peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/cluster
/tests
/test_vq.py
import warnings | |
import sys | |
from copy import deepcopy | |
import numpy as np | |
from numpy.testing import ( | |
assert_array_equal, assert_equal, assert_, suppress_warnings | |
) | |
import pytest | |
from pytest import raises as assert_raises | |
from scipy.cluster.vq import (kmeans, kmeans2, py_vq, vq, whiten, | |
ClusterError, _krandinit) | |
from scipy.cluster import _vq | |
from scipy.conftest import array_api_compatible | |
from scipy.sparse._sputils import matrix | |
from scipy._lib._array_api import ( | |
SCIPY_ARRAY_API, copy, cov, xp_assert_close, xp_assert_equal | |
) | |
pytestmark = [array_api_compatible, pytest.mark.usefixtures("skip_if_array_api")] | |
skip_if_array_api = pytest.mark.skip_if_array_api | |
TESTDATA_2D = np.array([ | |
-2.2, 1.17, -1.63, 1.69, -2.04, 4.38, -3.09, 0.95, -1.7, 4.79, -1.68, 0.68, | |
-2.26, 3.34, -2.29, 2.55, -1.72, -0.72, -1.99, 2.34, -2.75, 3.43, -2.45, | |
2.41, -4.26, 3.65, -1.57, 1.87, -1.96, 4.03, -3.01, 3.86, -2.53, 1.28, | |
-4.0, 3.95, -1.62, 1.25, -3.42, 3.17, -1.17, 0.12, -3.03, -0.27, -2.07, | |
-0.55, -1.17, 1.34, -2.82, 3.08, -2.44, 0.24, -1.71, 2.48, -5.23, 4.29, | |
-2.08, 3.69, -1.89, 3.62, -2.09, 0.26, -0.92, 1.07, -2.25, 0.88, -2.25, | |
2.02, -4.31, 3.86, -2.03, 3.42, -2.76, 0.3, -2.48, -0.29, -3.42, 3.21, | |
-2.3, 1.73, -2.84, 0.69, -1.81, 2.48, -5.24, 4.52, -2.8, 1.31, -1.67, | |
-2.34, -1.18, 2.17, -2.17, 2.82, -1.85, 2.25, -2.45, 1.86, -6.79, 3.94, | |
-2.33, 1.89, -1.55, 2.08, -1.36, 0.93, -2.51, 2.74, -2.39, 3.92, -3.33, | |
2.99, -2.06, -0.9, -2.83, 3.35, -2.59, 3.05, -2.36, 1.85, -1.69, 1.8, | |
-1.39, 0.66, -2.06, 0.38, -1.47, 0.44, -4.68, 3.77, -5.58, 3.44, -2.29, | |
2.24, -1.04, -0.38, -1.85, 4.23, -2.88, 0.73, -2.59, 1.39, -1.34, 1.75, | |
-1.95, 1.3, -2.45, 3.09, -1.99, 3.41, -5.55, 5.21, -1.73, 2.52, -2.17, | |
0.85, -2.06, 0.49, -2.54, 2.07, -2.03, 1.3, -3.23, 3.09, -1.55, 1.44, | |
-0.81, 1.1, -2.99, 2.92, -1.59, 2.18, -2.45, -0.73, -3.12, -1.3, -2.83, | |
0.2, -2.77, 3.24, -1.98, 1.6, -4.59, 3.39, -4.85, 3.75, -2.25, 1.71, -3.28, | |
3.38, -1.74, 0.88, -2.41, 1.92, -2.24, 1.19, -2.48, 1.06, -1.68, -0.62, | |
-1.3, 0.39, -1.78, 2.35, -3.54, 2.44, -1.32, 0.66, -2.38, 2.76, -2.35, | |
3.95, -1.86, 4.32, -2.01, -1.23, -1.79, 2.76, -2.13, -0.13, -5.25, 3.84, | |
-2.24, 1.59, -4.85, 2.96, -2.41, 0.01, -0.43, 0.13, -3.92, 2.91, -1.75, | |
-0.53, -1.69, 1.69, -1.09, 0.15, -2.11, 2.17, -1.53, 1.22, -2.1, -0.86, | |
-2.56, 2.28, -3.02, 3.33, -1.12, 3.86, -2.18, -1.19, -3.03, 0.79, -0.83, | |
0.97, -3.19, 1.45, -1.34, 1.28, -2.52, 4.22, -4.53, 3.22, -1.97, 1.75, | |
-2.36, 3.19, -0.83, 1.53, -1.59, 1.86, -2.17, 2.3, -1.63, 2.71, -2.03, | |
3.75, -2.57, -0.6, -1.47, 1.33, -1.95, 0.7, -1.65, 1.27, -1.42, 1.09, -3.0, | |
3.87, -2.51, 3.06, -2.6, 0.74, -1.08, -0.03, -2.44, 1.31, -2.65, 2.99, | |
-1.84, 1.65, -4.76, 3.75, -2.07, 3.98, -2.4, 2.67, -2.21, 1.49, -1.21, | |
1.22, -5.29, 2.38, -2.85, 2.28, -5.6, 3.78, -2.7, 0.8, -1.81, 3.5, -3.75, | |
4.17, -1.29, 2.99, -5.92, 3.43, -1.83, 1.23, -1.24, -1.04, -2.56, 2.37, | |
-3.26, 0.39, -4.63, 2.51, -4.52, 3.04, -1.7, 0.36, -1.41, 0.04, -2.1, 1.0, | |
-1.87, 3.78, -4.32, 3.59, -2.24, 1.38, -1.99, -0.22, -1.87, 1.95, -0.84, | |
2.17, -5.38, 3.56, -1.27, 2.9, -1.79, 3.31, -5.47, 3.85, -1.44, 3.69, | |
-2.02, 0.37, -1.29, 0.33, -2.34, 2.56, -1.74, -1.27, -1.97, 1.22, -2.51, | |
-0.16, -1.64, -0.96, -2.99, 1.4, -1.53, 3.31, -2.24, 0.45, -2.46, 1.71, | |
-2.88, 1.56, -1.63, 1.46, -1.41, 0.68, -1.96, 2.76, -1.61, | |
2.11]).reshape((200, 2)) | |
# Global data | |
X = np.array([[3.0, 3], [4, 3], [4, 2], | |
[9, 2], [5, 1], [6, 2], [9, 4], | |
[5, 2], [5, 4], [7, 4], [6, 5]]) | |
CODET1 = np.array([[3.0000, 3.0000], | |
[6.2000, 4.0000], | |
[5.8000, 1.8000]]) | |
CODET2 = np.array([[11.0/3, 8.0/3], | |
[6.7500, 4.2500], | |
[6.2500, 1.7500]]) | |
LABEL1 = np.array([0, 1, 2, 2, 2, 2, 1, 2, 1, 1, 1]) | |
class TestWhiten: | |
def test_whiten(self, xp): | |
desired = xp.asarray([[5.08738849, 2.97091878], | |
[3.19909255, 0.69660580], | |
[4.51041982, 0.02640918], | |
[4.38567074, 0.95120889], | |
[2.32191480, 1.63195503]]) | |
obs = xp.asarray([[0.98744510, 0.82766775], | |
[0.62093317, 0.19406729], | |
[0.87545741, 0.00735733], | |
[0.85124403, 0.26499712], | |
[0.45067590, 0.45464607]]) | |
xp_assert_close(whiten(obs), desired, rtol=1e-5) | |
def test_whiten_zero_std(self, xp): | |
desired = xp.asarray([[0., 1.0, 2.86666544], | |
[0., 1.0, 1.32460034], | |
[0., 1.0, 3.74382172]]) | |
obs = xp.asarray([[0., 1., 0.74109533], | |
[0., 1., 0.34243798], | |
[0., 1., 0.96785929]]) | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
xp_assert_close(whiten(obs), desired, rtol=1e-5) | |
assert_equal(len(w), 1) | |
assert_(issubclass(w[-1].category, RuntimeWarning)) | |
def test_whiten_not_finite(self, xp): | |
for bad_value in xp.nan, xp.inf, -xp.inf: | |
obs = xp.asarray([[0.98744510, bad_value], | |
[0.62093317, 0.19406729], | |
[0.87545741, 0.00735733], | |
[0.85124403, 0.26499712], | |
[0.45067590, 0.45464607]]) | |
assert_raises(ValueError, whiten, obs) | |
def test_whiten_not_finite_matrix(self, xp): | |
for bad_value in np.nan, np.inf, -np.inf: | |
obs = matrix([[0.98744510, bad_value], | |
[0.62093317, 0.19406729], | |
[0.87545741, 0.00735733], | |
[0.85124403, 0.26499712], | |
[0.45067590, 0.45464607]]) | |
assert_raises(ValueError, whiten, obs) | |
class TestVq: | |
def test_py_vq(self, xp): | |
initc = np.concatenate([[X[0]], [X[1]], [X[2]]]) | |
# label1.dtype varies between int32 and int64 over platforms | |
label1 = py_vq(xp.asarray(X), xp.asarray(initc))[0] | |
xp_assert_equal(label1, xp.asarray(LABEL1, dtype=xp.int64), | |
check_dtype=False) | |
def test_py_vq_matrix(self, xp): | |
initc = np.concatenate([[X[0]], [X[1]], [X[2]]]) | |
# label1.dtype varies between int32 and int64 over platforms | |
label1 = py_vq(matrix(X), matrix(initc))[0] | |
assert_array_equal(label1, LABEL1) | |
def test_vq(self, xp): | |
initc = np.concatenate([[X[0]], [X[1]], [X[2]]]) | |
label1, _ = _vq.vq(xp.asarray(X), xp.asarray(initc)) | |
assert_array_equal(label1, LABEL1) | |
_, _ = vq(xp.asarray(X), xp.asarray(initc)) | |
def test_vq_matrix(self, xp): | |
initc = np.concatenate([[X[0]], [X[1]], [X[2]]]) | |
label1, _ = _vq.vq(matrix(X), matrix(initc)) | |
assert_array_equal(label1, LABEL1) | |
_, _ = vq(matrix(X), matrix(initc)) | |
def test_vq_1d(self, xp): | |
# Test special rank 1 vq algo, python implementation. | |
data = X[:, 0] | |
initc = data[:3] | |
a, b = _vq.vq(data, initc) | |
data = xp.asarray(data) | |
initc = xp.asarray(initc) | |
ta, tb = py_vq(data[:, np.newaxis], initc[:, np.newaxis]) | |
# ta.dtype varies between int32 and int64 over platforms | |
xp_assert_equal(ta, xp.asarray(a, dtype=xp.int64), check_dtype=False) | |
xp_assert_equal(tb, xp.asarray(b)) | |
def test__vq_sametype(self, xp): | |
a = xp.asarray([1.0, 2.0], dtype=xp.float64) | |
b = a.astype(xp.float32) | |
assert_raises(TypeError, _vq.vq, a, b) | |
def test__vq_invalid_type(self, xp): | |
a = xp.asarray([1, 2], dtype=int) | |
assert_raises(TypeError, _vq.vq, a, a) | |
def test_vq_large_nfeat(self, xp): | |
X = np.random.rand(20, 20) | |
code_book = np.random.rand(3, 20) | |
codes0, dis0 = _vq.vq(X, code_book) | |
codes1, dis1 = py_vq( | |
xp.asarray(X), xp.asarray(code_book) | |
) | |
xp_assert_close(dis1, xp.asarray(dis0), rtol=1e-5) | |
# codes1.dtype varies between int32 and int64 over platforms | |
xp_assert_equal(codes1, xp.asarray(codes0, dtype=xp.int64), check_dtype=False) | |
X = X.astype(np.float32) | |
code_book = code_book.astype(np.float32) | |
codes0, dis0 = _vq.vq(X, code_book) | |
codes1, dis1 = py_vq( | |
xp.asarray(X), xp.asarray(code_book) | |
) | |
xp_assert_close(dis1, xp.asarray(dis0, dtype=xp.float64), rtol=1e-5) | |
# codes1.dtype varies between int32 and int64 over platforms | |
xp_assert_equal(codes1, xp.asarray(codes0, dtype=xp.int64), check_dtype=False) | |
def test_vq_large_features(self, xp): | |
X = np.random.rand(10, 5) * 1000000 | |
code_book = np.random.rand(2, 5) * 1000000 | |
codes0, dis0 = _vq.vq(X, code_book) | |
codes1, dis1 = py_vq( | |
xp.asarray(X), xp.asarray(code_book) | |
) | |
xp_assert_close(dis1, xp.asarray(dis0), rtol=1e-5) | |
# codes1.dtype varies between int32 and int64 over platforms | |
xp_assert_equal(codes1, xp.asarray(codes0, dtype=xp.int64), check_dtype=False) | |
# Whole class skipped on GPU for now; | |
# once pdist/cdist are hooked up for CuPy, more tests will work | |
class TestKMean: | |
def test_large_features(self, xp): | |
# Generate a data set with large values, and run kmeans on it to | |
# (regression for 1077). | |
d = 300 | |
n = 100 | |
m1 = np.random.randn(d) | |
m2 = np.random.randn(d) | |
x = 10000 * np.random.randn(n, d) - 20000 * m1 | |
y = 10000 * np.random.randn(n, d) + 20000 * m2 | |
data = np.empty((x.shape[0] + y.shape[0], d), np.float64) | |
data[:x.shape[0]] = x | |
data[x.shape[0]:] = y | |
kmeans(xp.asarray(data), 2) | |
def test_kmeans_simple(self, xp): | |
np.random.seed(54321) | |
initc = np.concatenate([[X[0]], [X[1]], [X[2]]]) | |
code1 = kmeans(xp.asarray(X), xp.asarray(initc), iter=1)[0] | |
xp_assert_close(code1, xp.asarray(CODET2)) | |
def test_kmeans_simple_matrix(self, xp): | |
np.random.seed(54321) | |
initc = np.concatenate([[X[0]], [X[1]], [X[2]]]) | |
code1 = kmeans(matrix(X), matrix(initc), iter=1)[0] | |
xp_assert_close(code1, CODET2) | |
def test_kmeans_lost_cluster(self, xp): | |
# This will cause kmeans to have a cluster with no points. | |
data = xp.asarray(TESTDATA_2D) | |
initk = xp.asarray([[-1.8127404, -0.67128041], | |
[2.04621601, 0.07401111], | |
[-2.31149087, -0.05160469]]) | |
kmeans(data, initk) | |
with suppress_warnings() as sup: | |
sup.filter(UserWarning, | |
"One of the clusters is empty. Re-run kmeans with a " | |
"different initialization") | |
kmeans2(data, initk, missing='warn') | |
assert_raises(ClusterError, kmeans2, data, initk, missing='raise') | |
def test_kmeans2_simple(self, xp): | |
np.random.seed(12345678) | |
initc = xp.asarray(np.concatenate([[X[0]], [X[1]], [X[2]]])) | |
arrays = [xp.asarray] if SCIPY_ARRAY_API else [np.asarray, matrix] | |
for tp in arrays: | |
code1 = kmeans2(tp(X), tp(initc), iter=1)[0] | |
code2 = kmeans2(tp(X), tp(initc), iter=2)[0] | |
xp_assert_close(code1, xp.asarray(CODET1)) | |
xp_assert_close(code2, xp.asarray(CODET2)) | |
def test_kmeans2_simple_matrix(self, xp): | |
np.random.seed(12345678) | |
initc = xp.asarray(np.concatenate([[X[0]], [X[1]], [X[2]]])) | |
code1 = kmeans2(matrix(X), matrix(initc), iter=1)[0] | |
code2 = kmeans2(matrix(X), matrix(initc), iter=2)[0] | |
xp_assert_close(code1, CODET1) | |
xp_assert_close(code2, CODET2) | |
def test_kmeans2_rank1(self, xp): | |
data = xp.asarray(TESTDATA_2D) | |
data1 = data[:, 0] | |
initc = data1[:3] | |
code = copy(initc, xp=xp) | |
kmeans2(data1, code, iter=1)[0] | |
kmeans2(data1, code, iter=2)[0] | |
def test_kmeans2_rank1_2(self, xp): | |
data = xp.asarray(TESTDATA_2D) | |
data1 = data[:, 0] | |
kmeans2(data1, 2, iter=1) | |
def test_kmeans2_high_dim(self, xp): | |
# test kmeans2 when the number of dimensions exceeds the number | |
# of input points | |
data = xp.asarray(TESTDATA_2D) | |
data = xp.reshape(data, (20, 20))[:10, :] | |
kmeans2(data, 2) | |
def test_kmeans2_init(self, xp): | |
np.random.seed(12345) | |
data = xp.asarray(TESTDATA_2D) | |
k = 3 | |
kmeans2(data, k, minit='points') | |
kmeans2(data[:, 1], k, minit='points') # special case (1-D) | |
kmeans2(data, k, minit='++') | |
kmeans2(data[:, 1], k, minit='++') # special case (1-D) | |
# minit='random' can give warnings, filter those | |
with suppress_warnings() as sup: | |
sup.filter(message="One of the clusters is empty. Re-run.") | |
kmeans2(data, k, minit='random') | |
kmeans2(data[:, 1], k, minit='random') # special case (1-D) | |
def test_krandinit(self, xp): | |
data = xp.asarray(TESTDATA_2D) | |
datas = [xp.reshape(data, (200, 2)), | |
xp.reshape(data, (20, 20))[:10, :]] | |
k = int(1e6) | |
for data in datas: | |
rng = np.random.default_rng(1234) | |
init = _krandinit(data, k, rng, xp) | |
orig_cov = cov(data.T) | |
init_cov = cov(init.T) | |
xp_assert_close(orig_cov, init_cov, atol=1e-2) | |
def test_kmeans2_empty(self, xp): | |
# Regression test for gh-1032. | |
assert_raises(ValueError, kmeans2, xp.asarray([]), 2) | |
def test_kmeans_0k(self, xp): | |
# Regression test for gh-1073: fail when k arg is 0. | |
assert_raises(ValueError, kmeans, xp.asarray(X), 0) | |
assert_raises(ValueError, kmeans2, xp.asarray(X), 0) | |
assert_raises(ValueError, kmeans2, xp.asarray(X), xp.asarray([])) | |
def test_kmeans_large_thres(self, xp): | |
# Regression test for gh-1774 | |
x = xp.asarray([1, 2, 3, 4, 10], dtype=xp.float64) | |
res = kmeans(x, 1, thresh=1e16) | |
xp_assert_close(res[0], xp.asarray([4.], dtype=xp.float64)) | |
xp_assert_close(res[1], xp.asarray(2.3999999999999999, dtype=xp.float64)[()]) | |
def test_kmeans2_kpp_low_dim(self, xp): | |
# Regression test for gh-11462 | |
prev_res = xp.asarray([[-1.95266667, 0.898], | |
[-3.153375, 3.3945]], dtype=xp.float64) | |
np.random.seed(42) | |
res, _ = kmeans2(xp.asarray(TESTDATA_2D), 2, minit='++') | |
xp_assert_close(res, prev_res) | |
def test_kmeans2_kpp_high_dim(self, xp): | |
# Regression test for gh-11462 | |
n_dim = 100 | |
size = 10 | |
centers = np.vstack([5 * np.ones(n_dim), | |
-5 * np.ones(n_dim)]) | |
np.random.seed(42) | |
data = np.vstack([ | |
np.random.multivariate_normal(centers[0], np.eye(n_dim), size=size), | |
np.random.multivariate_normal(centers[1], np.eye(n_dim), size=size) | |
]) | |
data = xp.asarray(data) | |
res, _ = kmeans2(data, 2, minit='++') | |
xp_assert_equal(xp.sign(res), xp.sign(xp.asarray(centers))) | |
def test_kmeans_diff_convergence(self, xp): | |
# Regression test for gh-8727 | |
obs = xp.asarray([-3, -1, 0, 1, 1, 8], dtype=xp.float64) | |
res = kmeans(obs, xp.asarray([-3., 0.99])) | |
xp_assert_close(res[0], xp.asarray([-0.4, 8.], dtype=xp.float64)) | |
xp_assert_close(res[1], xp.asarray(1.0666666666666667, dtype=xp.float64)[()]) | |
def test_kmeans_and_kmeans2_random_seed(self, xp): | |
seed_list = [ | |
1234, np.random.RandomState(1234), np.random.default_rng(1234) | |
] | |
for seed in seed_list: | |
seed1 = deepcopy(seed) | |
seed2 = deepcopy(seed) | |
data = xp.asarray(TESTDATA_2D) | |
# test for kmeans | |
res1, _ = kmeans(data, 2, seed=seed1) | |
res2, _ = kmeans(data, 2, seed=seed2) | |
xp_assert_close(res1, res2, xp=xp) # should be same results | |
# test for kmeans2 | |
for minit in ["random", "points", "++"]: | |
res1, _ = kmeans2(data, 2, minit=minit, seed=seed1) | |
res2, _ = kmeans2(data, 2, minit=minit, seed=seed2) | |
xp_assert_close(res1, res2, xp=xp) # should be same results | |