peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/interpolate
/_fitpack2.py
""" | |
fitpack --- curve and surface fitting with splines | |
fitpack is based on a collection of Fortran routines DIERCKX | |
by P. Dierckx (see http://www.netlib.org/dierckx/) transformed | |
to double routines by Pearu Peterson. | |
""" | |
# Created by Pearu Peterson, June,August 2003 | |
__all__ = [ | |
'UnivariateSpline', | |
'InterpolatedUnivariateSpline', | |
'LSQUnivariateSpline', | |
'BivariateSpline', | |
'LSQBivariateSpline', | |
'SmoothBivariateSpline', | |
'LSQSphereBivariateSpline', | |
'SmoothSphereBivariateSpline', | |
'RectBivariateSpline', | |
'RectSphereBivariateSpline'] | |
import warnings | |
from numpy import zeros, concatenate, ravel, diff, array, ones # noqa:F401 | |
import numpy as np | |
from . import _fitpack_impl | |
from . import dfitpack | |
dfitpack_int = dfitpack.types.intvar.dtype | |
# ############### Univariate spline #################### | |
_curfit_messages = {1: """ | |
The required storage space exceeds the available storage space, as | |
specified by the parameter nest: nest too small. If nest is already | |
large (say nest > m/2), it may also indicate that s is too small. | |
The approximation returned is the weighted least-squares spline | |
according to the knots t[0],t[1],...,t[n-1]. (n=nest) the parameter fp | |
gives the corresponding weighted sum of squared residuals (fp>s). | |
""", | |
2: """ | |
A theoretically impossible result was found during the iteration | |
process for finding a smoothing spline with fp = s: s too small. | |
There is an approximation returned but the corresponding weighted sum | |
of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""", | |
3: """ | |
The maximal number of iterations maxit (set to 20 by the program) | |
allowed for finding a smoothing spline with fp=s has been reached: s | |
too small. | |
There is an approximation returned but the corresponding weighted sum | |
of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""", | |
10: """ | |
Error on entry, no approximation returned. The following conditions | |
must hold: | |
xb<=x[0]<x[1]<...<x[m-1]<=xe, w[i]>0, i=0..m-1 | |
if iopt=-1: | |
xb<t[k+1]<t[k+2]<...<t[n-k-2]<xe""" | |
} | |
# UnivariateSpline, ext parameter can be an int or a string | |
_extrap_modes = {0: 0, 'extrapolate': 0, | |
1: 1, 'zeros': 1, | |
2: 2, 'raise': 2, | |
3: 3, 'const': 3} | |
class UnivariateSpline: | |
""" | |
1-D smoothing spline fit to a given set of data points. | |
Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `s` | |
specifies the number of knots by specifying a smoothing condition. | |
Parameters | |
---------- | |
x : (N,) array_like | |
1-D array of independent input data. Must be increasing; | |
must be strictly increasing if `s` is 0. | |
y : (N,) array_like | |
1-D array of dependent input data, of the same length as `x`. | |
w : (N,) array_like, optional | |
Weights for spline fitting. Must be positive. If `w` is None, | |
weights are all 1. Default is None. | |
bbox : (2,) array_like, optional | |
2-sequence specifying the boundary of the approximation interval. If | |
`bbox` is None, ``bbox=[x[0], x[-1]]``. Default is None. | |
k : int, optional | |
Degree of the smoothing spline. Must be 1 <= `k` <= 5. | |
``k = 3`` is a cubic spline. Default is 3. | |
s : float or None, optional | |
Positive smoothing factor used to choose the number of knots. Number | |
of knots will be increased until the smoothing condition is satisfied:: | |
sum((w[i] * (y[i]-spl(x[i])))**2, axis=0) <= s | |
However, because of numerical issues, the actual condition is:: | |
abs(sum((w[i] * (y[i]-spl(x[i])))**2, axis=0) - s) < 0.001 * s | |
If `s` is None, `s` will be set as `len(w)` for a smoothing spline | |
that uses all data points. | |
If 0, spline will interpolate through all data points. This is | |
equivalent to `InterpolatedUnivariateSpline`. | |
Default is None. | |
The user can use the `s` to control the tradeoff between closeness | |
and smoothness of fit. Larger `s` means more smoothing while smaller | |
values of `s` indicate less smoothing. | |
Recommended values of `s` depend on the weights, `w`. If the weights | |
represent the inverse of the standard-deviation of `y`, then a good | |
`s` value should be found in the range (m-sqrt(2*m),m+sqrt(2*m)) | |
where m is the number of datapoints in `x`, `y`, and `w`. This means | |
``s = len(w)`` should be a good value if ``1/w[i]`` is an | |
estimate of the standard deviation of ``y[i]``. | |
ext : int or str, optional | |
Controls the extrapolation mode for elements | |
not in the interval defined by the knot sequence. | |
* if ext=0 or 'extrapolate', return the extrapolated value. | |
* if ext=1 or 'zeros', return 0 | |
* if ext=2 or 'raise', raise a ValueError | |
* if ext=3 or 'const', return the boundary value. | |
Default is 0. | |
check_finite : bool, optional | |
Whether to check that the input arrays contain only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination or non-sensical results) if the inputs | |
do contain infinities or NaNs. | |
Default is False. | |
See Also | |
-------- | |
BivariateSpline : | |
a base class for bivariate splines. | |
SmoothBivariateSpline : | |
a smoothing bivariate spline through the given points | |
LSQBivariateSpline : | |
a bivariate spline using weighted least-squares fitting | |
RectSphereBivariateSpline : | |
a bivariate spline over a rectangular mesh on a sphere | |
SmoothSphereBivariateSpline : | |
a smoothing bivariate spline in spherical coordinates | |
LSQSphereBivariateSpline : | |
a bivariate spline in spherical coordinates using weighted | |
least-squares fitting | |
RectBivariateSpline : | |
a bivariate spline over a rectangular mesh | |
InterpolatedUnivariateSpline : | |
a interpolating univariate spline for a given set of data points. | |
bisplrep : | |
a function to find a bivariate B-spline representation of a surface | |
bisplev : | |
a function to evaluate a bivariate B-spline and its derivatives | |
splrep : | |
a function to find the B-spline representation of a 1-D curve | |
splev : | |
a function to evaluate a B-spline or its derivatives | |
sproot : | |
a function to find the roots of a cubic B-spline | |
splint : | |
a function to evaluate the definite integral of a B-spline between two | |
given points | |
spalde : | |
a function to evaluate all derivatives of a B-spline | |
Notes | |
----- | |
The number of data points must be larger than the spline degree `k`. | |
**NaN handling**: If the input arrays contain ``nan`` values, the result | |
is not useful, since the underlying spline fitting routines cannot deal | |
with ``nan``. A workaround is to use zero weights for not-a-number | |
data points: | |
>>> import numpy as np | |
>>> from scipy.interpolate import UnivariateSpline | |
>>> x, y = np.array([1, 2, 3, 4]), np.array([1, np.nan, 3, 4]) | |
>>> w = np.isnan(y) | |
>>> y[w] = 0. | |
>>> spl = UnivariateSpline(x, y, w=~w) | |
Notice the need to replace a ``nan`` by a numerical value (precise value | |
does not matter as long as the corresponding weight is zero.) | |
References | |
---------- | |
Based on algorithms described in [1]_, [2]_, [3]_, and [4]_: | |
.. [1] P. Dierckx, "An algorithm for smoothing, differentiation and | |
integration of experimental data using spline functions", | |
J.Comp.Appl.Maths 1 (1975) 165-184. | |
.. [2] P. Dierckx, "A fast algorithm for smoothing data on a rectangular | |
grid while using spline functions", SIAM J.Numer.Anal. 19 (1982) | |
1286-1304. | |
.. [3] P. Dierckx, "An improved algorithm for curve fitting with spline | |
functions", report tw54, Dept. Computer Science,K.U. Leuven, 1981. | |
.. [4] P. Dierckx, "Curve and surface fitting with splines", Monographs on | |
Numerical Analysis, Oxford University Press, 1993. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> from scipy.interpolate import UnivariateSpline | |
>>> rng = np.random.default_rng() | |
>>> x = np.linspace(-3, 3, 50) | |
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50) | |
>>> plt.plot(x, y, 'ro', ms=5) | |
Use the default value for the smoothing parameter: | |
>>> spl = UnivariateSpline(x, y) | |
>>> xs = np.linspace(-3, 3, 1000) | |
>>> plt.plot(xs, spl(xs), 'g', lw=3) | |
Manually change the amount of smoothing: | |
>>> spl.set_smoothing_factor(0.5) | |
>>> plt.plot(xs, spl(xs), 'b', lw=3) | |
>>> plt.show() | |
""" | |
def __init__(self, x, y, w=None, bbox=[None]*2, k=3, s=None, | |
ext=0, check_finite=False): | |
x, y, w, bbox, self.ext = self.validate_input(x, y, w, bbox, k, s, ext, | |
check_finite) | |
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier | |
data = dfitpack.fpcurf0(x, y, k, w=w, xb=bbox[0], | |
xe=bbox[1], s=s) | |
if data[-1] == 1: | |
# nest too small, setting to maximum bound | |
data = self._reset_nest(data) | |
self._data = data | |
self._reset_class() | |
def validate_input(x, y, w, bbox, k, s, ext, check_finite): | |
x, y, bbox = np.asarray(x), np.asarray(y), np.asarray(bbox) | |
if w is not None: | |
w = np.asarray(w) | |
if check_finite: | |
w_finite = np.isfinite(w).all() if w is not None else True | |
if (not np.isfinite(x).all() or not np.isfinite(y).all() or | |
not w_finite): | |
raise ValueError("x and y array must not contain " | |
"NaNs or infs.") | |
if s is None or s > 0: | |
if not np.all(diff(x) >= 0.0): | |
raise ValueError("x must be increasing if s > 0") | |
else: | |
if not np.all(diff(x) > 0.0): | |
raise ValueError("x must be strictly increasing if s = 0") | |
if x.size != y.size: | |
raise ValueError("x and y should have a same length") | |
elif w is not None and not x.size == y.size == w.size: | |
raise ValueError("x, y, and w should have a same length") | |
elif bbox.shape != (2,): | |
raise ValueError("bbox shape should be (2,)") | |
elif not (1 <= k <= 5): | |
raise ValueError("k should be 1 <= k <= 5") | |
elif s is not None and not s >= 0.0: | |
raise ValueError("s should be s >= 0.0") | |
try: | |
ext = _extrap_modes[ext] | |
except KeyError as e: | |
raise ValueError("Unknown extrapolation mode %s." % ext) from e | |
return x, y, w, bbox, ext | |
def _from_tck(cls, tck, ext=0): | |
"""Construct a spline object from given tck""" | |
self = cls.__new__(cls) | |
t, c, k = tck | |
self._eval_args = tck | |
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier | |
self._data = (None, None, None, None, None, k, None, len(t), t, | |
c, None, None, None, None) | |
self.ext = ext | |
return self | |
def _reset_class(self): | |
data = self._data | |
n, t, c, k, ier = data[7], data[8], data[9], data[5], data[-1] | |
self._eval_args = t[:n], c[:n], k | |
if ier == 0: | |
# the spline returned has a residual sum of squares fp | |
# such that abs(fp-s)/s <= tol with tol a relative | |
# tolerance set to 0.001 by the program | |
pass | |
elif ier == -1: | |
# the spline returned is an interpolating spline | |
self._set_class(InterpolatedUnivariateSpline) | |
elif ier == -2: | |
# the spline returned is the weighted least-squares | |
# polynomial of degree k. In this extreme case fp gives | |
# the upper bound fp0 for the smoothing factor s. | |
self._set_class(LSQUnivariateSpline) | |
else: | |
# error | |
if ier == 1: | |
self._set_class(LSQUnivariateSpline) | |
message = _curfit_messages.get(ier, 'ier=%s' % (ier)) | |
warnings.warn(message, stacklevel=3) | |
def _set_class(self, cls): | |
self._spline_class = cls | |
if self.__class__ in (UnivariateSpline, InterpolatedUnivariateSpline, | |
LSQUnivariateSpline): | |
self.__class__ = cls | |
else: | |
# It's an unknown subclass -- don't change class. cf. #731 | |
pass | |
def _reset_nest(self, data, nest=None): | |
n = data[10] | |
if nest is None: | |
k, m = data[5], len(data[0]) | |
nest = m+k+1 # this is the maximum bound for nest | |
else: | |
if not n <= nest: | |
raise ValueError("`nest` can only be increased") | |
t, c, fpint, nrdata = (np.resize(data[j], nest) for j in | |
[8, 9, 11, 12]) | |
args = data[:8] + (t, c, n, fpint, nrdata, data[13]) | |
data = dfitpack.fpcurf1(*args) | |
return data | |
def set_smoothing_factor(self, s): | |
""" Continue spline computation with the given smoothing | |
factor s and with the knots found at the last call. | |
This routine modifies the spline in place. | |
""" | |
data = self._data | |
if data[6] == -1: | |
warnings.warn('smoothing factor unchanged for' | |
'LSQ spline with fixed knots', | |
stacklevel=2) | |
return | |
args = data[:6] + (s,) + data[7:] | |
data = dfitpack.fpcurf1(*args) | |
if data[-1] == 1: | |
# nest too small, setting to maximum bound | |
data = self._reset_nest(data) | |
self._data = data | |
self._reset_class() | |
def __call__(self, x, nu=0, ext=None): | |
""" | |
Evaluate spline (or its nu-th derivative) at positions x. | |
Parameters | |
---------- | |
x : array_like | |
A 1-D array of points at which to return the value of the smoothed | |
spline or its derivatives. Note: `x` can be unordered but the | |
evaluation is more efficient if `x` is (partially) ordered. | |
nu : int | |
The order of derivative of the spline to compute. | |
ext : int | |
Controls the value returned for elements of `x` not in the | |
interval defined by the knot sequence. | |
* if ext=0 or 'extrapolate', return the extrapolated value. | |
* if ext=1 or 'zeros', return 0 | |
* if ext=2 or 'raise', raise a ValueError | |
* if ext=3 or 'const', return the boundary value. | |
The default value is 0, passed from the initialization of | |
UnivariateSpline. | |
""" | |
x = np.asarray(x) | |
# empty input yields empty output | |
if x.size == 0: | |
return array([]) | |
if ext is None: | |
ext = self.ext | |
else: | |
try: | |
ext = _extrap_modes[ext] | |
except KeyError as e: | |
raise ValueError("Unknown extrapolation mode %s." % ext) from e | |
return _fitpack_impl.splev(x, self._eval_args, der=nu, ext=ext) | |
def get_knots(self): | |
""" Return positions of interior knots of the spline. | |
Internally, the knot vector contains ``2*k`` additional boundary knots. | |
""" | |
data = self._data | |
k, n = data[5], data[7] | |
return data[8][k:n-k] | |
def get_coeffs(self): | |
"""Return spline coefficients.""" | |
data = self._data | |
k, n = data[5], data[7] | |
return data[9][:n-k-1] | |
def get_residual(self): | |
"""Return weighted sum of squared residuals of the spline approximation. | |
This is equivalent to:: | |
sum((w[i] * (y[i]-spl(x[i])))**2, axis=0) | |
""" | |
return self._data[10] | |
def integral(self, a, b): | |
""" Return definite integral of the spline between two given points. | |
Parameters | |
---------- | |
a : float | |
Lower limit of integration. | |
b : float | |
Upper limit of integration. | |
Returns | |
------- | |
integral : float | |
The value of the definite integral of the spline between limits. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.interpolate import UnivariateSpline | |
>>> x = np.linspace(0, 3, 11) | |
>>> y = x**2 | |
>>> spl = UnivariateSpline(x, y) | |
>>> spl.integral(0, 3) | |
9.0 | |
which agrees with :math:`\\int x^2 dx = x^3 / 3` between the limits | |
of 0 and 3. | |
A caveat is that this routine assumes the spline to be zero outside of | |
the data limits: | |
>>> spl.integral(-1, 4) | |
9.0 | |
>>> spl.integral(-1, 0) | |
0.0 | |
""" | |
return _fitpack_impl.splint(a, b, self._eval_args) | |
def derivatives(self, x): | |
""" Return all derivatives of the spline at the point x. | |
Parameters | |
---------- | |
x : float | |
The point to evaluate the derivatives at. | |
Returns | |
------- | |
der : ndarray, shape(k+1,) | |
Derivatives of the orders 0 to k. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.interpolate import UnivariateSpline | |
>>> x = np.linspace(0, 3, 11) | |
>>> y = x**2 | |
>>> spl = UnivariateSpline(x, y) | |
>>> spl.derivatives(1.5) | |
array([2.25, 3.0, 2.0, 0]) | |
""" | |
return _fitpack_impl.spalde(x, self._eval_args) | |
def roots(self): | |
""" Return the zeros of the spline. | |
Notes | |
----- | |
Restriction: only cubic splines are supported by FITPACK. For non-cubic | |
splines, use `PPoly.root` (see below for an example). | |
Examples | |
-------- | |
For some data, this method may miss a root. This happens when one of | |
the spline knots (which FITPACK places automatically) happens to | |
coincide with the true root. A workaround is to convert to `PPoly`, | |
which uses a different root-finding algorithm. | |
For example, | |
>>> x = [1.96, 1.97, 1.98, 1.99, 2.00, 2.01, 2.02, 2.03, 2.04, 2.05] | |
>>> y = [-6.365470e-03, -4.790580e-03, -3.204320e-03, -1.607270e-03, | |
... 4.440892e-16, 1.616930e-03, 3.243000e-03, 4.877670e-03, | |
... 6.520430e-03, 8.170770e-03] | |
>>> from scipy.interpolate import UnivariateSpline | |
>>> spl = UnivariateSpline(x, y, s=0) | |
>>> spl.roots() | |
array([], dtype=float64) | |
Converting to a PPoly object does find the roots at `x=2`: | |
>>> from scipy.interpolate import splrep, PPoly | |
>>> tck = splrep(x, y, s=0) | |
>>> ppoly = PPoly.from_spline(tck) | |
>>> ppoly.roots(extrapolate=False) | |
array([2.]) | |
See Also | |
-------- | |
sproot | |
PPoly.roots | |
""" | |
k = self._data[5] | |
if k == 3: | |
t = self._eval_args[0] | |
mest = 3 * (len(t) - 7) | |
return _fitpack_impl.sproot(self._eval_args, mest=mest) | |
raise NotImplementedError('finding roots unsupported for ' | |
'non-cubic splines') | |
def derivative(self, n=1): | |
""" | |
Construct a new spline representing the derivative of this spline. | |
Parameters | |
---------- | |
n : int, optional | |
Order of derivative to evaluate. Default: 1 | |
Returns | |
------- | |
spline : UnivariateSpline | |
Spline of order k2=k-n representing the derivative of this | |
spline. | |
See Also | |
-------- | |
splder, antiderivative | |
Notes | |
----- | |
.. versionadded:: 0.13.0 | |
Examples | |
-------- | |
This can be used for finding maxima of a curve: | |
>>> import numpy as np | |
>>> from scipy.interpolate import UnivariateSpline | |
>>> x = np.linspace(0, 10, 70) | |
>>> y = np.sin(x) | |
>>> spl = UnivariateSpline(x, y, k=4, s=0) | |
Now, differentiate the spline and find the zeros of the | |
derivative. (NB: `sproot` only works for order 3 splines, so we | |
fit an order 4 spline): | |
>>> spl.derivative().roots() / np.pi | |
array([ 0.50000001, 1.5 , 2.49999998]) | |
This agrees well with roots :math:`\\pi/2 + n\\pi` of | |
:math:`\\cos(x) = \\sin'(x)`. | |
""" | |
tck = _fitpack_impl.splder(self._eval_args, n) | |
# if self.ext is 'const', derivative.ext will be 'zeros' | |
ext = 1 if self.ext == 3 else self.ext | |
return UnivariateSpline._from_tck(tck, ext=ext) | |
def antiderivative(self, n=1): | |
""" | |
Construct a new spline representing the antiderivative of this spline. | |
Parameters | |
---------- | |
n : int, optional | |
Order of antiderivative to evaluate. Default: 1 | |
Returns | |
------- | |
spline : UnivariateSpline | |
Spline of order k2=k+n representing the antiderivative of this | |
spline. | |
Notes | |
----- | |
.. versionadded:: 0.13.0 | |
See Also | |
-------- | |
splantider, derivative | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.interpolate import UnivariateSpline | |
>>> x = np.linspace(0, np.pi/2, 70) | |
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2) | |
>>> spl = UnivariateSpline(x, y, s=0) | |
The derivative is the inverse operation of the antiderivative, | |
although some floating point error accumulates: | |
>>> spl(1.7), spl.antiderivative().derivative()(1.7) | |
(array(2.1565429877197317), array(2.1565429877201865)) | |
Antiderivative can be used to evaluate definite integrals: | |
>>> ispl = spl.antiderivative() | |
>>> ispl(np.pi/2) - ispl(0) | |
2.2572053588768486 | |
This is indeed an approximation to the complete elliptic integral | |
:math:`K(m) = \\int_0^{\\pi/2} [1 - m\\sin^2 x]^{-1/2} dx`: | |
>>> from scipy.special import ellipk | |
>>> ellipk(0.8) | |
2.2572053268208538 | |
""" | |
tck = _fitpack_impl.splantider(self._eval_args, n) | |
return UnivariateSpline._from_tck(tck, self.ext) | |
class InterpolatedUnivariateSpline(UnivariateSpline): | |
""" | |
1-D interpolating spline for a given set of data points. | |
Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. | |
Spline function passes through all provided points. Equivalent to | |
`UnivariateSpline` with `s` = 0. | |
Parameters | |
---------- | |
x : (N,) array_like | |
Input dimension of data points -- must be strictly increasing | |
y : (N,) array_like | |
input dimension of data points | |
w : (N,) array_like, optional | |
Weights for spline fitting. Must be positive. If None (default), | |
weights are all 1. | |
bbox : (2,) array_like, optional | |
2-sequence specifying the boundary of the approximation interval. If | |
None (default), ``bbox=[x[0], x[-1]]``. | |
k : int, optional | |
Degree of the smoothing spline. Must be ``1 <= k <= 5``. Default is | |
``k = 3``, a cubic spline. | |
ext : int or str, optional | |
Controls the extrapolation mode for elements | |
not in the interval defined by the knot sequence. | |
* if ext=0 or 'extrapolate', return the extrapolated value. | |
* if ext=1 or 'zeros', return 0 | |
* if ext=2 or 'raise', raise a ValueError | |
* if ext=3 of 'const', return the boundary value. | |
The default value is 0. | |
check_finite : bool, optional | |
Whether to check that the input arrays contain only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination or non-sensical results) if the inputs | |
do contain infinities or NaNs. | |
Default is False. | |
See Also | |
-------- | |
UnivariateSpline : | |
a smooth univariate spline to fit a given set of data points. | |
LSQUnivariateSpline : | |
a spline for which knots are user-selected | |
SmoothBivariateSpline : | |
a smoothing bivariate spline through the given points | |
LSQBivariateSpline : | |
a bivariate spline using weighted least-squares fitting | |
splrep : | |
a function to find the B-spline representation of a 1-D curve | |
splev : | |
a function to evaluate a B-spline or its derivatives | |
sproot : | |
a function to find the roots of a cubic B-spline | |
splint : | |
a function to evaluate the definite integral of a B-spline between two | |
given points | |
spalde : | |
a function to evaluate all derivatives of a B-spline | |
Notes | |
----- | |
The number of data points must be larger than the spline degree `k`. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> from scipy.interpolate import InterpolatedUnivariateSpline | |
>>> rng = np.random.default_rng() | |
>>> x = np.linspace(-3, 3, 50) | |
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50) | |
>>> spl = InterpolatedUnivariateSpline(x, y) | |
>>> plt.plot(x, y, 'ro', ms=5) | |
>>> xs = np.linspace(-3, 3, 1000) | |
>>> plt.plot(xs, spl(xs), 'g', lw=3, alpha=0.7) | |
>>> plt.show() | |
Notice that the ``spl(x)`` interpolates `y`: | |
>>> spl.get_residual() | |
0.0 | |
""" | |
def __init__(self, x, y, w=None, bbox=[None]*2, k=3, | |
ext=0, check_finite=False): | |
x, y, w, bbox, self.ext = self.validate_input(x, y, w, bbox, k, None, | |
ext, check_finite) | |
if not np.all(diff(x) > 0.0): | |
raise ValueError('x must be strictly increasing') | |
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier | |
self._data = dfitpack.fpcurf0(x, y, k, w=w, xb=bbox[0], | |
xe=bbox[1], s=0) | |
self._reset_class() | |
_fpchec_error_string = """The input parameters have been rejected by fpchec. \ | |
This means that at least one of the following conditions is violated: | |
1) k+1 <= n-k-1 <= m | |
2) t(1) <= t(2) <= ... <= t(k+1) | |
t(n-k) <= t(n-k+1) <= ... <= t(n) | |
3) t(k+1) < t(k+2) < ... < t(n-k) | |
4) t(k+1) <= x(i) <= t(n-k) | |
5) The conditions specified by Schoenberg and Whitney must hold | |
for at least one subset of data points, i.e., there must be a | |
subset of data points y(j) such that | |
t(j) < y(j) < t(j+k+1), j=1,2,...,n-k-1 | |
""" | |
class LSQUnivariateSpline(UnivariateSpline): | |
""" | |
1-D spline with explicit internal knots. | |
Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `t` | |
specifies the internal knots of the spline | |
Parameters | |
---------- | |
x : (N,) array_like | |
Input dimension of data points -- must be increasing | |
y : (N,) array_like | |
Input dimension of data points | |
t : (M,) array_like | |
interior knots of the spline. Must be in ascending order and:: | |
bbox[0] < t[0] < ... < t[-1] < bbox[-1] | |
w : (N,) array_like, optional | |
weights for spline fitting. Must be positive. If None (default), | |
weights are all 1. | |
bbox : (2,) array_like, optional | |
2-sequence specifying the boundary of the approximation interval. If | |
None (default), ``bbox = [x[0], x[-1]]``. | |
k : int, optional | |
Degree of the smoothing spline. Must be 1 <= `k` <= 5. | |
Default is `k` = 3, a cubic spline. | |
ext : int or str, optional | |
Controls the extrapolation mode for elements | |
not in the interval defined by the knot sequence. | |
* if ext=0 or 'extrapolate', return the extrapolated value. | |
* if ext=1 or 'zeros', return 0 | |
* if ext=2 or 'raise', raise a ValueError | |
* if ext=3 of 'const', return the boundary value. | |
The default value is 0. | |
check_finite : bool, optional | |
Whether to check that the input arrays contain only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination or non-sensical results) if the inputs | |
do contain infinities or NaNs. | |
Default is False. | |
Raises | |
------ | |
ValueError | |
If the interior knots do not satisfy the Schoenberg-Whitney conditions | |
See Also | |
-------- | |
UnivariateSpline : | |
a smooth univariate spline to fit a given set of data points. | |
InterpolatedUnivariateSpline : | |
a interpolating univariate spline for a given set of data points. | |
splrep : | |
a function to find the B-spline representation of a 1-D curve | |
splev : | |
a function to evaluate a B-spline or its derivatives | |
sproot : | |
a function to find the roots of a cubic B-spline | |
splint : | |
a function to evaluate the definite integral of a B-spline between two | |
given points | |
spalde : | |
a function to evaluate all derivatives of a B-spline | |
Notes | |
----- | |
The number of data points must be larger than the spline degree `k`. | |
Knots `t` must satisfy the Schoenberg-Whitney conditions, | |
i.e., there must be a subset of data points ``x[j]`` such that | |
``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.interpolate import LSQUnivariateSpline, UnivariateSpline | |
>>> import matplotlib.pyplot as plt | |
>>> rng = np.random.default_rng() | |
>>> x = np.linspace(-3, 3, 50) | |
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50) | |
Fit a smoothing spline with a pre-defined internal knots: | |
>>> t = [-1, 0, 1] | |
>>> spl = LSQUnivariateSpline(x, y, t) | |
>>> xs = np.linspace(-3, 3, 1000) | |
>>> plt.plot(x, y, 'ro', ms=5) | |
>>> plt.plot(xs, spl(xs), 'g-', lw=3) | |
>>> plt.show() | |
Check the knot vector: | |
>>> spl.get_knots() | |
array([-3., -1., 0., 1., 3.]) | |
Constructing lsq spline using the knots from another spline: | |
>>> x = np.arange(10) | |
>>> s = UnivariateSpline(x, x, s=0) | |
>>> s.get_knots() | |
array([ 0., 2., 3., 4., 5., 6., 7., 9.]) | |
>>> knt = s.get_knots() | |
>>> s1 = LSQUnivariateSpline(x, x, knt[1:-1]) # Chop 1st and last knot | |
>>> s1.get_knots() | |
array([ 0., 2., 3., 4., 5., 6., 7., 9.]) | |
""" | |
def __init__(self, x, y, t, w=None, bbox=[None]*2, k=3, | |
ext=0, check_finite=False): | |
x, y, w, bbox, self.ext = self.validate_input(x, y, w, bbox, k, None, | |
ext, check_finite) | |
if not np.all(diff(x) >= 0.0): | |
raise ValueError('x must be increasing') | |
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier | |
xb = bbox[0] | |
xe = bbox[1] | |
if xb is None: | |
xb = x[0] | |
if xe is None: | |
xe = x[-1] | |
t = concatenate(([xb]*(k+1), t, [xe]*(k+1))) | |
n = len(t) | |
if not np.all(t[k+1:n-k]-t[k:n-k-1] > 0, axis=0): | |
raise ValueError('Interior knots t must satisfy ' | |
'Schoenberg-Whitney conditions') | |
if not dfitpack.fpchec(x, t, k) == 0: | |
raise ValueError(_fpchec_error_string) | |
data = dfitpack.fpcurfm1(x, y, k, t, w=w, xb=xb, xe=xe) | |
self._data = data[:-3] + (None, None, data[-1]) | |
self._reset_class() | |
# ############### Bivariate spline #################### | |
class _BivariateSplineBase: | |
""" Base class for Bivariate spline s(x,y) interpolation on the rectangle | |
[xb,xe] x [yb, ye] calculated from a given set of data points | |
(x,y,z). | |
See Also | |
-------- | |
bisplrep : | |
a function to find a bivariate B-spline representation of a surface | |
bisplev : | |
a function to evaluate a bivariate B-spline and its derivatives | |
BivariateSpline : | |
a base class for bivariate splines. | |
SphereBivariateSpline : | |
a bivariate spline on a spherical grid | |
""" | |
def _from_tck(cls, tck): | |
"""Construct a spline object from given tck and degree""" | |
self = cls.__new__(cls) | |
if len(tck) != 5: | |
raise ValueError("tck should be a 5 element tuple of tx," | |
" ty, c, kx, ky") | |
self.tck = tck[:3] | |
self.degrees = tck[3:] | |
return self | |
def get_residual(self): | |
""" Return weighted sum of squared residuals of the spline | |
approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0) | |
""" | |
return self.fp | |
def get_knots(self): | |
""" Return a tuple (tx,ty) where tx,ty contain knots positions | |
of the spline with respect to x-, y-variable, respectively. | |
The position of interior and additional knots are given as | |
t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e, respectively. | |
""" | |
return self.tck[:2] | |
def get_coeffs(self): | |
""" Return spline coefficients.""" | |
return self.tck[2] | |
def __call__(self, x, y, dx=0, dy=0, grid=True): | |
""" | |
Evaluate the spline or its derivatives at given positions. | |
Parameters | |
---------- | |
x, y : array_like | |
Input coordinates. | |
If `grid` is False, evaluate the spline at points ``(x[i], | |
y[i]), i=0, ..., len(x)-1``. Standard Numpy broadcasting | |
is obeyed. | |
If `grid` is True: evaluate spline at the grid points | |
defined by the coordinate arrays x, y. The arrays must be | |
sorted to increasing order. | |
The ordering of axes is consistent with | |
``np.meshgrid(..., indexing="ij")`` and inconsistent with the | |
default ordering ``np.meshgrid(..., indexing="xy")``. | |
dx : int | |
Order of x-derivative | |
.. versionadded:: 0.14.0 | |
dy : int | |
Order of y-derivative | |
.. versionadded:: 0.14.0 | |
grid : bool | |
Whether to evaluate the results on a grid spanned by the | |
input arrays, or at points specified by the input arrays. | |
.. versionadded:: 0.14.0 | |
Examples | |
-------- | |
Suppose that we want to bilinearly interpolate an exponentially decaying | |
function in 2 dimensions. | |
>>> import numpy as np | |
>>> from scipy.interpolate import RectBivariateSpline | |
We sample the function on a coarse grid. Note that the default indexing="xy" | |
of meshgrid would result in an unexpected (transposed) result after | |
interpolation. | |
>>> xarr = np.linspace(-3, 3, 100) | |
>>> yarr = np.linspace(-3, 3, 100) | |
>>> xgrid, ygrid = np.meshgrid(xarr, yarr, indexing="ij") | |
The function to interpolate decays faster along one axis than the other. | |
>>> zdata = np.exp(-np.sqrt((xgrid / 2) ** 2 + ygrid**2)) | |
Next we sample on a finer grid using interpolation (kx=ky=1 for bilinear). | |
>>> rbs = RectBivariateSpline(xarr, yarr, zdata, kx=1, ky=1) | |
>>> xarr_fine = np.linspace(-3, 3, 200) | |
>>> yarr_fine = np.linspace(-3, 3, 200) | |
>>> xgrid_fine, ygrid_fine = np.meshgrid(xarr_fine, yarr_fine, indexing="ij") | |
>>> zdata_interp = rbs(xgrid_fine, ygrid_fine, grid=False) | |
And check that the result agrees with the input by plotting both. | |
>>> import matplotlib.pyplot as plt | |
>>> fig = plt.figure() | |
>>> ax1 = fig.add_subplot(1, 2, 1, aspect="equal") | |
>>> ax2 = fig.add_subplot(1, 2, 2, aspect="equal") | |
>>> ax1.imshow(zdata) | |
>>> ax2.imshow(zdata_interp) | |
>>> plt.show() | |
""" | |
x = np.asarray(x) | |
y = np.asarray(y) | |
tx, ty, c = self.tck[:3] | |
kx, ky = self.degrees | |
if grid: | |
if x.size == 0 or y.size == 0: | |
return np.zeros((x.size, y.size), dtype=self.tck[2].dtype) | |
if (x.size >= 2) and (not np.all(np.diff(x) >= 0.0)): | |
raise ValueError("x must be strictly increasing when `grid` is True") | |
if (y.size >= 2) and (not np.all(np.diff(y) >= 0.0)): | |
raise ValueError("y must be strictly increasing when `grid` is True") | |
if dx or dy: | |
z, ier = dfitpack.parder(tx, ty, c, kx, ky, dx, dy, x, y) | |
if not ier == 0: | |
raise ValueError("Error code returned by parder: %s" % ier) | |
else: | |
z, ier = dfitpack.bispev(tx, ty, c, kx, ky, x, y) | |
if not ier == 0: | |
raise ValueError("Error code returned by bispev: %s" % ier) | |
else: | |
# standard Numpy broadcasting | |
if x.shape != y.shape: | |
x, y = np.broadcast_arrays(x, y) | |
shape = x.shape | |
x = x.ravel() | |
y = y.ravel() | |
if x.size == 0 or y.size == 0: | |
return np.zeros(shape, dtype=self.tck[2].dtype) | |
if dx or dy: | |
z, ier = dfitpack.pardeu(tx, ty, c, kx, ky, dx, dy, x, y) | |
if not ier == 0: | |
raise ValueError("Error code returned by pardeu: %s" % ier) | |
else: | |
z, ier = dfitpack.bispeu(tx, ty, c, kx, ky, x, y) | |
if not ier == 0: | |
raise ValueError("Error code returned by bispeu: %s" % ier) | |
z = z.reshape(shape) | |
return z | |
def partial_derivative(self, dx, dy): | |
"""Construct a new spline representing a partial derivative of this | |
spline. | |
Parameters | |
---------- | |
dx, dy : int | |
Orders of the derivative in x and y respectively. They must be | |
non-negative integers and less than the respective degree of the | |
original spline (self) in that direction (``kx``, ``ky``). | |
Returns | |
------- | |
spline : | |
A new spline of degrees (``kx - dx``, ``ky - dy``) representing the | |
derivative of this spline. | |
Notes | |
----- | |
.. versionadded:: 1.9.0 | |
""" | |
if dx == 0 and dy == 0: | |
return self | |
else: | |
kx, ky = self.degrees | |
if not (dx >= 0 and dy >= 0): | |
raise ValueError("order of derivative must be positive or" | |
" zero") | |
if not (dx < kx and dy < ky): | |
raise ValueError("order of derivative must be less than" | |
" degree of spline") | |
tx, ty, c = self.tck[:3] | |
newc, ier = dfitpack.pardtc(tx, ty, c, kx, ky, dx, dy) | |
if ier != 0: | |
# This should not happen under normal conditions. | |
raise ValueError("Unexpected error code returned by" | |
" pardtc: %d" % ier) | |
nx = len(tx) | |
ny = len(ty) | |
newtx = tx[dx:nx - dx] | |
newty = ty[dy:ny - dy] | |
newkx, newky = kx - dx, ky - dy | |
newclen = (nx - dx - kx - 1) * (ny - dy - ky - 1) | |
return _DerivedBivariateSpline._from_tck((newtx, newty, | |
newc[:newclen], | |
newkx, newky)) | |
_surfit_messages = {1: """ | |
The required storage space exceeds the available storage space: nxest | |
or nyest too small, or s too small. | |
The weighted least-squares spline corresponds to the current set of | |
knots.""", | |
2: """ | |
A theoretically impossible result was found during the iteration | |
process for finding a smoothing spline with fp = s: s too small or | |
badly chosen eps. | |
Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.""", | |
3: """ | |
the maximal number of iterations maxit (set to 20 by the program) | |
allowed for finding a smoothing spline with fp=s has been reached: | |
s too small. | |
Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.""", | |
4: """ | |
No more knots can be added because the number of b-spline coefficients | |
(nx-kx-1)*(ny-ky-1) already exceeds the number of data points m: | |
either s or m too small. | |
The weighted least-squares spline corresponds to the current set of | |
knots.""", | |
5: """ | |
No more knots can be added because the additional knot would (quasi) | |
coincide with an old one: s too small or too large a weight to an | |
inaccurate data point. | |
The weighted least-squares spline corresponds to the current set of | |
knots.""", | |
10: """ | |
Error on entry, no approximation returned. The following conditions | |
must hold: | |
xb<=x[i]<=xe, yb<=y[i]<=ye, w[i]>0, i=0..m-1 | |
If iopt==-1, then | |
xb<tx[kx+1]<tx[kx+2]<...<tx[nx-kx-2]<xe | |
yb<ty[ky+1]<ty[ky+2]<...<ty[ny-ky-2]<ye""", | |
-3: """ | |
The coefficients of the spline returned have been computed as the | |
minimal norm least-squares solution of a (numerically) rank deficient | |
system (deficiency=%i). If deficiency is large, the results may be | |
inaccurate. Deficiency may strongly depend on the value of eps.""" | |
} | |
class BivariateSpline(_BivariateSplineBase): | |
""" | |
Base class for bivariate splines. | |
This describes a spline ``s(x, y)`` of degrees ``kx`` and ``ky`` on | |
the rectangle ``[xb, xe] * [yb, ye]`` calculated from a given set | |
of data points ``(x, y, z)``. | |
This class is meant to be subclassed, not instantiated directly. | |
To construct these splines, call either `SmoothBivariateSpline` or | |
`LSQBivariateSpline` or `RectBivariateSpline`. | |
See Also | |
-------- | |
UnivariateSpline : | |
a smooth univariate spline to fit a given set of data points. | |
SmoothBivariateSpline : | |
a smoothing bivariate spline through the given points | |
LSQBivariateSpline : | |
a bivariate spline using weighted least-squares fitting | |
RectSphereBivariateSpline : | |
a bivariate spline over a rectangular mesh on a sphere | |
SmoothSphereBivariateSpline : | |
a smoothing bivariate spline in spherical coordinates | |
LSQSphereBivariateSpline : | |
a bivariate spline in spherical coordinates using weighted | |
least-squares fitting | |
RectBivariateSpline : | |
a bivariate spline over a rectangular mesh. | |
bisplrep : | |
a function to find a bivariate B-spline representation of a surface | |
bisplev : | |
a function to evaluate a bivariate B-spline and its derivatives | |
""" | |
def ev(self, xi, yi, dx=0, dy=0): | |
""" | |
Evaluate the spline at points | |
Returns the interpolated value at ``(xi[i], yi[i]), | |
i=0,...,len(xi)-1``. | |
Parameters | |
---------- | |
xi, yi : array_like | |
Input coordinates. Standard Numpy broadcasting is obeyed. | |
The ordering of axes is consistent with | |
``np.meshgrid(..., indexing="ij")`` and inconsistent with the | |
default ordering ``np.meshgrid(..., indexing="xy")``. | |
dx : int, optional | |
Order of x-derivative | |
.. versionadded:: 0.14.0 | |
dy : int, optional | |
Order of y-derivative | |
.. versionadded:: 0.14.0 | |
Examples | |
-------- | |
Suppose that we want to bilinearly interpolate an exponentially decaying | |
function in 2 dimensions. | |
>>> import numpy as np | |
>>> from scipy.interpolate import RectBivariateSpline | |
>>> def f(x, y): | |
... return np.exp(-np.sqrt((x / 2) ** 2 + y**2)) | |
We sample the function on a coarse grid and set up the interpolator. Note that | |
the default ``indexing="xy"`` of meshgrid would result in an unexpected | |
(transposed) result after interpolation. | |
>>> xarr = np.linspace(-3, 3, 21) | |
>>> yarr = np.linspace(-3, 3, 21) | |
>>> xgrid, ygrid = np.meshgrid(xarr, yarr, indexing="ij") | |
>>> zdata = f(xgrid, ygrid) | |
>>> rbs = RectBivariateSpline(xarr, yarr, zdata, kx=1, ky=1) | |
Next we sample the function along a diagonal slice through the coordinate space | |
on a finer grid using interpolation. | |
>>> xinterp = np.linspace(-3, 3, 201) | |
>>> yinterp = np.linspace(3, -3, 201) | |
>>> zinterp = rbs.ev(xinterp, yinterp) | |
And check that the interpolation passes through the function evaluations as a | |
function of the distance from the origin along the slice. | |
>>> import matplotlib.pyplot as plt | |
>>> fig = plt.figure() | |
>>> ax1 = fig.add_subplot(1, 1, 1) | |
>>> ax1.plot(np.sqrt(xarr**2 + yarr**2), np.diag(zdata), "or") | |
>>> ax1.plot(np.sqrt(xinterp**2 + yinterp**2), zinterp, "-b") | |
>>> plt.show() | |
""" | |
return self.__call__(xi, yi, dx=dx, dy=dy, grid=False) | |
def integral(self, xa, xb, ya, yb): | |
""" | |
Evaluate the integral of the spline over area [xa,xb] x [ya,yb]. | |
Parameters | |
---------- | |
xa, xb : float | |
The end-points of the x integration interval. | |
ya, yb : float | |
The end-points of the y integration interval. | |
Returns | |
------- | |
integ : float | |
The value of the resulting integral. | |
""" | |
tx, ty, c = self.tck[:3] | |
kx, ky = self.degrees | |
return dfitpack.dblint(tx, ty, c, kx, ky, xa, xb, ya, yb) | |
def _validate_input(x, y, z, w, kx, ky, eps): | |
x, y, z = np.asarray(x), np.asarray(y), np.asarray(z) | |
if not x.size == y.size == z.size: | |
raise ValueError('x, y, and z should have a same length') | |
if w is not None: | |
w = np.asarray(w) | |
if x.size != w.size: | |
raise ValueError('x, y, z, and w should have a same length') | |
elif not np.all(w >= 0.0): | |
raise ValueError('w should be positive') | |
if (eps is not None) and (not 0.0 < eps < 1.0): | |
raise ValueError('eps should be between (0, 1)') | |
if not x.size >= (kx + 1) * (ky + 1): | |
raise ValueError('The length of x, y and z should be at least' | |
' (kx+1) * (ky+1)') | |
return x, y, z, w | |
class _DerivedBivariateSpline(_BivariateSplineBase): | |
"""Bivariate spline constructed from the coefficients and knots of another | |
spline. | |
Notes | |
----- | |
The class is not meant to be instantiated directly from the data to be | |
interpolated or smoothed. As a result, its ``fp`` attribute and | |
``get_residual`` method are inherited but overridden; ``AttributeError`` is | |
raised when they are accessed. | |
The other inherited attributes can be used as usual. | |
""" | |
_invalid_why = ("is unavailable, because _DerivedBivariateSpline" | |
" instance is not constructed from data that are to be" | |
" interpolated or smoothed, but derived from the" | |
" underlying knots and coefficients of another spline" | |
" object") | |
def fp(self): | |
raise AttributeError("attribute \"fp\" %s" % self._invalid_why) | |
def get_residual(self): | |
raise AttributeError("method \"get_residual\" %s" % self._invalid_why) | |
class SmoothBivariateSpline(BivariateSpline): | |
""" | |
Smooth bivariate spline approximation. | |
Parameters | |
---------- | |
x, y, z : array_like | |
1-D sequences of data points (order is not important). | |
w : array_like, optional | |
Positive 1-D sequence of weights, of same length as `x`, `y` and `z`. | |
bbox : array_like, optional | |
Sequence of length 4 specifying the boundary of the rectangular | |
approximation domain. By default, | |
``bbox=[min(x), max(x), min(y), max(y)]``. | |
kx, ky : ints, optional | |
Degrees of the bivariate spline. Default is 3. | |
s : float, optional | |
Positive smoothing factor defined for estimation condition: | |
``sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s`` | |
Default ``s=len(w)`` which should be a good value if ``1/w[i]`` is an | |
estimate of the standard deviation of ``z[i]``. | |
eps : float, optional | |
A threshold for determining the effective rank of an over-determined | |
linear system of equations. `eps` should have a value within the open | |
interval ``(0, 1)``, the default is 1e-16. | |
See Also | |
-------- | |
BivariateSpline : | |
a base class for bivariate splines. | |
UnivariateSpline : | |
a smooth univariate spline to fit a given set of data points. | |
LSQBivariateSpline : | |
a bivariate spline using weighted least-squares fitting | |
RectSphereBivariateSpline : | |
a bivariate spline over a rectangular mesh on a sphere | |
SmoothSphereBivariateSpline : | |
a smoothing bivariate spline in spherical coordinates | |
LSQSphereBivariateSpline : | |
a bivariate spline in spherical coordinates using weighted | |
least-squares fitting | |
RectBivariateSpline : | |
a bivariate spline over a rectangular mesh | |
bisplrep : | |
a function to find a bivariate B-spline representation of a surface | |
bisplev : | |
a function to evaluate a bivariate B-spline and its derivatives | |
Notes | |
----- | |
The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``. | |
If the input data is such that input dimensions have incommensurate | |
units and differ by many orders of magnitude, the interpolant may have | |
numerical artifacts. Consider rescaling the data before interpolating. | |
This routine constructs spline knot vectors automatically via the FITPACK | |
algorithm. The spline knots may be placed away from the data points. For | |
some data sets, this routine may fail to construct an interpolating spline, | |
even if one is requested via ``s=0`` parameter. In such situations, it is | |
recommended to use `bisplrep` / `bisplev` directly instead of this routine | |
and, if needed, increase the values of ``nxest`` and ``nyest`` parameters | |
of `bisplrep`. | |
For linear interpolation, prefer `LinearNDInterpolator`. | |
See ``https://gist.github.com/ev-br/8544371b40f414b7eaf3fe6217209bff`` | |
for discussion. | |
""" | |
def __init__(self, x, y, z, w=None, bbox=[None] * 4, kx=3, ky=3, s=None, | |
eps=1e-16): | |
x, y, z, w = self._validate_input(x, y, z, w, kx, ky, eps) | |
bbox = ravel(bbox) | |
if not bbox.shape == (4,): | |
raise ValueError('bbox shape should be (4,)') | |
if s is not None and not s >= 0.0: | |
raise ValueError("s should be s >= 0.0") | |
xb, xe, yb, ye = bbox | |
nx, tx, ny, ty, c, fp, wrk1, ier = dfitpack.surfit_smth(x, y, z, w, | |
xb, xe, yb, | |
ye, kx, ky, | |
s=s, eps=eps, | |
lwrk2=1) | |
if ier > 10: # lwrk2 was to small, re-run | |
nx, tx, ny, ty, c, fp, wrk1, ier = dfitpack.surfit_smth(x, y, z, w, | |
xb, xe, yb, | |
ye, kx, ky, | |
s=s, | |
eps=eps, | |
lwrk2=ier) | |
if ier in [0, -1, -2]: # normal return | |
pass | |
else: | |
message = _surfit_messages.get(ier, 'ier=%s' % (ier)) | |
warnings.warn(message, stacklevel=2) | |
self.fp = fp | |
self.tck = tx[:nx], ty[:ny], c[:(nx-kx-1)*(ny-ky-1)] | |
self.degrees = kx, ky | |
class LSQBivariateSpline(BivariateSpline): | |
""" | |
Weighted least-squares bivariate spline approximation. | |
Parameters | |
---------- | |
x, y, z : array_like | |
1-D sequences of data points (order is not important). | |
tx, ty : array_like | |
Strictly ordered 1-D sequences of knots coordinates. | |
w : array_like, optional | |
Positive 1-D array of weights, of the same length as `x`, `y` and `z`. | |
bbox : (4,) array_like, optional | |
Sequence of length 4 specifying the boundary of the rectangular | |
approximation domain. By default, | |
``bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]``. | |
kx, ky : ints, optional | |
Degrees of the bivariate spline. Default is 3. | |
eps : float, optional | |
A threshold for determining the effective rank of an over-determined | |
linear system of equations. `eps` should have a value within the open | |
interval ``(0, 1)``, the default is 1e-16. | |
See Also | |
-------- | |
BivariateSpline : | |
a base class for bivariate splines. | |
UnivariateSpline : | |
a smooth univariate spline to fit a given set of data points. | |
SmoothBivariateSpline : | |
a smoothing bivariate spline through the given points | |
RectSphereBivariateSpline : | |
a bivariate spline over a rectangular mesh on a sphere | |
SmoothSphereBivariateSpline : | |
a smoothing bivariate spline in spherical coordinates | |
LSQSphereBivariateSpline : | |
a bivariate spline in spherical coordinates using weighted | |
least-squares fitting | |
RectBivariateSpline : | |
a bivariate spline over a rectangular mesh. | |
bisplrep : | |
a function to find a bivariate B-spline representation of a surface | |
bisplev : | |
a function to evaluate a bivariate B-spline and its derivatives | |
Notes | |
----- | |
The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``. | |
If the input data is such that input dimensions have incommensurate | |
units and differ by many orders of magnitude, the interpolant may have | |
numerical artifacts. Consider rescaling the data before interpolating. | |
""" | |
def __init__(self, x, y, z, tx, ty, w=None, bbox=[None]*4, kx=3, ky=3, | |
eps=None): | |
x, y, z, w = self._validate_input(x, y, z, w, kx, ky, eps) | |
bbox = ravel(bbox) | |
if not bbox.shape == (4,): | |
raise ValueError('bbox shape should be (4,)') | |
nx = 2*kx+2+len(tx) | |
ny = 2*ky+2+len(ty) | |
# The Fortran subroutine "surfit" (called as dfitpack.surfit_lsq) | |
# requires that the knot arrays passed as input should be "real | |
# array(s) of dimension nmax" where "nmax" refers to the greater of nx | |
# and ny. We pad the tx1/ty1 arrays here so that this is satisfied, and | |
# slice them to the desired sizes upon return. | |
nmax = max(nx, ny) | |
tx1 = zeros((nmax,), float) | |
ty1 = zeros((nmax,), float) | |
tx1[kx+1:nx-kx-1] = tx | |
ty1[ky+1:ny-ky-1] = ty | |
xb, xe, yb, ye = bbox | |
tx1, ty1, c, fp, ier = dfitpack.surfit_lsq(x, y, z, nx, tx1, ny, ty1, | |
w, xb, xe, yb, ye, | |
kx, ky, eps, lwrk2=1) | |
if ier > 10: | |
tx1, ty1, c, fp, ier = dfitpack.surfit_lsq(x, y, z, | |
nx, tx1, ny, ty1, w, | |
xb, xe, yb, ye, | |
kx, ky, eps, lwrk2=ier) | |
if ier in [0, -1, -2]: # normal return | |
pass | |
else: | |
if ier < -2: | |
deficiency = (nx-kx-1)*(ny-ky-1)+ier | |
message = _surfit_messages.get(-3) % (deficiency) | |
else: | |
message = _surfit_messages.get(ier, 'ier=%s' % (ier)) | |
warnings.warn(message, stacklevel=2) | |
self.fp = fp | |
self.tck = tx1[:nx], ty1[:ny], c | |
self.degrees = kx, ky | |
class RectBivariateSpline(BivariateSpline): | |
""" | |
Bivariate spline approximation over a rectangular mesh. | |
Can be used for both smoothing and interpolating data. | |
Parameters | |
---------- | |
x,y : array_like | |
1-D arrays of coordinates in strictly ascending order. | |
Evaluated points outside the data range will be extrapolated. | |
z : array_like | |
2-D array of data with shape (x.size,y.size). | |
bbox : array_like, optional | |
Sequence of length 4 specifying the boundary of the rectangular | |
approximation domain, which means the start and end spline knots of | |
each dimension are set by these values. By default, | |
``bbox=[min(x), max(x), min(y), max(y)]``. | |
kx, ky : ints, optional | |
Degrees of the bivariate spline. Default is 3. | |
s : float, optional | |
Positive smoothing factor defined for estimation condition: | |
``sum((z[i]-f(x[i], y[i]))**2, axis=0) <= s`` where f is a spline | |
function. Default is ``s=0``, which is for interpolation. | |
See Also | |
-------- | |
BivariateSpline : | |
a base class for bivariate splines. | |
UnivariateSpline : | |
a smooth univariate spline to fit a given set of data points. | |
SmoothBivariateSpline : | |
a smoothing bivariate spline through the given points | |
LSQBivariateSpline : | |
a bivariate spline using weighted least-squares fitting | |
RectSphereBivariateSpline : | |
a bivariate spline over a rectangular mesh on a sphere | |
SmoothSphereBivariateSpline : | |
a smoothing bivariate spline in spherical coordinates | |
LSQSphereBivariateSpline : | |
a bivariate spline in spherical coordinates using weighted | |
least-squares fitting | |
bisplrep : | |
a function to find a bivariate B-spline representation of a surface | |
bisplev : | |
a function to evaluate a bivariate B-spline and its derivatives | |
Notes | |
----- | |
If the input data is such that input dimensions have incommensurate | |
units and differ by many orders of magnitude, the interpolant may have | |
numerical artifacts. Consider rescaling the data before interpolating. | |
""" | |
def __init__(self, x, y, z, bbox=[None] * 4, kx=3, ky=3, s=0): | |
x, y, bbox = ravel(x), ravel(y), ravel(bbox) | |
z = np.asarray(z) | |
if not np.all(diff(x) > 0.0): | |
raise ValueError('x must be strictly increasing') | |
if not np.all(diff(y) > 0.0): | |
raise ValueError('y must be strictly increasing') | |
if not x.size == z.shape[0]: | |
raise ValueError('x dimension of z must have same number of ' | |
'elements as x') | |
if not y.size == z.shape[1]: | |
raise ValueError('y dimension of z must have same number of ' | |
'elements as y') | |
if not bbox.shape == (4,): | |
raise ValueError('bbox shape should be (4,)') | |
if s is not None and not s >= 0.0: | |
raise ValueError("s should be s >= 0.0") | |
z = ravel(z) | |
xb, xe, yb, ye = bbox | |
nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth(x, y, z, xb, xe, yb, | |
ye, kx, ky, s) | |
if ier not in [0, -1, -2]: | |
msg = _surfit_messages.get(ier, 'ier=%s' % (ier)) | |
raise ValueError(msg) | |
self.fp = fp | |
self.tck = tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)] | |
self.degrees = kx, ky | |
_spherefit_messages = _surfit_messages.copy() | |
_spherefit_messages[10] = """ | |
ERROR. On entry, the input data are controlled on validity. The following | |
restrictions must be satisfied: | |
-1<=iopt<=1, m>=2, ntest>=8 ,npest >=8, 0<eps<1, | |
0<=teta(i)<=pi, 0<=phi(i)<=2*pi, w(i)>0, i=1,...,m | |
lwrk1 >= 185+52*v+10*u+14*u*v+8*(u-1)*v**2+8*m | |
kwrk >= m+(ntest-7)*(npest-7) | |
if iopt=-1: 8<=nt<=ntest , 9<=np<=npest | |
0<tt(5)<tt(6)<...<tt(nt-4)<pi | |
0<tp(5)<tp(6)<...<tp(np-4)<2*pi | |
if iopt>=0: s>=0 | |
if one of these conditions is found to be violated,control | |
is immediately repassed to the calling program. in that | |
case there is no approximation returned.""" | |
_spherefit_messages[-3] = """ | |
WARNING. The coefficients of the spline returned have been computed as the | |
minimal norm least-squares solution of a (numerically) rank | |
deficient system (deficiency=%i, rank=%i). Especially if the rank | |
deficiency, which is computed by 6+(nt-8)*(np-7)+ier, is large, | |
the results may be inaccurate. They could also seriously depend on | |
the value of eps.""" | |
class SphereBivariateSpline(_BivariateSplineBase): | |
""" | |
Bivariate spline s(x,y) of degrees 3 on a sphere, calculated from a | |
given set of data points (theta,phi,r). | |
.. versionadded:: 0.11.0 | |
See Also | |
-------- | |
bisplrep : | |
a function to find a bivariate B-spline representation of a surface | |
bisplev : | |
a function to evaluate a bivariate B-spline and its derivatives | |
UnivariateSpline : | |
a smooth univariate spline to fit a given set of data points. | |
SmoothBivariateSpline : | |
a smoothing bivariate spline through the given points | |
LSQUnivariateSpline : | |
a univariate spline using weighted least-squares fitting | |
""" | |
def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True): | |
""" | |
Evaluate the spline or its derivatives at given positions. | |
Parameters | |
---------- | |
theta, phi : array_like | |
Input coordinates. | |
If `grid` is False, evaluate the spline at points | |
``(theta[i], phi[i]), i=0, ..., len(x)-1``. Standard | |
Numpy broadcasting is obeyed. | |
If `grid` is True: evaluate spline at the grid points | |
defined by the coordinate arrays theta, phi. The arrays | |
must be sorted to increasing order. | |
The ordering of axes is consistent with | |
``np.meshgrid(..., indexing="ij")`` and inconsistent with the | |
default ordering ``np.meshgrid(..., indexing="xy")``. | |
dtheta : int, optional | |
Order of theta-derivative | |
.. versionadded:: 0.14.0 | |
dphi : int | |
Order of phi-derivative | |
.. versionadded:: 0.14.0 | |
grid : bool | |
Whether to evaluate the results on a grid spanned by the | |
input arrays, or at points specified by the input arrays. | |
.. versionadded:: 0.14.0 | |
Examples | |
-------- | |
Suppose that we want to use splines to interpolate a bivariate function on a | |
sphere. The value of the function is known on a grid of longitudes and | |
colatitudes. | |
>>> import numpy as np | |
>>> from scipy.interpolate import RectSphereBivariateSpline | |
>>> def f(theta, phi): | |
... return np.sin(theta) * np.cos(phi) | |
We evaluate the function on the grid. Note that the default indexing="xy" | |
of meshgrid would result in an unexpected (transposed) result after | |
interpolation. | |
>>> thetaarr = np.linspace(0, np.pi, 22)[1:-1] | |
>>> phiarr = np.linspace(0, 2 * np.pi, 21)[:-1] | |
>>> thetagrid, phigrid = np.meshgrid(thetaarr, phiarr, indexing="ij") | |
>>> zdata = f(thetagrid, phigrid) | |
We next set up the interpolator and use it to evaluate the function | |
on a finer grid. | |
>>> rsbs = RectSphereBivariateSpline(thetaarr, phiarr, zdata) | |
>>> thetaarr_fine = np.linspace(0, np.pi, 200) | |
>>> phiarr_fine = np.linspace(0, 2 * np.pi, 200) | |
>>> zdata_fine = rsbs(thetaarr_fine, phiarr_fine) | |
Finally we plot the coarsly-sampled input data alongside the | |
finely-sampled interpolated data to check that they agree. | |
>>> import matplotlib.pyplot as plt | |
>>> fig = plt.figure() | |
>>> ax1 = fig.add_subplot(1, 2, 1) | |
>>> ax2 = fig.add_subplot(1, 2, 2) | |
>>> ax1.imshow(zdata) | |
>>> ax2.imshow(zdata_fine) | |
>>> plt.show() | |
""" | |
theta = np.asarray(theta) | |
phi = np.asarray(phi) | |
if theta.size > 0 and (theta.min() < 0. or theta.max() > np.pi): | |
raise ValueError("requested theta out of bounds.") | |
return _BivariateSplineBase.__call__(self, theta, phi, | |
dx=dtheta, dy=dphi, grid=grid) | |
def ev(self, theta, phi, dtheta=0, dphi=0): | |
""" | |
Evaluate the spline at points | |
Returns the interpolated value at ``(theta[i], phi[i]), | |
i=0,...,len(theta)-1``. | |
Parameters | |
---------- | |
theta, phi : array_like | |
Input coordinates. Standard Numpy broadcasting is obeyed. | |
The ordering of axes is consistent with | |
np.meshgrid(..., indexing="ij") and inconsistent with the | |
default ordering np.meshgrid(..., indexing="xy"). | |
dtheta : int, optional | |
Order of theta-derivative | |
.. versionadded:: 0.14.0 | |
dphi : int, optional | |
Order of phi-derivative | |
.. versionadded:: 0.14.0 | |
Examples | |
-------- | |
Suppose that we want to use splines to interpolate a bivariate function on a | |
sphere. The value of the function is known on a grid of longitudes and | |
colatitudes. | |
>>> import numpy as np | |
>>> from scipy.interpolate import RectSphereBivariateSpline | |
>>> def f(theta, phi): | |
... return np.sin(theta) * np.cos(phi) | |
We evaluate the function on the grid. Note that the default indexing="xy" | |
of meshgrid would result in an unexpected (transposed) result after | |
interpolation. | |
>>> thetaarr = np.linspace(0, np.pi, 22)[1:-1] | |
>>> phiarr = np.linspace(0, 2 * np.pi, 21)[:-1] | |
>>> thetagrid, phigrid = np.meshgrid(thetaarr, phiarr, indexing="ij") | |
>>> zdata = f(thetagrid, phigrid) | |
We next set up the interpolator and use it to evaluate the function | |
at points not on the original grid. | |
>>> rsbs = RectSphereBivariateSpline(thetaarr, phiarr, zdata) | |
>>> thetainterp = np.linspace(thetaarr[0], thetaarr[-1], 200) | |
>>> phiinterp = np.linspace(phiarr[0], phiarr[-1], 200) | |
>>> zinterp = rsbs.ev(thetainterp, phiinterp) | |
Finally we plot the original data for a diagonal slice through the | |
initial grid, and the spline approximation along the same slice. | |
>>> import matplotlib.pyplot as plt | |
>>> fig = plt.figure() | |
>>> ax1 = fig.add_subplot(1, 1, 1) | |
>>> ax1.plot(np.sin(thetaarr) * np.sin(phiarr), np.diag(zdata), "or") | |
>>> ax1.plot(np.sin(thetainterp) * np.sin(phiinterp), zinterp, "-b") | |
>>> plt.show() | |
""" | |
return self.__call__(theta, phi, dtheta=dtheta, dphi=dphi, grid=False) | |
class SmoothSphereBivariateSpline(SphereBivariateSpline): | |
""" | |
Smooth bivariate spline approximation in spherical coordinates. | |
.. versionadded:: 0.11.0 | |
Parameters | |
---------- | |
theta, phi, r : array_like | |
1-D sequences of data points (order is not important). Coordinates | |
must be given in radians. Theta must lie within the interval | |
``[0, pi]``, and phi must lie within the interval ``[0, 2pi]``. | |
w : array_like, optional | |
Positive 1-D sequence of weights. | |
s : float, optional | |
Positive smoothing factor defined for estimation condition: | |
``sum((w(i)*(r(i) - s(theta(i), phi(i))))**2, axis=0) <= s`` | |
Default ``s=len(w)`` which should be a good value if ``1/w[i]`` is an | |
estimate of the standard deviation of ``r[i]``. | |
eps : float, optional | |
A threshold for determining the effective rank of an over-determined | |
linear system of equations. `eps` should have a value within the open | |
interval ``(0, 1)``, the default is 1e-16. | |
See Also | |
-------- | |
BivariateSpline : | |
a base class for bivariate splines. | |
UnivariateSpline : | |
a smooth univariate spline to fit a given set of data points. | |
SmoothBivariateSpline : | |
a smoothing bivariate spline through the given points | |
LSQBivariateSpline : | |
a bivariate spline using weighted least-squares fitting | |
RectSphereBivariateSpline : | |
a bivariate spline over a rectangular mesh on a sphere | |
LSQSphereBivariateSpline : | |
a bivariate spline in spherical coordinates using weighted | |
least-squares fitting | |
RectBivariateSpline : | |
a bivariate spline over a rectangular mesh. | |
bisplrep : | |
a function to find a bivariate B-spline representation of a surface | |
bisplev : | |
a function to evaluate a bivariate B-spline and its derivatives | |
Notes | |
----- | |
For more information, see the FITPACK_ site about this function. | |
.. _FITPACK: http://www.netlib.org/dierckx/sphere.f | |
Examples | |
-------- | |
Suppose we have global data on a coarse grid (the input data does not | |
have to be on a grid): | |
>>> import numpy as np | |
>>> theta = np.linspace(0., np.pi, 7) | |
>>> phi = np.linspace(0., 2*np.pi, 9) | |
>>> data = np.empty((theta.shape[0], phi.shape[0])) | |
>>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0. | |
>>> data[1:-1,1], data[1:-1,-1] = 1., 1. | |
>>> data[1,1:-1], data[-2,1:-1] = 1., 1. | |
>>> data[2:-2,2], data[2:-2,-2] = 2., 2. | |
>>> data[2,2:-2], data[-3,2:-2] = 2., 2. | |
>>> data[3,3:-2] = 3. | |
>>> data = np.roll(data, 4, 1) | |
We need to set up the interpolator object | |
>>> lats, lons = np.meshgrid(theta, phi) | |
>>> from scipy.interpolate import SmoothSphereBivariateSpline | |
>>> lut = SmoothSphereBivariateSpline(lats.ravel(), lons.ravel(), | |
... data.T.ravel(), s=3.5) | |
As a first test, we'll see what the algorithm returns when run on the | |
input coordinates | |
>>> data_orig = lut(theta, phi) | |
Finally we interpolate the data to a finer grid | |
>>> fine_lats = np.linspace(0., np.pi, 70) | |
>>> fine_lons = np.linspace(0., 2 * np.pi, 90) | |
>>> data_smth = lut(fine_lats, fine_lons) | |
>>> import matplotlib.pyplot as plt | |
>>> fig = plt.figure() | |
>>> ax1 = fig.add_subplot(131) | |
>>> ax1.imshow(data, interpolation='nearest') | |
>>> ax2 = fig.add_subplot(132) | |
>>> ax2.imshow(data_orig, interpolation='nearest') | |
>>> ax3 = fig.add_subplot(133) | |
>>> ax3.imshow(data_smth, interpolation='nearest') | |
>>> plt.show() | |
""" | |
def __init__(self, theta, phi, r, w=None, s=0., eps=1E-16): | |
theta, phi, r = np.asarray(theta), np.asarray(phi), np.asarray(r) | |
# input validation | |
if not ((0.0 <= theta).all() and (theta <= np.pi).all()): | |
raise ValueError('theta should be between [0, pi]') | |
if not ((0.0 <= phi).all() and (phi <= 2.0 * np.pi).all()): | |
raise ValueError('phi should be between [0, 2pi]') | |
if w is not None: | |
w = np.asarray(w) | |
if not (w >= 0.0).all(): | |
raise ValueError('w should be positive') | |
if not s >= 0.0: | |
raise ValueError('s should be positive') | |
if not 0.0 < eps < 1.0: | |
raise ValueError('eps should be between (0, 1)') | |
nt_, tt_, np_, tp_, c, fp, ier = dfitpack.spherfit_smth(theta, phi, | |
r, w=w, s=s, | |
eps=eps) | |
if ier not in [0, -1, -2]: | |
message = _spherefit_messages.get(ier, 'ier=%s' % (ier)) | |
raise ValueError(message) | |
self.fp = fp | |
self.tck = tt_[:nt_], tp_[:np_], c[:(nt_ - 4) * (np_ - 4)] | |
self.degrees = (3, 3) | |
def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True): | |
theta = np.asarray(theta) | |
phi = np.asarray(phi) | |
if phi.size > 0 and (phi.min() < 0. or phi.max() > 2. * np.pi): | |
raise ValueError("requested phi out of bounds.") | |
return SphereBivariateSpline.__call__(self, theta, phi, dtheta=dtheta, | |
dphi=dphi, grid=grid) | |
class LSQSphereBivariateSpline(SphereBivariateSpline): | |
""" | |
Weighted least-squares bivariate spline approximation in spherical | |
coordinates. | |
Determines a smoothing bicubic spline according to a given | |
set of knots in the `theta` and `phi` directions. | |
.. versionadded:: 0.11.0 | |
Parameters | |
---------- | |
theta, phi, r : array_like | |
1-D sequences of data points (order is not important). Coordinates | |
must be given in radians. Theta must lie within the interval | |
``[0, pi]``, and phi must lie within the interval ``[0, 2pi]``. | |
tt, tp : array_like | |
Strictly ordered 1-D sequences of knots coordinates. | |
Coordinates must satisfy ``0 < tt[i] < pi``, ``0 < tp[i] < 2*pi``. | |
w : array_like, optional | |
Positive 1-D sequence of weights, of the same length as `theta`, `phi` | |
and `r`. | |
eps : float, optional | |
A threshold for determining the effective rank of an over-determined | |
linear system of equations. `eps` should have a value within the | |
open interval ``(0, 1)``, the default is 1e-16. | |
See Also | |
-------- | |
BivariateSpline : | |
a base class for bivariate splines. | |
UnivariateSpline : | |
a smooth univariate spline to fit a given set of data points. | |
SmoothBivariateSpline : | |
a smoothing bivariate spline through the given points | |
LSQBivariateSpline : | |
a bivariate spline using weighted least-squares fitting | |
RectSphereBivariateSpline : | |
a bivariate spline over a rectangular mesh on a sphere | |
SmoothSphereBivariateSpline : | |
a smoothing bivariate spline in spherical coordinates | |
RectBivariateSpline : | |
a bivariate spline over a rectangular mesh. | |
bisplrep : | |
a function to find a bivariate B-spline representation of a surface | |
bisplev : | |
a function to evaluate a bivariate B-spline and its derivatives | |
Notes | |
----- | |
For more information, see the FITPACK_ site about this function. | |
.. _FITPACK: http://www.netlib.org/dierckx/sphere.f | |
Examples | |
-------- | |
Suppose we have global data on a coarse grid (the input data does not | |
have to be on a grid): | |
>>> from scipy.interpolate import LSQSphereBivariateSpline | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> theta = np.linspace(0, np.pi, num=7) | |
>>> phi = np.linspace(0, 2*np.pi, num=9) | |
>>> data = np.empty((theta.shape[0], phi.shape[0])) | |
>>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0. | |
>>> data[1:-1,1], data[1:-1,-1] = 1., 1. | |
>>> data[1,1:-1], data[-2,1:-1] = 1., 1. | |
>>> data[2:-2,2], data[2:-2,-2] = 2., 2. | |
>>> data[2,2:-2], data[-3,2:-2] = 2., 2. | |
>>> data[3,3:-2] = 3. | |
>>> data = np.roll(data, 4, 1) | |
We need to set up the interpolator object. Here, we must also specify the | |
coordinates of the knots to use. | |
>>> lats, lons = np.meshgrid(theta, phi) | |
>>> knotst, knotsp = theta.copy(), phi.copy() | |
>>> knotst[0] += .0001 | |
>>> knotst[-1] -= .0001 | |
>>> knotsp[0] += .0001 | |
>>> knotsp[-1] -= .0001 | |
>>> lut = LSQSphereBivariateSpline(lats.ravel(), lons.ravel(), | |
... data.T.ravel(), knotst, knotsp) | |
As a first test, we'll see what the algorithm returns when run on the | |
input coordinates | |
>>> data_orig = lut(theta, phi) | |
Finally we interpolate the data to a finer grid | |
>>> fine_lats = np.linspace(0., np.pi, 70) | |
>>> fine_lons = np.linspace(0., 2*np.pi, 90) | |
>>> data_lsq = lut(fine_lats, fine_lons) | |
>>> fig = plt.figure() | |
>>> ax1 = fig.add_subplot(131) | |
>>> ax1.imshow(data, interpolation='nearest') | |
>>> ax2 = fig.add_subplot(132) | |
>>> ax2.imshow(data_orig, interpolation='nearest') | |
>>> ax3 = fig.add_subplot(133) | |
>>> ax3.imshow(data_lsq, interpolation='nearest') | |
>>> plt.show() | |
""" | |
def __init__(self, theta, phi, r, tt, tp, w=None, eps=1E-16): | |
theta, phi, r = np.asarray(theta), np.asarray(phi), np.asarray(r) | |
tt, tp = np.asarray(tt), np.asarray(tp) | |
if not ((0.0 <= theta).all() and (theta <= np.pi).all()): | |
raise ValueError('theta should be between [0, pi]') | |
if not ((0.0 <= phi).all() and (phi <= 2*np.pi).all()): | |
raise ValueError('phi should be between [0, 2pi]') | |
if not ((0.0 < tt).all() and (tt < np.pi).all()): | |
raise ValueError('tt should be between (0, pi)') | |
if not ((0.0 < tp).all() and (tp < 2*np.pi).all()): | |
raise ValueError('tp should be between (0, 2pi)') | |
if w is not None: | |
w = np.asarray(w) | |
if not (w >= 0.0).all(): | |
raise ValueError('w should be positive') | |
if not 0.0 < eps < 1.0: | |
raise ValueError('eps should be between (0, 1)') | |
nt_, np_ = 8 + len(tt), 8 + len(tp) | |
tt_, tp_ = zeros((nt_,), float), zeros((np_,), float) | |
tt_[4:-4], tp_[4:-4] = tt, tp | |
tt_[-4:], tp_[-4:] = np.pi, 2. * np.pi | |
tt_, tp_, c, fp, ier = dfitpack.spherfit_lsq(theta, phi, r, tt_, tp_, | |
w=w, eps=eps) | |
if ier > 0: | |
message = _spherefit_messages.get(ier, 'ier=%s' % (ier)) | |
raise ValueError(message) | |
self.fp = fp | |
self.tck = tt_, tp_, c | |
self.degrees = (3, 3) | |
def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True): | |
theta = np.asarray(theta) | |
phi = np.asarray(phi) | |
if phi.size > 0 and (phi.min() < 0. or phi.max() > 2. * np.pi): | |
raise ValueError("requested phi out of bounds.") | |
return SphereBivariateSpline.__call__(self, theta, phi, dtheta=dtheta, | |
dphi=dphi, grid=grid) | |
_spfit_messages = _surfit_messages.copy() | |
_spfit_messages[10] = """ | |
ERROR: on entry, the input data are controlled on validity | |
the following restrictions must be satisfied. | |
-1<=iopt(1)<=1, 0<=iopt(2)<=1, 0<=iopt(3)<=1, | |
-1<=ider(1)<=1, 0<=ider(2)<=1, ider(2)=0 if iopt(2)=0. | |
-1<=ider(3)<=1, 0<=ider(4)<=1, ider(4)=0 if iopt(3)=0. | |
mu >= mumin (see above), mv >= 4, nuest >=8, nvest >= 8, | |
kwrk>=5+mu+mv+nuest+nvest, | |
lwrk >= 12+nuest*(mv+nvest+3)+nvest*24+4*mu+8*mv+max(nuest,mv+nvest) | |
0< u(i-1)<u(i)< pi,i=2,..,mu, | |
-pi<=v(1)< pi, v(1)<v(i-1)<v(i)<v(1)+2*pi, i=3,...,mv | |
if iopt(1)=-1: 8<=nu<=min(nuest,mu+6+iopt(2)+iopt(3)) | |
0<tu(5)<tu(6)<...<tu(nu-4)< pi | |
8<=nv<=min(nvest,mv+7) | |
v(1)<tv(5)<tv(6)<...<tv(nv-4)<v(1)+2*pi | |
the schoenberg-whitney conditions, i.e. there must be | |
subset of grid coordinates uu(p) and vv(q) such that | |
tu(p) < uu(p) < tu(p+4) ,p=1,...,nu-4 | |
(iopt(2)=1 and iopt(3)=1 also count for a uu-value | |
tv(q) < vv(q) < tv(q+4) ,q=1,...,nv-4 | |
(vv(q) is either a value v(j) or v(j)+2*pi) | |
if iopt(1)>=0: s>=0 | |
if s=0: nuest>=mu+6+iopt(2)+iopt(3), nvest>=mv+7 | |
if one of these conditions is found to be violated,control is | |
immediately repassed to the calling program. in that case there is no | |
approximation returned.""" | |
class RectSphereBivariateSpline(SphereBivariateSpline): | |
""" | |
Bivariate spline approximation over a rectangular mesh on a sphere. | |
Can be used for smoothing data. | |
.. versionadded:: 0.11.0 | |
Parameters | |
---------- | |
u : array_like | |
1-D array of colatitude coordinates in strictly ascending order. | |
Coordinates must be given in radians and lie within the open interval | |
``(0, pi)``. | |
v : array_like | |
1-D array of longitude coordinates in strictly ascending order. | |
Coordinates must be given in radians. First element (``v[0]``) must lie | |
within the interval ``[-pi, pi)``. Last element (``v[-1]``) must satisfy | |
``v[-1] <= v[0] + 2*pi``. | |
r : array_like | |
2-D array of data with shape ``(u.size, v.size)``. | |
s : float, optional | |
Positive smoothing factor defined for estimation condition | |
(``s=0`` is for interpolation). | |
pole_continuity : bool or (bool, bool), optional | |
Order of continuity at the poles ``u=0`` (``pole_continuity[0]``) and | |
``u=pi`` (``pole_continuity[1]``). The order of continuity at the pole | |
will be 1 or 0 when this is True or False, respectively. | |
Defaults to False. | |
pole_values : float or (float, float), optional | |
Data values at the poles ``u=0`` and ``u=pi``. Either the whole | |
parameter or each individual element can be None. Defaults to None. | |
pole_exact : bool or (bool, bool), optional | |
Data value exactness at the poles ``u=0`` and ``u=pi``. If True, the | |
value is considered to be the right function value, and it will be | |
fitted exactly. If False, the value will be considered to be a data | |
value just like the other data values. Defaults to False. | |
pole_flat : bool or (bool, bool), optional | |
For the poles at ``u=0`` and ``u=pi``, specify whether or not the | |
approximation has vanishing derivatives. Defaults to False. | |
See Also | |
-------- | |
BivariateSpline : | |
a base class for bivariate splines. | |
UnivariateSpline : | |
a smooth univariate spline to fit a given set of data points. | |
SmoothBivariateSpline : | |
a smoothing bivariate spline through the given points | |
LSQBivariateSpline : | |
a bivariate spline using weighted least-squares fitting | |
SmoothSphereBivariateSpline : | |
a smoothing bivariate spline in spherical coordinates | |
LSQSphereBivariateSpline : | |
a bivariate spline in spherical coordinates using weighted | |
least-squares fitting | |
RectBivariateSpline : | |
a bivariate spline over a rectangular mesh. | |
bisplrep : | |
a function to find a bivariate B-spline representation of a surface | |
bisplev : | |
a function to evaluate a bivariate B-spline and its derivatives | |
Notes | |
----- | |
Currently, only the smoothing spline approximation (``iopt[0] = 0`` and | |
``iopt[0] = 1`` in the FITPACK routine) is supported. The exact | |
least-squares spline approximation is not implemented yet. | |
When actually performing the interpolation, the requested `v` values must | |
lie within the same length 2pi interval that the original `v` values were | |
chosen from. | |
For more information, see the FITPACK_ site about this function. | |
.. _FITPACK: http://www.netlib.org/dierckx/spgrid.f | |
Examples | |
-------- | |
Suppose we have global data on a coarse grid | |
>>> import numpy as np | |
>>> lats = np.linspace(10, 170, 9) * np.pi / 180. | |
>>> lons = np.linspace(0, 350, 18) * np.pi / 180. | |
>>> data = np.dot(np.atleast_2d(90. - np.linspace(-80., 80., 18)).T, | |
... np.atleast_2d(180. - np.abs(np.linspace(0., 350., 9)))).T | |
We want to interpolate it to a global one-degree grid | |
>>> new_lats = np.linspace(1, 180, 180) * np.pi / 180 | |
>>> new_lons = np.linspace(1, 360, 360) * np.pi / 180 | |
>>> new_lats, new_lons = np.meshgrid(new_lats, new_lons) | |
We need to set up the interpolator object | |
>>> from scipy.interpolate import RectSphereBivariateSpline | |
>>> lut = RectSphereBivariateSpline(lats, lons, data) | |
Finally we interpolate the data. The `RectSphereBivariateSpline` object | |
only takes 1-D arrays as input, therefore we need to do some reshaping. | |
>>> data_interp = lut.ev(new_lats.ravel(), | |
... new_lons.ravel()).reshape((360, 180)).T | |
Looking at the original and the interpolated data, one can see that the | |
interpolant reproduces the original data very well: | |
>>> import matplotlib.pyplot as plt | |
>>> fig = plt.figure() | |
>>> ax1 = fig.add_subplot(211) | |
>>> ax1.imshow(data, interpolation='nearest') | |
>>> ax2 = fig.add_subplot(212) | |
>>> ax2.imshow(data_interp, interpolation='nearest') | |
>>> plt.show() | |
Choosing the optimal value of ``s`` can be a delicate task. Recommended | |
values for ``s`` depend on the accuracy of the data values. If the user | |
has an idea of the statistical errors on the data, she can also find a | |
proper estimate for ``s``. By assuming that, if she specifies the | |
right ``s``, the interpolator will use a spline ``f(u,v)`` which exactly | |
reproduces the function underlying the data, she can evaluate | |
``sum((r(i,j)-s(u(i),v(j)))**2)`` to find a good estimate for this ``s``. | |
For example, if she knows that the statistical errors on her | |
``r(i,j)``-values are not greater than 0.1, she may expect that a good | |
``s`` should have a value not larger than ``u.size * v.size * (0.1)**2``. | |
If nothing is known about the statistical error in ``r(i,j)``, ``s`` must | |
be determined by trial and error. The best is then to start with a very | |
large value of ``s`` (to determine the least-squares polynomial and the | |
corresponding upper bound ``fp0`` for ``s``) and then to progressively | |
decrease the value of ``s`` (say by a factor 10 in the beginning, i.e. | |
``s = fp0 / 10, fp0 / 100, ...`` and more carefully as the approximation | |
shows more detail) to obtain closer fits. | |
The interpolation results for different values of ``s`` give some insight | |
into this process: | |
>>> fig2 = plt.figure() | |
>>> s = [3e9, 2e9, 1e9, 1e8] | |
>>> for idx, sval in enumerate(s, 1): | |
... lut = RectSphereBivariateSpline(lats, lons, data, s=sval) | |
... data_interp = lut.ev(new_lats.ravel(), | |
... new_lons.ravel()).reshape((360, 180)).T | |
... ax = fig2.add_subplot(2, 2, idx) | |
... ax.imshow(data_interp, interpolation='nearest') | |
... ax.set_title(f"s = {sval:g}") | |
>>> plt.show() | |
""" | |
def __init__(self, u, v, r, s=0., pole_continuity=False, pole_values=None, | |
pole_exact=False, pole_flat=False): | |
iopt = np.array([0, 0, 0], dtype=dfitpack_int) | |
ider = np.array([-1, 0, -1, 0], dtype=dfitpack_int) | |
if pole_values is None: | |
pole_values = (None, None) | |
elif isinstance(pole_values, (float, np.float32, np.float64)): | |
pole_values = (pole_values, pole_values) | |
if isinstance(pole_continuity, bool): | |
pole_continuity = (pole_continuity, pole_continuity) | |
if isinstance(pole_exact, bool): | |
pole_exact = (pole_exact, pole_exact) | |
if isinstance(pole_flat, bool): | |
pole_flat = (pole_flat, pole_flat) | |
r0, r1 = pole_values | |
iopt[1:] = pole_continuity | |
if r0 is None: | |
ider[0] = -1 | |
else: | |
ider[0] = pole_exact[0] | |
if r1 is None: | |
ider[2] = -1 | |
else: | |
ider[2] = pole_exact[1] | |
ider[1], ider[3] = pole_flat | |
u, v = np.ravel(u), np.ravel(v) | |
r = np.asarray(r) | |
if not (0.0 < u[0] and u[-1] < np.pi): | |
raise ValueError('u should be between (0, pi)') | |
if not -np.pi <= v[0] < np.pi: | |
raise ValueError('v[0] should be between [-pi, pi)') | |
if not v[-1] <= v[0] + 2*np.pi: | |
raise ValueError('v[-1] should be v[0] + 2pi or less ') | |
if not np.all(np.diff(u) > 0.0): | |
raise ValueError('u must be strictly increasing') | |
if not np.all(np.diff(v) > 0.0): | |
raise ValueError('v must be strictly increasing') | |
if not u.size == r.shape[0]: | |
raise ValueError('u dimension of r must have same number of ' | |
'elements as u') | |
if not v.size == r.shape[1]: | |
raise ValueError('v dimension of r must have same number of ' | |
'elements as v') | |
if pole_continuity[1] is False and pole_flat[1] is True: | |
raise ValueError('if pole_continuity is False, so must be ' | |
'pole_flat') | |
if pole_continuity[0] is False and pole_flat[0] is True: | |
raise ValueError('if pole_continuity is False, so must be ' | |
'pole_flat') | |
if not s >= 0.0: | |
raise ValueError('s should be positive') | |
r = np.ravel(r) | |
nu, tu, nv, tv, c, fp, ier = dfitpack.regrid_smth_spher(iopt, ider, | |
u.copy(), | |
v.copy(), | |
r.copy(), | |
r0, r1, s) | |
if ier not in [0, -1, -2]: | |
msg = _spfit_messages.get(ier, 'ier=%s' % (ier)) | |
raise ValueError(msg) | |
self.fp = fp | |
self.tck = tu[:nu], tv[:nv], c[:(nu - 4) * (nv-4)] | |
self.degrees = (3, 3) | |
self.v0 = v[0] | |
def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True): | |
theta = np.asarray(theta) | |
phi = np.asarray(phi) | |
return SphereBivariateSpline.__call__(self, theta, phi, dtheta=dtheta, | |
dphi=dphi, grid=grid) | |