode not in ('lastp', 'mtica', 'level', 'none', None): | |
# 'mtica' is kept working for backwards compat. | |
raise ValueError('Invalid truncation mode.') | |
if truncate_mode == 'lastp': | |
if p > n or p == 0: | |
p = n | |
if truncate_mode == 'mtica': | |
# 'mtica' is an alias | |
truncate_mode = 'level' | |
if truncate_mode == 'level': | |
if p <= 0: | |
p = np.inf | |
if get_leaves: | |
lvs = [] | |
else: | |
lvs = None | |
icoord_list = [] | |
dcoord_list = [] | |
color_list = [] | |
current_color = [0] | |
currently_below_threshold = [False] | |
ivl = [] # list of leaves | |
if color_threshold is None or (isinstance(color_threshold, str) and | |
color_threshold == 'default'): | |
color_threshold = max(Z[:, 2]) * 0.7 | |
R = {'icoord': icoord_list, 'dcoord': dcoord_list, 'ivl': ivl, | |
'leaves': lvs, 'color_list': color_list} | |
# Empty list will be filled in _dendrogram_calculate_info | |
contraction_marks = [] if show_contracted else None | |
_dendrogram_calculate_info( | |
Z=Z, p=p, | |
truncate_mode=truncate_mode, | |
color_threshold=color_threshold, | |
get_leaves=get_leaves, | |
orientation=orientation, | |
labels=labels, | |
count_sort=count_sort, | |
distance_sort=distance_sort, | |
show_leaf_counts=show_leaf_counts, | |
i=2*n - 2, | |
iv=0.0, | |
ivl=ivl, | |
n=n, | |
icoord_list=icoord_list, | |
dcoord_list=dcoord_list, | |
lvs=lvs, | |
current_color=current_color, | |
color_list=color_list, | |
currently_below_threshold=currently_below_threshold, | |
leaf_label_func=leaf_label_func, | |
contraction_marks=contraction_marks, | |
link_color_func=link_color_func, | |
above_threshold_color=above_threshold_color) | |
if not no_plot: | |
mh = max(Z[:, 2]) | |
_plot_dendrogram(icoord_list, dcoord_list, ivl, p, n, mh, orientation, | |
no_labels, color_list, | |
leaf_font_size=leaf_font_size, | |
leaf_rotation=leaf_rotation, | |
contraction_marks=contraction_marks, | |
ax=ax, | |
above_threshold_color=above_threshold_color) | |
R["leaves_color_list"] = _get_leaves_color_list(R) | |
return R | |
def _get_leaves_color_list(R): | |
leaves_color_list = [None] * len(R['leaves']) | |
for link_x, link_y, link_color in zip(R['icoord'], | |
R['dcoord'], | |
R['color_list']): | |
for (xi, yi) in zip(link_x, link_y): | |
if yi == 0.0 and (xi % 5 == 0 and xi % 2 == 1): | |
# if yi is 0.0 and xi is divisible by 5 and odd, | |
# the point is a leaf | |
# xi of leaves are 5, 15, 25, 35, ... (see `iv_ticks`) | |
# index of leaves are 0, 1, 2, 3, ... as below | |
leaf_index = (int(xi) - 5) // 10 | |
# each leaf has a same color of its link. | |
leaves_color_list[leaf_index] = link_color | |
return leaves_color_list | |
def _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, | |
i, labels): | |
# If the leaf id structure is not None and is a list then the caller | |
# to dendrogram has indicated that cluster id's corresponding to the | |
# leaf nodes should be recorded. | |
if lvs is not None: | |
lvs.append(int(i)) | |
# If leaf node labels are to be displayed... | |
if ivl is not None: | |
# If a leaf_label_func has been provided, the label comes from the | |
# string returned from the leaf_label_func, which is a function | |
# passed to dendrogram. | |
if leaf_label_func: | |
ivl.append(leaf_label_func(int(i))) | |
else: | |
# Otherwise, if the dendrogram caller has passed a labels list | |
# for the leaf nodes, use it. | |
if labels is not None: | |
ivl.append(labels[int(i - n)]) | |
else: | |
# Otherwise, use the id as the label for the leaf.x | |
ivl.append(str(int(i))) | |
def _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, | |
i, labels, show_leaf_counts): | |
# If the leaf id structure is not None and is a list then the caller | |
# to dendrogram has indicated that cluster id's corresponding to the | |
# leaf nodes should be recorded. | |
if lvs is not None: | |
lvs.append(int(i)) | |
if ivl is not None: | |
if leaf_label_func: | |
ivl.append(leaf_label_func(int(i))) | |
else: | |
if show_leaf_counts: | |
ivl.append("(" + str(np.asarray(Z[i - n, 3], dtype=np.int64)) + ")") | |
else: | |
ivl.append("") | |
def _append_contraction_marks(Z, iv, i, n, contraction_marks, xp): | |
_append_contraction_marks_sub(Z, iv, int_floor(Z[i - n, 0], xp), | |
n, contraction_marks, xp) | |
_append_contraction_marks_sub(Z, iv, int_floor(Z[i - n, 1], xp), | |
n, contraction_marks, xp) | |
def _append_contraction_marks_sub(Z, iv, i, n, contraction_marks, xp): | |
if i >= n: | |
contraction_marks.append((iv, Z[i - n, 2])) | |
_append_contraction_marks_sub(Z, iv, int_floor(Z[i - n, 0], xp), | |
n, contraction_marks, xp) | |
_append_contraction_marks_sub(Z, iv, int_floor(Z[i - n, 1], xp), | |
n, contraction_marks, xp) | |
def _dendrogram_calculate_info(Z, p, truncate_mode, | |
color_threshold=np.inf, get_leaves=True, | |
orientation='top', labels=None, | |
count_sort=False, distance_sort=False, | |
show_leaf_counts=False, i=-1, iv=0.0, | |
ivl=[], n=0, icoord_list=[], dcoord_list=[], | |
lvs=None, mhr=False, | |
current_color=[], color_list=[], | |
currently_below_threshold=[], | |
leaf_label_func=None, level=0, | |
contraction_marks=None, | |
link_color_func=None, | |
above_threshold_color='C0'): | |
""" | |
Calculate the endpoints of the links as well as the labels for the | |
the dendrogram rooted at the node with index i. iv is the independent | |
variable value to plot the left-most leaf node below the root node i | |
(if orientation='top', this would be the left-most x value where the | |
plotting of this root node i and its descendents should begin). | |
ivl is a list to store the labels of the leaf nodes. The leaf_label_func | |
is called whenever ivl != None, labels == None, and | |
leaf_label_func != None. When ivl != None and labels != None, the | |
labels list is used only for labeling the leaf nodes. When | |
ivl == None, no labels are generated for leaf nodes. | |
When get_leaves==True, a list of leaves is built as they are visited | |
in the dendrogram. | |
Returns a tuple with l being the independent variable coordinate that | |
corresponds to the midpoint of cluster to the left of cluster i if | |
i is non-singleton, otherwise the independent coordinate of the leaf | |
node if i is a leaf node. | |
Returns | |
------- | |
A tuple (left, w, h, md), where: | |
* left is the independent variable coordinate of the center of the | |
the U of the subtree | |
* w is the amount of space used for the subtree (in independent | |
variable units) | |
* h is the height of the subtree in dependent variable units | |
* md is the ``max(Z[*,2]``) for all nodes ``*`` below and including | |
the target node. | |
""" | |
xp = array_namespace(Z) | |
if n == 0: | |
raise ValueError("Invalid singleton cluster count n.") | |
if i == -1: | |
raise ValueError("Invalid root cluster index i.") | |
if truncate_mode == 'lastp': | |
# If the node is a leaf node but corresponds to a non-singleton | |
# cluster, its label is either the empty string or the number of | |
# original observations belonging to cluster i. | |
if 2*n - p > i >= n: | |
d = Z[i - n, 2] | |
_append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl, | |
leaf_label_func, i, labels, | |
show_leaf_counts) | |
if contraction_marks is not None: | |
_append_contraction_marks(Z, iv + 5.0, i, n, contraction_marks, xp) | |
return (iv + 5.0, 10.0, 0.0, d) | |
elif i < n: | |
_append_singleton_leaf_node(Z, p, n, level, lvs, ivl, | |
leaf_label_func, i, labels) | |
return (iv + 5.0, 10.0, 0.0, 0.0) | |
elif truncate_mode == 'level': | |
if i > n and level > p: | |
d = Z[i - n, 2] | |
_append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl, | |
leaf_label_func, i, labels, | |
show_leaf_counts) | |
if contraction_marks is not None: | |
_append_contraction_marks(Z, iv + 5.0, i, n, contraction_marks, xp) | |
return (iv + 5.0, 10.0, 0.0, d) | |
elif i < n: | |
_append_singleton_leaf_node(Z, p, n, level, lvs, ivl, | |
leaf_label_func, i, labels) | |
return (iv + 5.0, 10.0, 0.0, 0.0) | |
# Otherwise, only truncate if we have a leaf node. | |
# | |
# Only place leaves if they correspond to original observations. | |
if i < n: | |
_append_singleton_leaf_node(Z, p, n, level, lvs, ivl, | |
leaf_label_func, i, labels) | |
return (iv + 5.0, 10.0, 0.0, 0.0) | |
# !!! Otherwise, we don't have a leaf node, so work on plotting a | |
# non-leaf node. | |
# Actual indices of a and b | |
aa = int_floor(Z[i - n, 0], xp) | |
ab = int_floor(Z[i - n, 1], xp) | |
if aa >= n: | |
# The number of singletons below cluster a | |
na = Z[aa - n, 3] | |
# The distance between a's two direct children. | |
da = Z[aa - n, 2] | |
else: | |
na = 1 | |
da = 0.0 | |
if ab >= n: | |
nb = Z[ab - n, 3] | |
db = Z[ab - n, 2] | |
else: | |
nb = 1 | |
db = 0.0 | |
if count_sort == 'ascending' or count_sort is True: | |
# If a has a count greater than b, it and its descendents should | |
# be drawn to the right. Otherwise, to the left. | |
if na > nb: | |
# The cluster index to draw to the left (ua) will be ab | |
# and the one to draw to the right (ub) will be aa | |
ua = ab | |
ub = aa | |
else: | |
ua = aa | |
ub = ab | |
elif count_sort == 'descending': | |
# If a has a count less than or equal to b, it and its | |
# descendents should be drawn to the left. Otherwise, to | |
# the right. | |
if na > nb: | |
ua = aa | |
ub = ab | |
else: | |
ua = ab | |
ub = aa | |
elif distance_sort == 'ascending' or distance_sort is True: | |
# If a has a distance greater than b, it and its descendents should | |
# be drawn to the right. Otherwise, to the left. | |
if da > db: | |
ua = ab | |
ub = aa | |
else: | |
ua = aa | |
ub = ab | |
elif distance_sort == 'descending': | |
# If a has a distance less than or equal to b, it and its | |
# descendents should be drawn to the left. Otherwise, to | |
# the right. | |
if da > db: | |
ua = aa | |
ub = ab | |
else: | |
ua = ab | |
ub = aa | |
else: | |
ua = aa | |
ub = ab | |
# Updated iv variable and the amount of space used. | |
(uiva, uwa, uah, uamd) = \ | |
_dendrogram_calculate_info( | |
Z=Z, p=p, | |
truncate_mode=truncate_mode, | |
color_threshold=color_threshold, | |
get_leaves=get_leaves, | |
orientation=orientation, | |
labels=labels, | |
count_sort=count_sort, | |
distance_sort=distance_sort, | |
show_leaf_counts=show_leaf_counts, | |
i=ua, iv=iv, ivl=ivl, n=n, | |
icoord_list=icoord_list, | |
dcoord_list=dcoord_list, lvs=lvs, | |
current_color=current_color, | |
color_list=color_list, | |
currently_below_threshold=currently_below_threshold, | |
leaf_label_func=leaf_label_func, | |
level=level + 1, contraction_marks=contraction_marks, | |
link_color_func=link_color_func, | |
above_threshold_color=above_threshold_color) | |
h = Z[i - n, 2] | |
if h >= color_threshold or color_threshold <= 0: | |
c = above_threshold_color | |
if currently_below_threshold[0]: | |
current_color[0] = (current_color[0] + 1) % len(_link_line_colors) | |
currently_below_threshold[0] = False | |
else: | |
currently_below_threshold[0] = True | |
c = _link_line_colors[current_color[0]] | |
(uivb, uwb, ubh, ubmd) = \ | |
_dendrogram_calculate_info( | |
Z=Z, p=p, | |
truncate_mode=truncate_mode, | |
color_threshold=color_threshold, | |
get_leaves=get_leaves, | |
orientation=orientation, | |
labels=labels, | |
count_sort=count_sort, | |
distance_sort=distance_sort, | |
show_leaf_counts=show_leaf_counts, | |
i=ub, iv=iv + uwa, ivl=ivl, n=n, | |
icoord_list=icoord_list, | |
dcoord_list=dcoord_list, lvs=lvs, | |
current_color=current_color, | |
color_list=color_list, | |
currently_below_threshold=currently_below_threshold, | |
leaf_label_func=leaf_label_func, | |
level=level + 1, contraction_marks=contraction_marks, | |
link_color_func=link_color_func, | |
above_threshold_color=above_threshold_color) | |
max_dist = max(uamd, ubmd, h) | |
icoord_list.append([uiva, uiva, uivb, uivb]) | |
dcoord_list.append([uah, h, h, ubh]) | |
if link_color_func is not None: | |
v = link_color_func(int(i)) | |
if not isinstance(v, str): | |
raise TypeError("link_color_func must return a matplotlib " | |
"color string!") | |
color_list.append(v) | |
else: | |
color_list.append(c) | |
return (((uiva + uivb) / 2), uwa + uwb, h, max_dist) | |
def is_isomorphic(T1, T2): | |
""" | |
Determine if two different cluster assignments are equivalent. | |
Parameters | |
---------- | |
T1 : array_like | |
An assignment of singleton cluster ids to flat cluster ids. | |
T2 : array_like | |
An assignment of singleton cluster ids to flat cluster ids. | |
Returns | |
------- | |
b : bool | |
Whether the flat cluster assignments `T1` and `T2` are | |
equivalent. | |
See Also | |
-------- | |
linkage : for a description of what a linkage matrix is. | |
fcluster : for the creation of flat cluster assignments. | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import fcluster, is_isomorphic | |
>>> from scipy.cluster.hierarchy import single, complete | |
>>> from scipy.spatial.distance import pdist | |
Two flat cluster assignments can be isomorphic if they represent the same | |
cluster assignment, with different labels. | |
For example, we can use the `scipy.cluster.hierarchy.single`: method | |
and flatten the output to four clusters: | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
>>> Z = single(pdist(X)) | |
>>> T = fcluster(Z, 1, criterion='distance') | |
>>> T | |
array([3, 3, 3, 4, 4, 4, 2, 2, 2, 1, 1, 1], dtype=int32) | |
We can then do the same using the | |
`scipy.cluster.hierarchy.complete`: method: | |
>>> Z = complete(pdist(X)) | |
>>> T_ = fcluster(Z, 1.5, criterion='distance') | |
>>> T_ | |
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32) | |
As we can see, in both cases we obtain four clusters and all the data | |
points are distributed in the same way - the only thing that changes | |
are the flat cluster labels (3 => 1, 4 =>2, 2 =>3 and 4 =>1), so both | |
cluster assignments are isomorphic: | |
>>> is_isomorphic(T, T_) | |
True | |
""" | |
T1 = np.asarray(T1, order='c') | |
T2 = np.asarray(T2, order='c') | |
T1S = T1.shape | |
T2S = T2.shape | |
if len(T1S) != 1: | |
raise ValueError('T1 must be one-dimensional.') | |
if len(T2S) != 1: | |
raise ValueError('T2 must be one-dimensional.') | |
if T1S[0] != T2S[0]: | |
raise ValueError('T1 and T2 must have the same number of elements.') | |
n = T1S[0] | |
d1 = {} | |
d2 = {} | |
for i in range(0, n): | |
if T1[i] in d1: | |
if T2[i] not in d2: | |
return False | |
if d1[T1[i]] != T2[i] or d2[T2[i]] != T1[i]: | |
return False | |
elif T2[i] in d2: | |
return False | |
else: | |
d1[T1[i]] = T2[i] | |
d2[T2[i]] = T1[i] | |
return True | |
def maxdists(Z): | |
""" | |
Return the maximum distance between any non-singleton cluster. | |
Parameters | |
---------- | |
Z : ndarray | |
The hierarchical clustering encoded as a matrix. See | |
``linkage`` for more information. | |
Returns | |
------- | |
maxdists : ndarray | |
A ``(n-1)`` sized numpy array of doubles; ``MD[i]`` represents | |
the maximum distance between any cluster (including | |
singletons) below and including the node with index i. More | |
specifically, ``MD[i] = Z[Q(i)-n, 2].max()`` where ``Q(i)`` is the | |
set of all node indices below and including node i. | |
See Also | |
-------- | |
linkage : for a description of what a linkage matrix is. | |
is_monotonic : for testing for monotonicity of a linkage matrix. | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import median, maxdists | |
>>> from scipy.spatial.distance import pdist | |
Given a linkage matrix ``Z``, `scipy.cluster.hierarchy.maxdists` | |
computes for each new cluster generated (i.e., for each row of the linkage | |
matrix) what is the maximum distance between any two child clusters. | |
Due to the nature of hierarchical clustering, in many cases this is going | |
to be just the distance between the two child clusters that were merged | |
to form the current one - that is, Z[:,2]. | |
However, for non-monotonic cluster assignments such as | |
`scipy.cluster.hierarchy.median` clustering this is not always the | |
case: There may be cluster formations were the distance between the two | |
clusters merged is smaller than the distance between their children. | |
We can see this in an example: | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
>>> Z = median(pdist(X)) | |
>>> Z | |
array([[ 0. , 1. , 1. , 2. ], | |
[ 3. , 4. , 1. , 2. ], | |
[ 9. , 10. , 1. , 2. ], | |
[ 6. , 7. , 1. , 2. ], | |
[ 2. , 12. , 1.11803399, 3. ], | |
[ 5. , 13. , 1.11803399, 3. ], | |
[ 8. , 15. , 1.11803399, 3. ], | |
[11. , 14. , 1.11803399, 3. ], | |
[18. , 19. , 3. , 6. ], | |
[16. , 17. , 3.5 , 6. ], | |
[20. , 21. , 3.25 , 12. ]]) | |
>>> maxdists(Z) | |
array([1. , 1. , 1. , 1. , 1.11803399, | |
1.11803399, 1.11803399, 1.11803399, 3. , 3.5 , | |
3.5 ]) | |
Note that while the distance between the two clusters merged when creating the | |
last cluster is 3.25, there are two children (clusters 16 and 17) whose distance | |
is larger (3.5). Thus, `scipy.cluster.hierarchy.maxdists` returns 3.5 in | |
this case. | |
""" | |
xp = array_namespace(Z) | |
Z = _asarray(Z, order='C', dtype=xp.float64, xp=xp) | |
is_valid_linkage(Z, throw=True, name='Z') | |
n = Z.shape[0] + 1 | |
MD = np.zeros((n - 1,)) | |
Z = np.asarray(Z) | |
_hierarchy.get_max_dist_for_each_cluster(Z, MD, int(n)) | |
MD = xp.asarray(MD) | |
return MD | |
def maxinconsts(Z, R): | |
""" | |
Return the maximum inconsistency coefficient for each | |
non-singleton cluster and its children. | |
Parameters | |
---------- | |
Z : ndarray | |
The hierarchical clustering encoded as a matrix. See | |
`linkage` for more information. | |
R : ndarray | |
The inconsistency matrix. | |
Returns | |
------- | |
MI : ndarray | |
A monotonic ``(n-1)``-sized numpy array of doubles. | |
See Also | |
-------- | |
linkage : for a description of what a linkage matrix is. | |
inconsistent : for the creation of a inconsistency matrix. | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import median, inconsistent, maxinconsts | |
>>> from scipy.spatial.distance import pdist | |
Given a data set ``X``, we can apply a clustering method to obtain a | |
linkage matrix ``Z``. `scipy.cluster.hierarchy.inconsistent` can | |
be also used to obtain the inconsistency matrix ``R`` associated to | |
this clustering process: | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
>>> Z = median(pdist(X)) | |
>>> R = inconsistent(Z) | |
>>> Z | |
array([[ 0. , 1. , 1. , 2. ], | |
[ 3. , 4. , 1. , 2. ], | |
[ 9. , 10. , 1. , 2. ], | |
[ 6. , 7. , 1. , 2. ], | |
[ 2. , 12. , 1.11803399, 3. ], | |
[ 5. , 13. , 1.11803399, 3. ], | |
[ 8. , 15. , 1.11803399, 3. ], | |
[11. , 14. , 1.11803399, 3. ], | |
[18. , 19. , 3. , 6. ], | |
[16. , 17. , 3.5 , 6. ], | |
[20. , 21. , 3.25 , 12. ]]) | |
>>> R | |
array([[1. , 0. , 1. , 0. ], | |
[1. , 0. , 1. , 0. ], | |
[1. , 0. , 1. , 0. ], | |
[1. , 0. , 1. , 0. ], | |
[1.05901699, 0.08346263, 2. , 0.70710678], | |
[1.05901699, 0.08346263, 2. , 0.70710678], | |
[1.05901699, 0.08346263, 2. , 0.70710678], | |
[1.05901699, 0.08346263, 2. , 0.70710678], | |
[1.74535599, 1.08655358, 3. , 1.15470054], | |
[1.91202266, 1.37522872, 3. , 1.15470054], | |
[3.25 , 0.25 , 3. , 0. ]]) | |
Here, `scipy.cluster.hierarchy.maxinconsts` can be used to compute | |
the maximum value of the inconsistency statistic (the last column of | |
``R``) for each non-singleton cluster and its children: | |
>>> maxinconsts(Z, R) | |
array([0. , 0. , 0. , 0. , 0.70710678, | |
0.70710678, 0.70710678, 0.70710678, 1.15470054, 1.15470054, | |
1.15470054]) | |
""" | |
xp = array_namespace(Z, R) | |
Z = _asarray(Z, order='C', dtype=xp.float64, xp=xp) | |
R = _asarray(R, order='C', dtype=xp.float64, xp=xp) | |
is_valid_linkage(Z, throw=True, name='Z') | |
is_valid_im(R, throw=True, name='R') | |
n = Z.shape[0] + 1 | |
if Z.shape[0] != R.shape[0]: | |
raise ValueError("The inconsistency matrix and linkage matrix each " | |
"have a different number of rows.") | |
MI = np.zeros((n - 1,)) | |
Z = np.asarray(Z) | |
R = np.asarray(R) | |
_hierarchy.get_max_Rfield_for_each_cluster(Z, R, MI, int(n), 3) | |
MI = xp.asarray(MI) | |
return MI | |
def maxRstat(Z, R, i): | |
""" | |
Return the maximum statistic for each non-singleton cluster and its | |
children. | |
Parameters | |
---------- | |
Z : array_like | |
The hierarchical clustering encoded as a matrix. See `linkage` for more | |
information. | |
R : array_like | |
The inconsistency matrix. | |
i : int | |
The column of `R` to use as the statistic. | |
Returns | |
------- | |
MR : ndarray | |
Calculates the maximum statistic for the i'th column of the | |
inconsistency matrix `R` for each non-singleton cluster | |
node. ``MR[j]`` is the maximum over ``R[Q(j)-n, i]``, where | |
``Q(j)`` the set of all node ids corresponding to nodes below | |
and including ``j``. | |
See Also | |
-------- | |
linkage : for a description of what a linkage matrix is. | |
inconsistent : for the creation of a inconsistency matrix. | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import median, inconsistent, maxRstat | |
>>> from scipy.spatial.distance import pdist | |
Given a data set ``X``, we can apply a clustering method to obtain a | |
linkage matrix ``Z``. `scipy.cluster.hierarchy.inconsistent` can | |
be also used to obtain the inconsistency matrix ``R`` associated to | |
this clustering process: | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
>>> Z = median(pdist(X)) | |
>>> R = inconsistent(Z) | |
>>> R | |
array([[1. , 0. , 1. , 0. ], | |
[1. , 0. , 1. , 0. ], | |
[1. , 0. , 1. , 0. ], | |
[1. , 0. , 1. , 0. ], | |
[1.05901699, 0.08346263, 2. , 0.70710678], | |
[1.05901699, 0.08346263, 2. , 0.70710678], | |
[1.05901699, 0.08346263, 2. , 0.70710678], | |
[1.05901699, 0.08346263, 2. , 0.70710678], | |
[1.74535599, 1.08655358, 3. , 1.15470054], | |
[1.91202266, 1.37522872, 3. , 1.15470054], | |
[3.25 , 0.25 , 3. , 0. ]]) | |
`scipy.cluster.hierarchy.maxRstat` can be used to compute | |
the maximum value of each column of ``R``, for each non-singleton | |
cluster and its children: | |
>>> maxRstat(Z, R, 0) | |
array([1. , 1. , 1. , 1. , 1.05901699, | |
1.05901699, 1.05901699, 1.05901699, 1.74535599, 1.91202266, | |
3.25 ]) | |
>>> maxRstat(Z, R, 1) | |
array([0. , 0. , 0. , 0. , 0.08346263, | |
0.08346263, 0.08346263, 0.08346263, 1.08655358, 1.37522872, | |
1.37522872]) | |
>>> maxRstat(Z, R, 3) | |
array([0. , 0. , 0. , 0. , 0.70710678, | |
0.70710678, 0.70710678, 0.70710678, 1.15470054, 1.15470054, | |
1.15470054]) | |
""" | |
xp = array_namespace(Z, R) | |
Z = _asarray(Z, order='C', dtype=xp.float64, xp=xp) | |
R = _asarray(R, order='C', dtype=xp.float64, xp=xp) | |
is_valid_linkage(Z, throw=True, name='Z') | |
is_valid_im(R, throw=True, name='R') | |
if not isinstance(i, int): | |
raise TypeError('The third argument must be an integer.') | |
if i < 0 or i > 3: | |
raise ValueError('i must be an integer between 0 and 3 inclusive.') | |
if Z.shape[0] != R.shape[0]: | |
raise ValueError("The inconsistency matrix and linkage matrix each " | |
"have a different number of rows.") | |
n = Z.shape[0] + 1 | |
MR = np.zeros((n - 1,)) | |
Z = np.asarray(Z) | |
R = np.asarray(R) | |
_hierarchy.get_max_Rfield_for_each_cluster(Z, R, MR, int(n), i) | |
MR = xp.asarray(MR) | |
return MR | |
def leaders(Z, T): | |
""" | |
Return the root nodes in a hierarchical clustering. | |
Returns the root nodes in a hierarchical clustering corresponding | |
to a cut defined by a flat cluster assignment vector ``T``. See | |
the ``fcluster`` function for more information on the format of ``T``. | |
For each flat cluster :math:`j` of the :math:`k` flat clusters | |
represented in the n-sized flat cluster assignment vector ``T``, | |
this function finds the lowest cluster node :math:`i` in the linkage | |
tree Z, such that: | |
* leaf descendants belong only to flat cluster j | |
(i.e., ``T[p]==j`` for all :math:`p` in :math:`S(i)`, where | |
:math:`S(i)` is the set of leaf ids of descendant leaf nodes | |
with cluster node :math:`i`) | |
* there does not exist a leaf that is not a descendant with | |
:math:`i` that also belongs to cluster :math:`j` | |
(i.e., ``T[q]!=j`` for all :math:`q` not in :math:`S(i)`). If | |
this condition is violated, ``T`` is not a valid cluster | |
assignment vector, and an exception will be thrown. | |
Parameters | |
---------- | |
Z : ndarray | |
The hierarchical clustering encoded as a matrix. See | |
`linkage` for more information. | |
T : ndarray | |
The flat cluster assignment vector. | |
Returns | |
------- | |
L : ndarray | |
The leader linkage node id's stored as a k-element 1-D array, | |
where ``k`` is the number of flat clusters found in ``T``. | |
``L[j]=i`` is the linkage cluster node id that is the | |
leader of flat cluster with id M[j]. If ``i < n``, ``i`` | |
corresponds to an original observation, otherwise it | |
corresponds to a non-singleton cluster. | |
M : ndarray | |
The leader linkage node id's stored as a k-element 1-D array, where | |
``k`` is the number of flat clusters found in ``T``. This allows the | |
set of flat cluster ids to be any arbitrary set of ``k`` integers. | |
For example: if ``L[3]=2`` and ``M[3]=8``, the flat cluster with | |
id 8's leader is linkage node 2. | |
See Also | |
-------- | |
fcluster : for the creation of flat cluster assignments. | |
Examples | |
-------- | |
>>> from scipy.cluster.hierarchy import ward, fcluster, leaders | |
>>> from scipy.spatial.distance import pdist | |
Given a linkage matrix ``Z`` - obtained after apply a clustering method | |
to a dataset ``X`` - and a flat cluster assignment array ``T``: | |
>>> X = [[0, 0], [0, 1], [1, 0], | |
... [0, 4], [0, 3], [1, 4], | |
... [4, 0], [3, 0], [4, 1], | |
... [4, 4], [3, 4], [4, 3]] | |
>>> Z = ward(pdist(X)) | |
>>> Z | |
array([[ 0. , 1. , 1. , 2. ], | |
[ 3. , 4. , 1. , 2. ], | |
[ 6. , 7. , 1. , 2. ], | |
[ 9. , 10. , 1. , 2. ], | |
[ 2. , 12. , 1.29099445, 3. ], | |
[ 5. , 13. , 1.29099445, 3. ], | |
[ 8. , 14. , 1.29099445, 3. ], | |
[11. , 15. , 1.29099445, 3. ], | |
[16. , 17. , 5.77350269, 6. ], | |
[18. , 19. , 5.77350269, 6. ], | |
[20. , 21. , 8.16496581, 12. ]]) | |
>>> T = fcluster(Z, 3, criterion='distance') | |
>>> T | |
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32) | |
`scipy.cluster.hierarchy.leaders` returns the indices of the nodes | |
in the dendrogram that are the leaders of each flat cluster: | |
>>> L, M = leaders(Z, T) | |
>>> L | |
array([16, 17, 18, 19], dtype=int32) | |
(remember that indices 0-11 point to the 12 data points in ``X``, | |
whereas indices 12-22 point to the 11 rows of ``Z``) | |
`scipy.cluster.hierarchy.leaders` also returns the indices of | |
the flat clusters in ``T``: | |
>>> M | |
array([1, 2, 3, 4], dtype=int32) | |
""" | |
xp = array_namespace(Z, T) | |
Z = _asarray(Z, order='C', dtype=xp.float64, xp=xp) | |
T = _asarray(T, order='C', xp=xp) | |
is_valid_linkage(Z, throw=True, name='Z') | |
if T.dtype != xp.int32: | |
raise TypeError('T must be a 1-D array of dtype int32.') | |
if T.shape[0] != Z.shape[0] + 1: | |
raise ValueError('Mismatch: len(T)!=Z.shape[0] + 1.') | |
n_clusters = int(xp.unique_values(T).shape[0]) | |
n_obs = int(Z.shape[0] + 1) | |
L = np.zeros(n_clusters, dtype=np.int32) | |
M = np.zeros(n_clusters, dtype=np.int32) | |
Z = np.asarray(Z) | |
T = np.asarray(T, dtype=np.int32) | |
s = _hierarchy.leaders(Z, T, L, M, n_clusters, n_obs) | |
if s >= 0: | |
raise ValueError(('T is not a valid assignment vector. Error found ' | |
'when examining linkage node %d (< 2n-1).') % s) | |
L, M = xp.asarray(L), xp.asarray(M) | |
return (L, M) | |