peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/interpolate
/_interpolate.py
__all__ = ['interp1d', 'interp2d', 'lagrange', 'PPoly', 'BPoly', 'NdPPoly'] | |
from math import prod | |
import warnings | |
import numpy as np | |
from numpy import (array, transpose, searchsorted, atleast_1d, atleast_2d, | |
ravel, poly1d, asarray, intp) | |
import scipy.special as spec | |
from scipy._lib._util import copy_if_needed | |
from scipy.special import comb | |
from . import _fitpack_py | |
from . import dfitpack | |
from ._polyint import _Interpolator1D | |
from . import _ppoly | |
from .interpnd import _ndim_coords_from_arrays | |
from ._bsplines import make_interp_spline, BSpline | |
def lagrange(x, w): | |
r""" | |
Return a Lagrange interpolating polynomial. | |
Given two 1-D arrays `x` and `w,` returns the Lagrange interpolating | |
polynomial through the points ``(x, w)``. | |
Warning: This implementation is numerically unstable. Do not expect to | |
be able to use more than about 20 points even if they are chosen optimally. | |
Parameters | |
---------- | |
x : array_like | |
`x` represents the x-coordinates of a set of datapoints. | |
w : array_like | |
`w` represents the y-coordinates of a set of datapoints, i.e., f(`x`). | |
Returns | |
------- | |
lagrange : `numpy.poly1d` instance | |
The Lagrange interpolating polynomial. | |
Examples | |
-------- | |
Interpolate :math:`f(x) = x^3` by 3 points. | |
>>> import numpy as np | |
>>> from scipy.interpolate import lagrange | |
>>> x = np.array([0, 1, 2]) | |
>>> y = x**3 | |
>>> poly = lagrange(x, y) | |
Since there are only 3 points, Lagrange polynomial has degree 2. Explicitly, | |
it is given by | |
.. math:: | |
\begin{aligned} | |
L(x) &= 1\times \frac{x (x - 2)}{-1} + 8\times \frac{x (x-1)}{2} \\ | |
&= x (-2 + 3x) | |
\end{aligned} | |
>>> from numpy.polynomial.polynomial import Polynomial | |
>>> Polynomial(poly.coef[::-1]).coef | |
array([ 0., -2., 3.]) | |
>>> import matplotlib.pyplot as plt | |
>>> x_new = np.arange(0, 2.1, 0.1) | |
>>> plt.scatter(x, y, label='data') | |
>>> plt.plot(x_new, Polynomial(poly.coef[::-1])(x_new), label='Polynomial') | |
>>> plt.plot(x_new, 3*x_new**2 - 2*x_new + 0*x_new, | |
... label=r"$3 x^2 - 2 x$", linestyle='-.') | |
>>> plt.legend() | |
>>> plt.show() | |
""" | |
M = len(x) | |
p = poly1d(0.0) | |
for j in range(M): | |
pt = poly1d(w[j]) | |
for k in range(M): | |
if k == j: | |
continue | |
fac = x[j]-x[k] | |
pt *= poly1d([1.0, -x[k]])/fac | |
p += pt | |
return p | |
# !! Need to find argument for keeping initialize. If it isn't | |
# !! found, get rid of it! | |
dep_mesg = """\ | |
`interp2d` is deprecated in SciPy 1.10 and will be removed in SciPy 1.14.0. | |
For legacy code, nearly bug-for-bug compatible replacements are | |
`RectBivariateSpline` on regular grids, and `bisplrep`/`bisplev` for | |
scattered 2D data. | |
In new code, for regular grids use `RegularGridInterpolator` instead. | |
For scattered data, prefer `LinearNDInterpolator` or | |
`CloughTocher2DInterpolator`. | |
For more details see | |
`https://scipy.github.io/devdocs/notebooks/interp_transition_guide.html` | |
""" | |
class interp2d: | |
""" | |
interp2d(x, y, z, kind='linear', copy=True, bounds_error=False, | |
fill_value=None) | |
.. deprecated:: 1.10.0 | |
`interp2d` is deprecated in SciPy 1.10 and will be removed in SciPy | |
1.14.0. | |
For legacy code, nearly bug-for-bug compatible replacements are | |
`RectBivariateSpline` on regular grids, and `bisplrep`/`bisplev` for | |
scattered 2D data. | |
In new code, for regular grids use `RegularGridInterpolator` instead. | |
For scattered data, prefer `LinearNDInterpolator` or | |
`CloughTocher2DInterpolator`. | |
For more details see | |
`https://scipy.github.io/devdocs/notebooks/interp_transition_guide.html | |
<https://scipy.github.io/devdocs/notebooks/interp_transition_guide.html>`_ | |
Interpolate over a 2-D grid. | |
`x`, `y` and `z` are arrays of values used to approximate some function | |
f: ``z = f(x, y)`` which returns a scalar value `z`. This class returns a | |
function whose call method uses spline interpolation to find the value | |
of new points. | |
If `x` and `y` represent a regular grid, consider using | |
`RectBivariateSpline`. | |
If `z` is a vector value, consider using `interpn`. | |
Note that calling `interp2d` with NaNs present in input values, or with | |
decreasing values in `x` an `y` results in undefined behaviour. | |
Methods | |
------- | |
__call__ | |
Parameters | |
---------- | |
x, y : array_like | |
Arrays defining the data point coordinates. | |
The data point coordinates need to be sorted by increasing order. | |
If the points lie on a regular grid, `x` can specify the column | |
coordinates and `y` the row coordinates, for example:: | |
>>> x = [0,1,2]; y = [0,3]; z = [[1,2,3], [4,5,6]] | |
Otherwise, `x` and `y` must specify the full coordinates for each | |
point, for example:: | |
>>> x = [0,1,2,0,1,2]; y = [0,0,0,3,3,3]; z = [1,4,2,5,3,6] | |
If `x` and `y` are multidimensional, they are flattened before use. | |
z : array_like | |
The values of the function to interpolate at the data points. If | |
`z` is a multidimensional array, it is flattened before use assuming | |
Fortran-ordering (order='F'). The length of a flattened `z` array | |
is either len(`x`)*len(`y`) if `x` and `y` specify the column and | |
row coordinates or ``len(z) == len(x) == len(y)`` if `x` and `y` | |
specify coordinates for each point. | |
kind : {'linear', 'cubic', 'quintic'}, optional | |
The kind of spline interpolation to use. Default is 'linear'. | |
copy : bool, optional | |
If True, the class makes internal copies of x, y and z. | |
If False, references may be used. The default is to copy. | |
bounds_error : bool, optional | |
If True, when interpolated values are requested outside of the | |
domain of the input data (x,y), a ValueError is raised. | |
If False, then `fill_value` is used. | |
fill_value : number, optional | |
If provided, the value to use for points outside of the | |
interpolation domain. If omitted (None), values outside | |
the domain are extrapolated via nearest-neighbor extrapolation. | |
See Also | |
-------- | |
RectBivariateSpline : | |
Much faster 2-D interpolation if your input data is on a grid | |
bisplrep, bisplev : | |
Spline interpolation based on FITPACK | |
BivariateSpline : a more recent wrapper of the FITPACK routines | |
interp1d : 1-D version of this function | |
RegularGridInterpolator : interpolation on a regular or rectilinear grid | |
in arbitrary dimensions. | |
interpn : Multidimensional interpolation on regular grids (wraps | |
`RegularGridInterpolator` and `RectBivariateSpline`). | |
Notes | |
----- | |
The minimum number of data points required along the interpolation | |
axis is ``(k+1)**2``, with k=1 for linear, k=3 for cubic and k=5 for | |
quintic interpolation. | |
The interpolator is constructed by `bisplrep`, with a smoothing factor | |
of 0. If more control over smoothing is needed, `bisplrep` should be | |
used directly. | |
The coordinates of the data points to interpolate `xnew` and `ynew` | |
have to be sorted by ascending order. | |
`interp2d` is legacy and is not | |
recommended for use in new code. New code should use | |
`RegularGridInterpolator` instead. | |
Examples | |
-------- | |
Construct a 2-D grid and interpolate on it: | |
>>> import numpy as np | |
>>> from scipy import interpolate | |
>>> x = np.arange(-5.01, 5.01, 0.25) | |
>>> y = np.arange(-5.01, 5.01, 0.25) | |
>>> xx, yy = np.meshgrid(x, y) | |
>>> z = np.sin(xx**2+yy**2) | |
>>> f = interpolate.interp2d(x, y, z, kind='cubic') | |
Now use the obtained interpolation function and plot the result: | |
>>> import matplotlib.pyplot as plt | |
>>> xnew = np.arange(-5.01, 5.01, 1e-2) | |
>>> ynew = np.arange(-5.01, 5.01, 1e-2) | |
>>> znew = f(xnew, ynew) | |
>>> plt.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-') | |
>>> plt.show() | |
""" | |
def __init__(self, x, y, z, kind='linear', copy=True, bounds_error=False, | |
fill_value=None): | |
warnings.warn(dep_mesg, DeprecationWarning, stacklevel=2) | |
x = ravel(x) | |
y = ravel(y) | |
z = asarray(z) | |
rectangular_grid = (z.size == len(x) * len(y)) | |
if rectangular_grid: | |
if z.ndim == 2: | |
if z.shape != (len(y), len(x)): | |
raise ValueError("When on a regular grid with x.size = m " | |
"and y.size = n, if z.ndim == 2, then z " | |
"must have shape (n, m)") | |
if not np.all(x[1:] >= x[:-1]): | |
j = np.argsort(x) | |
x = x[j] | |
z = z[:, j] | |
if not np.all(y[1:] >= y[:-1]): | |
j = np.argsort(y) | |
y = y[j] | |
z = z[j, :] | |
z = ravel(z.T) | |
else: | |
z = ravel(z) | |
if len(x) != len(y): | |
raise ValueError( | |
"x and y must have equal lengths for non rectangular grid") | |
if len(z) != len(x): | |
raise ValueError( | |
"Invalid length for input z for non rectangular grid") | |
interpolation_types = {'linear': 1, 'cubic': 3, 'quintic': 5} | |
try: | |
kx = ky = interpolation_types[kind] | |
except KeyError as e: | |
raise ValueError( | |
f"Unsupported interpolation type {repr(kind)}, must be " | |
f"either of {', '.join(map(repr, interpolation_types))}." | |
) from e | |
if not rectangular_grid: | |
# TODO: surfit is really not meant for interpolation! | |
self.tck = _fitpack_py.bisplrep(x, y, z, kx=kx, ky=ky, s=0.0) | |
else: | |
nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth( | |
x, y, z, None, None, None, None, | |
kx=kx, ky=ky, s=0.0) | |
self.tck = (tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)], | |
kx, ky) | |
self.bounds_error = bounds_error | |
self.fill_value = fill_value | |
self.x, self.y, self.z = (array(a, copy=copy) for a in (x, y, z)) | |
self.x_min, self.x_max = np.amin(x), np.amax(x) | |
self.y_min, self.y_max = np.amin(y), np.amax(y) | |
def __call__(self, x, y, dx=0, dy=0, assume_sorted=False): | |
"""Interpolate the function. | |
Parameters | |
---------- | |
x : 1-D array | |
x-coordinates of the mesh on which to interpolate. | |
y : 1-D array | |
y-coordinates of the mesh on which to interpolate. | |
dx : int >= 0, < kx | |
Order of partial derivatives in x. | |
dy : int >= 0, < ky | |
Order of partial derivatives in y. | |
assume_sorted : bool, optional | |
If False, values of `x` and `y` can be in any order and they are | |
sorted first. | |
If True, `x` and `y` have to be arrays of monotonically | |
increasing values. | |
Returns | |
------- | |
z : 2-D array with shape (len(y), len(x)) | |
The interpolated values. | |
""" | |
warnings.warn(dep_mesg, DeprecationWarning, stacklevel=2) | |
x = atleast_1d(x) | |
y = atleast_1d(y) | |
if x.ndim != 1 or y.ndim != 1: | |
raise ValueError("x and y should both be 1-D arrays") | |
if not assume_sorted: | |
x = np.sort(x, kind="mergesort") | |
y = np.sort(y, kind="mergesort") | |
if self.bounds_error or self.fill_value is not None: | |
out_of_bounds_x = (x < self.x_min) | (x > self.x_max) | |
out_of_bounds_y = (y < self.y_min) | (y > self.y_max) | |
any_out_of_bounds_x = np.any(out_of_bounds_x) | |
any_out_of_bounds_y = np.any(out_of_bounds_y) | |
if self.bounds_error and (any_out_of_bounds_x or any_out_of_bounds_y): | |
raise ValueError( | |
f"Values out of range; x must be in {(self.x_min, self.x_max)!r}, " | |
f"y in {(self.y_min, self.y_max)!r}" | |
) | |
z = _fitpack_py.bisplev(x, y, self.tck, dx, dy) | |
z = atleast_2d(z) | |
z = transpose(z) | |
if self.fill_value is not None: | |
if any_out_of_bounds_x: | |
z[:, out_of_bounds_x] = self.fill_value | |
if any_out_of_bounds_y: | |
z[out_of_bounds_y, :] = self.fill_value | |
if len(z) == 1: | |
z = z[0] | |
return array(z) | |
def _check_broadcast_up_to(arr_from, shape_to, name): | |
"""Helper to check that arr_from broadcasts up to shape_to""" | |
shape_from = arr_from.shape | |
if len(shape_to) >= len(shape_from): | |
for t, f in zip(shape_to[::-1], shape_from[::-1]): | |
if f != 1 and f != t: | |
break | |
else: # all checks pass, do the upcasting that we need later | |
if arr_from.size != 1 and arr_from.shape != shape_to: | |
arr_from = np.ones(shape_to, arr_from.dtype) * arr_from | |
return arr_from.ravel() | |
# at least one check failed | |
raise ValueError(f'{name} argument must be able to broadcast up ' | |
f'to shape {shape_to} but had shape {shape_from}') | |
def _do_extrapolate(fill_value): | |
"""Helper to check if fill_value == "extrapolate" without warnings""" | |
return (isinstance(fill_value, str) and | |
fill_value == 'extrapolate') | |
class interp1d(_Interpolator1D): | |
""" | |
Interpolate a 1-D function. | |
.. legacy:: class | |
For a guide to the intended replacements for `interp1d` see | |
:ref:`tutorial-interpolate_1Dsection`. | |
`x` and `y` are arrays of values used to approximate some function f: | |
``y = f(x)``. This class returns a function whose call method uses | |
interpolation to find the value of new points. | |
Parameters | |
---------- | |
x : (npoints, ) array_like | |
A 1-D array of real values. | |
y : (..., npoints, ...) array_like | |
A N-D array of real values. The length of `y` along the interpolation | |
axis must be equal to the length of `x`. Use the ``axis`` parameter | |
to select correct axis. Unlike other interpolators, the default | |
interpolation axis is the last axis of `y`. | |
kind : str or int, optional | |
Specifies the kind of interpolation as a string or as an integer | |
specifying the order of the spline interpolator to use. | |
The string has to be one of 'linear', 'nearest', 'nearest-up', 'zero', | |
'slinear', 'quadratic', 'cubic', 'previous', or 'next'. 'zero', | |
'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of | |
zeroth, first, second or third order; 'previous' and 'next' simply | |
return the previous or next value of the point; 'nearest-up' and | |
'nearest' differ when interpolating half-integers (e.g. 0.5, 1.5) | |
in that 'nearest-up' rounds up and 'nearest' rounds down. Default | |
is 'linear'. | |
axis : int, optional | |
Axis in the ``y`` array corresponding to the x-coordinate values. Unlike | |
other interpolators, defaults to ``axis=-1``. | |
copy : bool, optional | |
If ``True``, the class makes internal copies of x and y. If ``False``, | |
references to ``x`` and ``y`` are used if possible. The default is to copy. | |
bounds_error : bool, optional | |
If True, a ValueError is raised any time interpolation is attempted on | |
a value outside of the range of x (where extrapolation is | |
necessary). If False, out of bounds values are assigned `fill_value`. | |
By default, an error is raised unless ``fill_value="extrapolate"``. | |
fill_value : array-like or (array-like, array_like) or "extrapolate", optional | |
- if a ndarray (or float), this value will be used to fill in for | |
requested points outside of the data range. If not provided, then | |
the default is NaN. The array-like must broadcast properly to the | |
dimensions of the non-interpolation axes. | |
- If a two-element tuple, then the first element is used as a | |
fill value for ``x_new < x[0]`` and the second element is used for | |
``x_new > x[-1]``. Anything that is not a 2-element tuple (e.g., | |
list or ndarray, regardless of shape) is taken to be a single | |
array-like argument meant to be used for both bounds as | |
``below, above = fill_value, fill_value``. Using a two-element tuple | |
or ndarray requires ``bounds_error=False``. | |
.. versionadded:: 0.17.0 | |
- If "extrapolate", then points outside the data range will be | |
extrapolated. | |
.. versionadded:: 0.17.0 | |
assume_sorted : bool, optional | |
If False, values of `x` can be in any order and they are sorted first. | |
If True, `x` has to be an array of monotonically increasing values. | |
Attributes | |
---------- | |
fill_value | |
Methods | |
------- | |
__call__ | |
See Also | |
-------- | |
splrep, splev | |
Spline interpolation/smoothing based on FITPACK. | |
UnivariateSpline : An object-oriented wrapper of the FITPACK routines. | |
interp2d : 2-D interpolation | |
Notes | |
----- | |
Calling `interp1d` with NaNs present in input values results in | |
undefined behaviour. | |
Input values `x` and `y` must be convertible to `float` values like | |
`int` or `float`. | |
If the values in `x` are not unique, the resulting behavior is | |
undefined and specific to the choice of `kind`, i.e., changing | |
`kind` will change the behavior for duplicates. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> from scipy import interpolate | |
>>> x = np.arange(0, 10) | |
>>> y = np.exp(-x/3.0) | |
>>> f = interpolate.interp1d(x, y) | |
>>> xnew = np.arange(0, 9, 0.1) | |
>>> ynew = f(xnew) # use interpolation function returned by `interp1d` | |
>>> plt.plot(x, y, 'o', xnew, ynew, '-') | |
>>> plt.show() | |
""" | |
def __init__(self, x, y, kind='linear', axis=-1, | |
copy=True, bounds_error=None, fill_value=np.nan, | |
assume_sorted=False): | |
""" Initialize a 1-D linear interpolation class.""" | |
_Interpolator1D.__init__(self, x, y, axis=axis) | |
self.bounds_error = bounds_error # used by fill_value setter | |
# `copy` keyword semantics changed in NumPy 2.0, once that is | |
# the minimum version this can use `copy=None`. | |
self.copy = copy | |
if not copy: | |
self.copy = copy_if_needed | |
if kind in ['zero', 'slinear', 'quadratic', 'cubic']: | |
order = {'zero': 0, 'slinear': 1, | |
'quadratic': 2, 'cubic': 3}[kind] | |
kind = 'spline' | |
elif isinstance(kind, int): | |
order = kind | |
kind = 'spline' | |
elif kind not in ('linear', 'nearest', 'nearest-up', 'previous', | |
'next'): | |
raise NotImplementedError("%s is unsupported: Use fitpack " | |
"routines for other types." % kind) | |
x = array(x, copy=self.copy) | |
y = array(y, copy=self.copy) | |
if not assume_sorted: | |
ind = np.argsort(x, kind="mergesort") | |
x = x[ind] | |
y = np.take(y, ind, axis=axis) | |
if x.ndim != 1: | |
raise ValueError("the x array must have exactly one dimension.") | |
if y.ndim == 0: | |
raise ValueError("the y array must have at least one dimension.") | |
# Force-cast y to a floating-point type, if it's not yet one | |
if not issubclass(y.dtype.type, np.inexact): | |
y = y.astype(np.float64) | |
# Backward compatibility | |
self.axis = axis % y.ndim | |
# Interpolation goes internally along the first axis | |
self.y = y | |
self._y = self._reshape_yi(self.y) | |
self.x = x | |
del y, x # clean up namespace to prevent misuse; use attributes | |
self._kind = kind | |
# Adjust to interpolation kind; store reference to *unbound* | |
# interpolation methods, in order to avoid circular references to self | |
# stored in the bound instance methods, and therefore delayed garbage | |
# collection. See: https://docs.python.org/reference/datamodel.html | |
if kind in ('linear', 'nearest', 'nearest-up', 'previous', 'next'): | |
# Make a "view" of the y array that is rotated to the interpolation | |
# axis. | |
minval = 1 | |
if kind == 'nearest': | |
# Do division before addition to prevent possible integer | |
# overflow | |
self._side = 'left' | |
self.x_bds = self.x / 2.0 | |
self.x_bds = self.x_bds[1:] + self.x_bds[:-1] | |
self._call = self.__class__._call_nearest | |
elif kind == 'nearest-up': | |
# Do division before addition to prevent possible integer | |
# overflow | |
self._side = 'right' | |
self.x_bds = self.x / 2.0 | |
self.x_bds = self.x_bds[1:] + self.x_bds[:-1] | |
self._call = self.__class__._call_nearest | |
elif kind == 'previous': | |
# Side for np.searchsorted and index for clipping | |
self._side = 'left' | |
self._ind = 0 | |
# Move x by one floating point value to the left | |
self._x_shift = np.nextafter(self.x, -np.inf) | |
self._call = self.__class__._call_previousnext | |
if _do_extrapolate(fill_value): | |
self._check_and_update_bounds_error_for_extrapolation() | |
# assume y is sorted by x ascending order here. | |
fill_value = (np.nan, np.take(self.y, -1, axis)) | |
elif kind == 'next': | |
self._side = 'right' | |
self._ind = 1 | |
# Move x by one floating point value to the right | |
self._x_shift = np.nextafter(self.x, np.inf) | |
self._call = self.__class__._call_previousnext | |
if _do_extrapolate(fill_value): | |
self._check_and_update_bounds_error_for_extrapolation() | |
# assume y is sorted by x ascending order here. | |
fill_value = (np.take(self.y, 0, axis), np.nan) | |
else: | |
# Check if we can delegate to numpy.interp (2x-10x faster). | |
np_dtypes = (np.dtype(np.float64), np.dtype(int)) | |
cond = self.x.dtype in np_dtypes and self.y.dtype in np_dtypes | |
cond = cond and self.y.ndim == 1 | |
cond = cond and not _do_extrapolate(fill_value) | |
if cond: | |
self._call = self.__class__._call_linear_np | |
else: | |
self._call = self.__class__._call_linear | |
else: | |
minval = order + 1 | |
rewrite_nan = False | |
xx, yy = self.x, self._y | |
if order > 1: | |
# Quadratic or cubic spline. If input contains even a single | |
# nan, then the output is all nans. We cannot just feed data | |
# with nans to make_interp_spline because it calls LAPACK. | |
# So, we make up a bogus x and y with no nans and use it | |
# to get the correct shape of the output, which we then fill | |
# with nans. | |
# For slinear or zero order spline, we just pass nans through. | |
mask = np.isnan(self.x) | |
if mask.any(): | |
sx = self.x[~mask] | |
if sx.size == 0: | |
raise ValueError("`x` array is all-nan") | |
xx = np.linspace(np.nanmin(self.x), | |
np.nanmax(self.x), | |
len(self.x)) | |
rewrite_nan = True | |
if np.isnan(self._y).any(): | |
yy = np.ones_like(self._y) | |
rewrite_nan = True | |
self._spline = make_interp_spline(xx, yy, k=order, | |
check_finite=False) | |
if rewrite_nan: | |
self._call = self.__class__._call_nan_spline | |
else: | |
self._call = self.__class__._call_spline | |
if len(self.x) < minval: | |
raise ValueError("x and y arrays must have at " | |
"least %d entries" % minval) | |
self.fill_value = fill_value # calls the setter, can modify bounds_err | |
def fill_value(self): | |
"""The fill value.""" | |
# backwards compat: mimic a public attribute | |
return self._fill_value_orig | |
def fill_value(self, fill_value): | |
# extrapolation only works for nearest neighbor and linear methods | |
if _do_extrapolate(fill_value): | |
self._check_and_update_bounds_error_for_extrapolation() | |
self._extrapolate = True | |
else: | |
broadcast_shape = (self.y.shape[:self.axis] + | |
self.y.shape[self.axis + 1:]) | |
if len(broadcast_shape) == 0: | |
broadcast_shape = (1,) | |
# it's either a pair (_below_range, _above_range) or a single value | |
# for both above and below range | |
if isinstance(fill_value, tuple) and len(fill_value) == 2: | |
below_above = [np.asarray(fill_value[0]), | |
np.asarray(fill_value[1])] | |
names = ('fill_value (below)', 'fill_value (above)') | |
for ii in range(2): | |
below_above[ii] = _check_broadcast_up_to( | |
below_above[ii], broadcast_shape, names[ii]) | |
else: | |
fill_value = np.asarray(fill_value) | |
below_above = [_check_broadcast_up_to( | |
fill_value, broadcast_shape, 'fill_value')] * 2 | |
self._fill_value_below, self._fill_value_above = below_above | |
self._extrapolate = False | |
if self.bounds_error is None: | |
self.bounds_error = True | |
# backwards compat: fill_value was a public attr; make it writeable | |
self._fill_value_orig = fill_value | |
def _check_and_update_bounds_error_for_extrapolation(self): | |
if self.bounds_error: | |
raise ValueError("Cannot extrapolate and raise " | |
"at the same time.") | |
self.bounds_error = False | |
def _call_linear_np(self, x_new): | |
# Note that out-of-bounds values are taken care of in self._evaluate | |
return np.interp(x_new, self.x, self.y) | |
def _call_linear(self, x_new): | |
# 2. Find where in the original data, the values to interpolate | |
# would be inserted. | |
# Note: If x_new[n] == x[m], then m is returned by searchsorted. | |
x_new_indices = searchsorted(self.x, x_new) | |
# 3. Clip x_new_indices so that they are within the range of | |
# self.x indices and at least 1. Removes mis-interpolation | |
# of x_new[n] = x[0] | |
x_new_indices = x_new_indices.clip(1, len(self.x)-1).astype(int) | |
# 4. Calculate the slope of regions that each x_new value falls in. | |
lo = x_new_indices - 1 | |
hi = x_new_indices | |
x_lo = self.x[lo] | |
x_hi = self.x[hi] | |
y_lo = self._y[lo] | |
y_hi = self._y[hi] | |
# Note that the following two expressions rely on the specifics of the | |
# broadcasting semantics. | |
slope = (y_hi - y_lo) / (x_hi - x_lo)[:, None] | |
# 5. Calculate the actual value for each entry in x_new. | |
y_new = slope*(x_new - x_lo)[:, None] + y_lo | |
return y_new | |
def _call_nearest(self, x_new): | |
""" Find nearest neighbor interpolated y_new = f(x_new).""" | |
# 2. Find where in the averaged data the values to interpolate | |
# would be inserted. | |
# Note: use side='left' (right) to searchsorted() to define the | |
# halfway point to be nearest to the left (right) neighbor | |
x_new_indices = searchsorted(self.x_bds, x_new, side=self._side) | |
# 3. Clip x_new_indices so that they are within the range of x indices. | |
x_new_indices = x_new_indices.clip(0, len(self.x)-1).astype(intp) | |
# 4. Calculate the actual value for each entry in x_new. | |
y_new = self._y[x_new_indices] | |
return y_new | |
def _call_previousnext(self, x_new): | |
"""Use previous/next neighbor of x_new, y_new = f(x_new).""" | |
# 1. Get index of left/right value | |
x_new_indices = searchsorted(self._x_shift, x_new, side=self._side) | |
# 2. Clip x_new_indices so that they are within the range of x indices. | |
x_new_indices = x_new_indices.clip(1-self._ind, | |
len(self.x)-self._ind).astype(intp) | |
# 3. Calculate the actual value for each entry in x_new. | |
y_new = self._y[x_new_indices+self._ind-1] | |
return y_new | |
def _call_spline(self, x_new): | |
return self._spline(x_new) | |
def _call_nan_spline(self, x_new): | |
out = self._spline(x_new) | |
out[...] = np.nan | |
return out | |
def _evaluate(self, x_new): | |
# 1. Handle values in x_new that are outside of x. Throw error, | |
# or return a list of mask array indicating the outofbounds values. | |
# The behavior is set by the bounds_error variable. | |
x_new = asarray(x_new) | |
y_new = self._call(self, x_new) | |
if not self._extrapolate: | |
below_bounds, above_bounds = self._check_bounds(x_new) | |
if len(y_new) > 0: | |
# Note fill_value must be broadcast up to the proper size | |
# and flattened to work here | |
y_new[below_bounds] = self._fill_value_below | |
y_new[above_bounds] = self._fill_value_above | |
return y_new | |
def _check_bounds(self, x_new): | |
"""Check the inputs for being in the bounds of the interpolated data. | |
Parameters | |
---------- | |
x_new : array | |
Returns | |
------- | |
out_of_bounds : bool array | |
The mask on x_new of values that are out of the bounds. | |
""" | |
# If self.bounds_error is True, we raise an error if any x_new values | |
# fall outside the range of x. Otherwise, we return an array indicating | |
# which values are outside the boundary region. | |
below_bounds = x_new < self.x[0] | |
above_bounds = x_new > self.x[-1] | |
if self.bounds_error and below_bounds.any(): | |
below_bounds_value = x_new[np.argmax(below_bounds)] | |
raise ValueError(f"A value ({below_bounds_value}) in x_new is below " | |
f"the interpolation range's minimum value ({self.x[0]}).") | |
if self.bounds_error and above_bounds.any(): | |
above_bounds_value = x_new[np.argmax(above_bounds)] | |
raise ValueError(f"A value ({above_bounds_value}) in x_new is above " | |
f"the interpolation range's maximum value ({self.x[-1]}).") | |
# !! Should we emit a warning if some values are out of bounds? | |
# !! matlab does not. | |
return below_bounds, above_bounds | |
class _PPolyBase: | |
"""Base class for piecewise polynomials.""" | |
__slots__ = ('c', 'x', 'extrapolate', 'axis') | |
def __init__(self, c, x, extrapolate=None, axis=0): | |
self.c = np.asarray(c) | |
self.x = np.ascontiguousarray(x, dtype=np.float64) | |
if extrapolate is None: | |
extrapolate = True | |
elif extrapolate != 'periodic': | |
extrapolate = bool(extrapolate) | |
self.extrapolate = extrapolate | |
if self.c.ndim < 2: | |
raise ValueError("Coefficients array must be at least " | |
"2-dimensional.") | |
if not (0 <= axis < self.c.ndim - 1): | |
raise ValueError(f"axis={axis} must be between 0 and {self.c.ndim-1}") | |
self.axis = axis | |
if axis != 0: | |
# move the interpolation axis to be the first one in self.c | |
# More specifically, the target shape for self.c is (k, m, ...), | |
# and axis !=0 means that we have c.shape (..., k, m, ...) | |
# ^ | |
# axis | |
# So we roll two of them. | |
self.c = np.moveaxis(self.c, axis+1, 0) | |
self.c = np.moveaxis(self.c, axis+1, 0) | |
if self.x.ndim != 1: | |
raise ValueError("x must be 1-dimensional") | |
if self.x.size < 2: | |
raise ValueError("at least 2 breakpoints are needed") | |
if self.c.ndim < 2: | |
raise ValueError("c must have at least 2 dimensions") | |
if self.c.shape[0] == 0: | |
raise ValueError("polynomial must be at least of order 0") | |
if self.c.shape[1] != self.x.size-1: | |
raise ValueError("number of coefficients != len(x)-1") | |
dx = np.diff(self.x) | |
if not (np.all(dx >= 0) or np.all(dx <= 0)): | |
raise ValueError("`x` must be strictly increasing or decreasing.") | |
dtype = self._get_dtype(self.c.dtype) | |
self.c = np.ascontiguousarray(self.c, dtype=dtype) | |
def _get_dtype(self, dtype): | |
if np.issubdtype(dtype, np.complexfloating) \ | |
or np.issubdtype(self.c.dtype, np.complexfloating): | |
return np.complex128 | |
else: | |
return np.float64 | |
def construct_fast(cls, c, x, extrapolate=None, axis=0): | |
""" | |
Construct the piecewise polynomial without making checks. | |
Takes the same parameters as the constructor. Input arguments | |
``c`` and ``x`` must be arrays of the correct shape and type. The | |
``c`` array can only be of dtypes float and complex, and ``x`` | |
array must have dtype float. | |
""" | |
self = object.__new__(cls) | |
self.c = c | |
self.x = x | |
self.axis = axis | |
if extrapolate is None: | |
extrapolate = True | |
self.extrapolate = extrapolate | |
return self | |
def _ensure_c_contiguous(self): | |
""" | |
c and x may be modified by the user. The Cython code expects | |
that they are C contiguous. | |
""" | |
if not self.x.flags.c_contiguous: | |
self.x = self.x.copy() | |
if not self.c.flags.c_contiguous: | |
self.c = self.c.copy() | |
def extend(self, c, x): | |
""" | |
Add additional breakpoints and coefficients to the polynomial. | |
Parameters | |
---------- | |
c : ndarray, size (k, m, ...) | |
Additional coefficients for polynomials in intervals. Note that | |
the first additional interval will be formed using one of the | |
``self.x`` end points. | |
x : ndarray, size (m,) | |
Additional breakpoints. Must be sorted in the same order as | |
``self.x`` and either to the right or to the left of the current | |
breakpoints. | |
""" | |
c = np.asarray(c) | |
x = np.asarray(x) | |
if c.ndim < 2: | |
raise ValueError("invalid dimensions for c") | |
if x.ndim != 1: | |
raise ValueError("invalid dimensions for x") | |
if x.shape[0] != c.shape[1]: | |
raise ValueError(f"Shapes of x {x.shape} and c {c.shape} are incompatible") | |
if c.shape[2:] != self.c.shape[2:] or c.ndim != self.c.ndim: | |
raise ValueError("Shapes of c {} and self.c {} are incompatible" | |
.format(c.shape, self.c.shape)) | |
if c.size == 0: | |
return | |
dx = np.diff(x) | |
if not (np.all(dx >= 0) or np.all(dx <= 0)): | |
raise ValueError("`x` is not sorted.") | |
if self.x[-1] >= self.x[0]: | |
if not x[-1] >= x[0]: | |
raise ValueError("`x` is in the different order " | |
"than `self.x`.") | |
if x[0] >= self.x[-1]: | |
action = 'append' | |
elif x[-1] <= self.x[0]: | |
action = 'prepend' | |
else: | |
raise ValueError("`x` is neither on the left or on the right " | |
"from `self.x`.") | |
else: | |
if not x[-1] <= x[0]: | |
raise ValueError("`x` is in the different order " | |
"than `self.x`.") | |
if x[0] <= self.x[-1]: | |
action = 'append' | |
elif x[-1] >= self.x[0]: | |
action = 'prepend' | |
else: | |
raise ValueError("`x` is neither on the left or on the right " | |
"from `self.x`.") | |
dtype = self._get_dtype(c.dtype) | |
k2 = max(c.shape[0], self.c.shape[0]) | |
c2 = np.zeros((k2, self.c.shape[1] + c.shape[1]) + self.c.shape[2:], | |
dtype=dtype) | |
if action == 'append': | |
c2[k2-self.c.shape[0]:, :self.c.shape[1]] = self.c | |
c2[k2-c.shape[0]:, self.c.shape[1]:] = c | |
self.x = np.r_[self.x, x] | |
elif action == 'prepend': | |
c2[k2-self.c.shape[0]:, :c.shape[1]] = c | |
c2[k2-c.shape[0]:, c.shape[1]:] = self.c | |
self.x = np.r_[x, self.x] | |
self.c = c2 | |
def __call__(self, x, nu=0, extrapolate=None): | |
""" | |
Evaluate the piecewise polynomial or its derivative. | |
Parameters | |
---------- | |
x : array_like | |
Points to evaluate the interpolant at. | |
nu : int, optional | |
Order of derivative to evaluate. Must be non-negative. | |
extrapolate : {bool, 'periodic', None}, optional | |
If bool, determines whether to extrapolate to out-of-bounds points | |
based on first and last intervals, or to return NaNs. | |
If 'periodic', periodic extrapolation is used. | |
If None (default), use `self.extrapolate`. | |
Returns | |
------- | |
y : array_like | |
Interpolated values. Shape is determined by replacing | |
the interpolation axis in the original array with the shape of x. | |
Notes | |
----- | |
Derivatives are evaluated piecewise for each polynomial | |
segment, even if the polynomial is not differentiable at the | |
breakpoints. The polynomial intervals are considered half-open, | |
``[a, b)``, except for the last interval which is closed | |
``[a, b]``. | |
""" | |
if extrapolate is None: | |
extrapolate = self.extrapolate | |
x = np.asarray(x) | |
x_shape, x_ndim = x.shape, x.ndim | |
x = np.ascontiguousarray(x.ravel(), dtype=np.float64) | |
# With periodic extrapolation we map x to the segment | |
# [self.x[0], self.x[-1]]. | |
if extrapolate == 'periodic': | |
x = self.x[0] + (x - self.x[0]) % (self.x[-1] - self.x[0]) | |
extrapolate = False | |
out = np.empty((len(x), prod(self.c.shape[2:])), dtype=self.c.dtype) | |
self._ensure_c_contiguous() | |
self._evaluate(x, nu, extrapolate, out) | |
out = out.reshape(x_shape + self.c.shape[2:]) | |
if self.axis != 0: | |
# transpose to move the calculated values to the interpolation axis | |
l = list(range(out.ndim)) | |
l = l[x_ndim:x_ndim+self.axis] + l[:x_ndim] + l[x_ndim+self.axis:] | |
out = out.transpose(l) | |
return out | |
class PPoly(_PPolyBase): | |
""" | |
Piecewise polynomial in terms of coefficients and breakpoints | |
The polynomial between ``x[i]`` and ``x[i + 1]`` is written in the | |
local power basis:: | |
S = sum(c[m, i] * (xp - x[i])**(k-m) for m in range(k+1)) | |
where ``k`` is the degree of the polynomial. | |
Parameters | |
---------- | |
c : ndarray, shape (k, m, ...) | |
Polynomial coefficients, order `k` and `m` intervals. | |
x : ndarray, shape (m+1,) | |
Polynomial breakpoints. Must be sorted in either increasing or | |
decreasing order. | |
extrapolate : bool or 'periodic', optional | |
If bool, determines whether to extrapolate to out-of-bounds points | |
based on first and last intervals, or to return NaNs. If 'periodic', | |
periodic extrapolation is used. Default is True. | |
axis : int, optional | |
Interpolation axis. Default is zero. | |
Attributes | |
---------- | |
x : ndarray | |
Breakpoints. | |
c : ndarray | |
Coefficients of the polynomials. They are reshaped | |
to a 3-D array with the last dimension representing | |
the trailing dimensions of the original coefficient array. | |
axis : int | |
Interpolation axis. | |
Methods | |
------- | |
__call__ | |
derivative | |
antiderivative | |
integrate | |
solve | |
roots | |
extend | |
from_spline | |
from_bernstein_basis | |
construct_fast | |
See also | |
-------- | |
BPoly : piecewise polynomials in the Bernstein basis | |
Notes | |
----- | |
High-order polynomials in the power basis can be numerically | |
unstable. Precision problems can start to appear for orders | |
larger than 20-30. | |
""" | |
def _evaluate(self, x, nu, extrapolate, out): | |
_ppoly.evaluate(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), | |
self.x, x, nu, bool(extrapolate), out) | |
def derivative(self, nu=1): | |
""" | |
Construct a new piecewise polynomial representing the derivative. | |
Parameters | |
---------- | |
nu : int, optional | |
Order of derivative to evaluate. Default is 1, i.e., compute the | |
first derivative. If negative, the antiderivative is returned. | |
Returns | |
------- | |
pp : PPoly | |
Piecewise polynomial of order k2 = k - n representing the derivative | |
of this polynomial. | |
Notes | |
----- | |
Derivatives are evaluated piecewise for each polynomial | |
segment, even if the polynomial is not differentiable at the | |
breakpoints. The polynomial intervals are considered half-open, | |
``[a, b)``, except for the last interval which is closed | |
``[a, b]``. | |
""" | |
if nu < 0: | |
return self.antiderivative(-nu) | |
# reduce order | |
if nu == 0: | |
c2 = self.c.copy() | |
else: | |
c2 = self.c[:-nu, :].copy() | |
if c2.shape[0] == 0: | |
# derivative of order 0 is zero | |
c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) | |
# multiply by the correct rising factorials | |
factor = spec.poch(np.arange(c2.shape[0], 0, -1), nu) | |
c2 *= factor[(slice(None),) + (None,)*(c2.ndim-1)] | |
# construct a compatible polynomial | |
return self.construct_fast(c2, self.x, self.extrapolate, self.axis) | |
def antiderivative(self, nu=1): | |
""" | |
Construct a new piecewise polynomial representing the antiderivative. | |
Antiderivative is also the indefinite integral of the function, | |
and derivative is its inverse operation. | |
Parameters | |
---------- | |
nu : int, optional | |
Order of antiderivative to evaluate. Default is 1, i.e., compute | |
the first integral. If negative, the derivative is returned. | |
Returns | |
------- | |
pp : PPoly | |
Piecewise polynomial of order k2 = k + n representing | |
the antiderivative of this polynomial. | |
Notes | |
----- | |
The antiderivative returned by this function is continuous and | |
continuously differentiable to order n-1, up to floating point | |
rounding error. | |
If antiderivative is computed and ``self.extrapolate='periodic'``, | |
it will be set to False for the returned instance. This is done because | |
the antiderivative is no longer periodic and its correct evaluation | |
outside of the initially given x interval is difficult. | |
""" | |
if nu <= 0: | |
return self.derivative(-nu) | |
c = np.zeros((self.c.shape[0] + nu, self.c.shape[1]) + self.c.shape[2:], | |
dtype=self.c.dtype) | |
c[:-nu] = self.c | |
# divide by the correct rising factorials | |
factor = spec.poch(np.arange(self.c.shape[0], 0, -1), nu) | |
c[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)] | |
# fix continuity of added degrees of freedom | |
self._ensure_c_contiguous() | |
_ppoly.fix_continuity(c.reshape(c.shape[0], c.shape[1], -1), | |
self.x, nu - 1) | |
if self.extrapolate == 'periodic': | |
extrapolate = False | |
else: | |
extrapolate = self.extrapolate | |
# construct a compatible polynomial | |
return self.construct_fast(c, self.x, extrapolate, self.axis) | |
def integrate(self, a, b, extrapolate=None): | |
""" | |
Compute a definite integral over a piecewise polynomial. | |
Parameters | |
---------- | |
a : float | |
Lower integration bound | |
b : float | |
Upper integration bound | |
extrapolate : {bool, 'periodic', None}, optional | |
If bool, determines whether to extrapolate to out-of-bounds points | |
based on first and last intervals, or to return NaNs. | |
If 'periodic', periodic extrapolation is used. | |
If None (default), use `self.extrapolate`. | |
Returns | |
------- | |
ig : array_like | |
Definite integral of the piecewise polynomial over [a, b] | |
""" | |
if extrapolate is None: | |
extrapolate = self.extrapolate | |
# Swap integration bounds if needed | |
sign = 1 | |
if b < a: | |
a, b = b, a | |
sign = -1 | |
range_int = np.empty((prod(self.c.shape[2:]),), dtype=self.c.dtype) | |
self._ensure_c_contiguous() | |
# Compute the integral. | |
if extrapolate == 'periodic': | |
# Split the integral into the part over period (can be several | |
# of them) and the remaining part. | |
xs, xe = self.x[0], self.x[-1] | |
period = xe - xs | |
interval = b - a | |
n_periods, left = divmod(interval, period) | |
if n_periods > 0: | |
_ppoly.integrate( | |
self.c.reshape(self.c.shape[0], self.c.shape[1], -1), | |
self.x, xs, xe, False, out=range_int) | |
range_int *= n_periods | |
else: | |
range_int.fill(0) | |
# Map a to [xs, xe], b is always a + left. | |
a = xs + (a - xs) % period | |
b = a + left | |
# If b <= xe then we need to integrate over [a, b], otherwise | |
# over [a, xe] and from xs to what is remained. | |
remainder_int = np.empty_like(range_int) | |
if b <= xe: | |
_ppoly.integrate( | |
self.c.reshape(self.c.shape[0], self.c.shape[1], -1), | |
self.x, a, b, False, out=remainder_int) | |
range_int += remainder_int | |
else: | |
_ppoly.integrate( | |
self.c.reshape(self.c.shape[0], self.c.shape[1], -1), | |
self.x, a, xe, False, out=remainder_int) | |
range_int += remainder_int | |
_ppoly.integrate( | |
self.c.reshape(self.c.shape[0], self.c.shape[1], -1), | |
self.x, xs, xs + left + a - xe, False, out=remainder_int) | |
range_int += remainder_int | |
else: | |
_ppoly.integrate( | |
self.c.reshape(self.c.shape[0], self.c.shape[1], -1), | |
self.x, a, b, bool(extrapolate), out=range_int) | |
# Return | |
range_int *= sign | |
return range_int.reshape(self.c.shape[2:]) | |
def solve(self, y=0., discontinuity=True, extrapolate=None): | |
""" | |
Find real solutions of the equation ``pp(x) == y``. | |
Parameters | |
---------- | |
y : float, optional | |
Right-hand side. Default is zero. | |
discontinuity : bool, optional | |
Whether to report sign changes across discontinuities at | |
breakpoints as roots. | |
extrapolate : {bool, 'periodic', None}, optional | |
If bool, determines whether to return roots from the polynomial | |
extrapolated based on first and last intervals, 'periodic' works | |
the same as False. If None (default), use `self.extrapolate`. | |
Returns | |
------- | |
roots : ndarray | |
Roots of the polynomial(s). | |
If the PPoly object describes multiple polynomials, the | |
return value is an object array whose each element is an | |
ndarray containing the roots. | |
Notes | |
----- | |
This routine works only on real-valued polynomials. | |
If the piecewise polynomial contains sections that are | |
identically zero, the root list will contain the start point | |
of the corresponding interval, followed by a ``nan`` value. | |
If the polynomial is discontinuous across a breakpoint, and | |
there is a sign change across the breakpoint, this is reported | |
if the `discont` parameter is True. | |
Examples | |
-------- | |
Finding roots of ``[x**2 - 1, (x - 1)**2]`` defined on intervals | |
``[-2, 1], [1, 2]``: | |
>>> import numpy as np | |
>>> from scipy.interpolate import PPoly | |
>>> pp = PPoly(np.array([[1, -4, 3], [1, 0, 0]]).T, [-2, 1, 2]) | |
>>> pp.solve() | |
array([-1., 1.]) | |
""" | |
if extrapolate is None: | |
extrapolate = self.extrapolate | |
self._ensure_c_contiguous() | |
if np.issubdtype(self.c.dtype, np.complexfloating): | |
raise ValueError("Root finding is only for " | |
"real-valued polynomials") | |
y = float(y) | |
r = _ppoly.real_roots(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), | |
self.x, y, bool(discontinuity), | |
bool(extrapolate)) | |
if self.c.ndim == 2: | |
return r[0] | |
else: | |
r2 = np.empty(prod(self.c.shape[2:]), dtype=object) | |
# this for-loop is equivalent to ``r2[...] = r``, but that's broken | |
# in NumPy 1.6.0 | |
for ii, root in enumerate(r): | |
r2[ii] = root | |
return r2.reshape(self.c.shape[2:]) | |
def roots(self, discontinuity=True, extrapolate=None): | |
""" | |
Find real roots of the piecewise polynomial. | |
Parameters | |
---------- | |
discontinuity : bool, optional | |
Whether to report sign changes across discontinuities at | |
breakpoints as roots. | |
extrapolate : {bool, 'periodic', None}, optional | |
If bool, determines whether to return roots from the polynomial | |
extrapolated based on first and last intervals, 'periodic' works | |
the same as False. If None (default), use `self.extrapolate`. | |
Returns | |
------- | |
roots : ndarray | |
Roots of the polynomial(s). | |
If the PPoly object describes multiple polynomials, the | |
return value is an object array whose each element is an | |
ndarray containing the roots. | |
See Also | |
-------- | |
PPoly.solve | |
""" | |
return self.solve(0, discontinuity, extrapolate) | |
def from_spline(cls, tck, extrapolate=None): | |
""" | |
Construct a piecewise polynomial from a spline | |
Parameters | |
---------- | |
tck | |
A spline, as returned by `splrep` or a BSpline object. | |
extrapolate : bool or 'periodic', optional | |
If bool, determines whether to extrapolate to out-of-bounds points | |
based on first and last intervals, or to return NaNs. | |
If 'periodic', periodic extrapolation is used. Default is True. | |
Examples | |
-------- | |
Construct an interpolating spline and convert it to a `PPoly` instance | |
>>> import numpy as np | |
>>> from scipy.interpolate import splrep, PPoly | |
>>> x = np.linspace(0, 1, 11) | |
>>> y = np.sin(2*np.pi*x) | |
>>> tck = splrep(x, y, s=0) | |
>>> p = PPoly.from_spline(tck) | |
>>> isinstance(p, PPoly) | |
True | |
Note that this function only supports 1D splines out of the box. | |
If the ``tck`` object represents a parametric spline (e.g. constructed | |
by `splprep` or a `BSpline` with ``c.ndim > 1``), you will need to loop | |
over the dimensions manually. | |
>>> from scipy.interpolate import splprep, splev | |
>>> t = np.linspace(0, 1, 11) | |
>>> x = np.sin(2*np.pi*t) | |
>>> y = np.cos(2*np.pi*t) | |
>>> (t, c, k), u = splprep([x, y], s=0) | |
Note that ``c`` is a list of two arrays of length 11. | |
>>> unew = np.arange(0, 1.01, 0.01) | |
>>> out = splev(unew, (t, c, k)) | |
To convert this spline to the power basis, we convert each | |
component of the list of b-spline coefficients, ``c``, into the | |
corresponding cubic polynomial. | |
>>> polys = [PPoly.from_spline((t, cj, k)) for cj in c] | |
>>> polys[0].c.shape | |
(4, 14) | |
Note that the coefficients of the polynomials `polys` are in the | |
power basis and their dimensions reflect just that: here 4 is the order | |
(degree+1), and 14 is the number of intervals---which is nothing but | |
the length of the knot array of the original `tck` minus one. | |
Optionally, we can stack the components into a single `PPoly` along | |
the third dimension: | |
>>> cc = np.dstack([p.c for p in polys]) # has shape = (4, 14, 2) | |
>>> poly = PPoly(cc, polys[0].x) | |
>>> np.allclose(poly(unew).T, # note the transpose to match `splev` | |
... out, atol=1e-15) | |
True | |
""" | |
if isinstance(tck, BSpline): | |
t, c, k = tck.tck | |
if extrapolate is None: | |
extrapolate = tck.extrapolate | |
else: | |
t, c, k = tck | |
cvals = np.empty((k + 1, len(t)-1), dtype=c.dtype) | |
for m in range(k, -1, -1): | |
y = _fitpack_py.splev(t[:-1], tck, der=m) | |
cvals[k - m, :] = y/spec.gamma(m+1) | |
return cls.construct_fast(cvals, t, extrapolate) | |
def from_bernstein_basis(cls, bp, extrapolate=None): | |
""" | |
Construct a piecewise polynomial in the power basis | |
from a polynomial in Bernstein basis. | |
Parameters | |
---------- | |
bp : BPoly | |
A Bernstein basis polynomial, as created by BPoly | |
extrapolate : bool or 'periodic', optional | |
If bool, determines whether to extrapolate to out-of-bounds points | |
based on first and last intervals, or to return NaNs. | |
If 'periodic', periodic extrapolation is used. Default is True. | |
""" | |
if not isinstance(bp, BPoly): | |
raise TypeError(".from_bernstein_basis only accepts BPoly instances. " | |
"Got %s instead." % type(bp)) | |
dx = np.diff(bp.x) | |
k = bp.c.shape[0] - 1 # polynomial order | |
rest = (None,)*(bp.c.ndim-2) | |
c = np.zeros_like(bp.c) | |
for a in range(k+1): | |
factor = (-1)**a * comb(k, a) * bp.c[a] | |
for s in range(a, k+1): | |
val = comb(k-a, s-a) * (-1)**s | |
c[k-s] += factor * val / dx[(slice(None),)+rest]**s | |
if extrapolate is None: | |
extrapolate = bp.extrapolate | |
return cls.construct_fast(c, bp.x, extrapolate, bp.axis) | |
class BPoly(_PPolyBase): | |
"""Piecewise polynomial in terms of coefficients and breakpoints. | |
The polynomial between ``x[i]`` and ``x[i + 1]`` is written in the | |
Bernstein polynomial basis:: | |
S = sum(c[a, i] * b(a, k; x) for a in range(k+1)), | |
where ``k`` is the degree of the polynomial, and:: | |
b(a, k; x) = binom(k, a) * t**a * (1 - t)**(k - a), | |
with ``t = (x - x[i]) / (x[i+1] - x[i])`` and ``binom`` is the binomial | |
coefficient. | |
Parameters | |
---------- | |
c : ndarray, shape (k, m, ...) | |
Polynomial coefficients, order `k` and `m` intervals | |
x : ndarray, shape (m+1,) | |
Polynomial breakpoints. Must be sorted in either increasing or | |
decreasing order. | |
extrapolate : bool, optional | |
If bool, determines whether to extrapolate to out-of-bounds points | |
based on first and last intervals, or to return NaNs. If 'periodic', | |
periodic extrapolation is used. Default is True. | |
axis : int, optional | |
Interpolation axis. Default is zero. | |
Attributes | |
---------- | |
x : ndarray | |
Breakpoints. | |
c : ndarray | |
Coefficients of the polynomials. They are reshaped | |
to a 3-D array with the last dimension representing | |
the trailing dimensions of the original coefficient array. | |
axis : int | |
Interpolation axis. | |
Methods | |
------- | |
__call__ | |
extend | |
derivative | |
antiderivative | |
integrate | |
construct_fast | |
from_power_basis | |
from_derivatives | |
See also | |
-------- | |
PPoly : piecewise polynomials in the power basis | |
Notes | |
----- | |
Properties of Bernstein polynomials are well documented in the literature, | |
see for example [1]_ [2]_ [3]_. | |
References | |
---------- | |
.. [1] https://en.wikipedia.org/wiki/Bernstein_polynomial | |
.. [2] Kenneth I. Joy, Bernstein polynomials, | |
http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf | |
.. [3] E. H. Doha, A. H. Bhrawy, and M. A. Saker, Boundary Value Problems, | |
vol 2011, article ID 829546, :doi:`10.1155/2011/829543`. | |
Examples | |
-------- | |
>>> from scipy.interpolate import BPoly | |
>>> x = [0, 1] | |
>>> c = [[1], [2], [3]] | |
>>> bp = BPoly(c, x) | |
This creates a 2nd order polynomial | |
.. math:: | |
B(x) = 1 \\times b_{0, 2}(x) + 2 \\times b_{1, 2}(x) + 3 | |
\\times b_{2, 2}(x) \\\\ | |
= 1 \\times (1-x)^2 + 2 \\times 2 x (1 - x) + 3 \\times x^2 | |
""" # noqa: E501 | |
def _evaluate(self, x, nu, extrapolate, out): | |
_ppoly.evaluate_bernstein( | |
self.c.reshape(self.c.shape[0], self.c.shape[1], -1), | |
self.x, x, nu, bool(extrapolate), out) | |
def derivative(self, nu=1): | |
""" | |
Construct a new piecewise polynomial representing the derivative. | |
Parameters | |
---------- | |
nu : int, optional | |
Order of derivative to evaluate. Default is 1, i.e., compute the | |
first derivative. If negative, the antiderivative is returned. | |
Returns | |
------- | |
bp : BPoly | |
Piecewise polynomial of order k - nu representing the derivative of | |
this polynomial. | |
""" | |
if nu < 0: | |
return self.antiderivative(-nu) | |
if nu > 1: | |
bp = self | |
for k in range(nu): | |
bp = bp.derivative() | |
return bp | |
# reduce order | |
if nu == 0: | |
c2 = self.c.copy() | |
else: | |
# For a polynomial | |
# B(x) = \sum_{a=0}^{k} c_a b_{a, k}(x), | |
# we use the fact that | |
# b'_{a, k} = k ( b_{a-1, k-1} - b_{a, k-1} ), | |
# which leads to | |
# B'(x) = \sum_{a=0}^{k-1} (c_{a+1} - c_a) b_{a, k-1} | |
# | |
# finally, for an interval [y, y + dy] with dy != 1, | |
# we need to correct for an extra power of dy | |
rest = (None,)*(self.c.ndim-2) | |
k = self.c.shape[0] - 1 | |
dx = np.diff(self.x)[(None, slice(None))+rest] | |
c2 = k * np.diff(self.c, axis=0) / dx | |
if c2.shape[0] == 0: | |
# derivative of order 0 is zero | |
c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) | |
# construct a compatible polynomial | |
return self.construct_fast(c2, self.x, self.extrapolate, self.axis) | |
def antiderivative(self, nu=1): | |
""" | |
Construct a new piecewise polynomial representing the antiderivative. | |
Parameters | |
---------- | |
nu : int, optional | |
Order of antiderivative to evaluate. Default is 1, i.e., compute | |
the first integral. If negative, the derivative is returned. | |
Returns | |
------- | |
bp : BPoly | |
Piecewise polynomial of order k + nu representing the | |
antiderivative of this polynomial. | |
Notes | |
----- | |
If antiderivative is computed and ``self.extrapolate='periodic'``, | |
it will be set to False for the returned instance. This is done because | |
the antiderivative is no longer periodic and its correct evaluation | |
outside of the initially given x interval is difficult. | |
""" | |
if nu <= 0: | |
return self.derivative(-nu) | |
if nu > 1: | |
bp = self | |
for k in range(nu): | |
bp = bp.antiderivative() | |
return bp | |
# Construct the indefinite integrals on individual intervals | |
c, x = self.c, self.x | |
k = c.shape[0] | |
c2 = np.zeros((k+1,) + c.shape[1:], dtype=c.dtype) | |
c2[1:, ...] = np.cumsum(c, axis=0) / k | |
delta = x[1:] - x[:-1] | |
c2 *= delta[(None, slice(None)) + (None,)*(c.ndim-2)] | |
# Now fix continuity: on the very first interval, take the integration | |
# constant to be zero; on an interval [x_j, x_{j+1}) with j>0, | |
# the integration constant is then equal to the jump of the `bp` at x_j. | |
# The latter is given by the coefficient of B_{n+1, n+1} | |
# *on the previous interval* (other B. polynomials are zero at the | |
# breakpoint). Finally, use the fact that BPs form a partition of unity. | |
c2[:,1:] += np.cumsum(c2[k, :], axis=0)[:-1] | |
if self.extrapolate == 'periodic': | |
extrapolate = False | |
else: | |
extrapolate = self.extrapolate | |
return self.construct_fast(c2, x, extrapolate, axis=self.axis) | |
def integrate(self, a, b, extrapolate=None): | |
""" | |
Compute a definite integral over a piecewise polynomial. | |
Parameters | |
---------- | |
a : float | |
Lower integration bound | |
b : float | |
Upper integration bound | |
extrapolate : {bool, 'periodic', None}, optional | |
Whether to extrapolate to out-of-bounds points based on first | |
and last intervals, or to return NaNs. If 'periodic', periodic | |
extrapolation is used. If None (default), use `self.extrapolate`. | |
Returns | |
------- | |
array_like | |
Definite integral of the piecewise polynomial over [a, b] | |
""" | |
# XXX: can probably use instead the fact that | |
# \int_0^{1} B_{j, n}(x) \dx = 1/(n+1) | |
ib = self.antiderivative() | |
if extrapolate is None: | |
extrapolate = self.extrapolate | |
# ib.extrapolate shouldn't be 'periodic', it is converted to | |
# False for 'periodic. in antiderivative() call. | |
if extrapolate != 'periodic': | |
ib.extrapolate = extrapolate | |
if extrapolate == 'periodic': | |
# Split the integral into the part over period (can be several | |
# of them) and the remaining part. | |
# For simplicity and clarity convert to a <= b case. | |
if a <= b: | |
sign = 1 | |
else: | |
a, b = b, a | |
sign = -1 | |
xs, xe = self.x[0], self.x[-1] | |
period = xe - xs | |
interval = b - a | |
n_periods, left = divmod(interval, period) | |
res = n_periods * (ib(xe) - ib(xs)) | |
# Map a and b to [xs, xe]. | |
a = xs + (a - xs) % period | |
b = a + left | |
# If b <= xe then we need to integrate over [a, b], otherwise | |
# over [a, xe] and from xs to what is remained. | |
if b <= xe: | |
res += ib(b) - ib(a) | |
else: | |
res += ib(xe) - ib(a) + ib(xs + left + a - xe) - ib(xs) | |
return sign * res | |
else: | |
return ib(b) - ib(a) | |
def extend(self, c, x): | |
k = max(self.c.shape[0], c.shape[0]) | |
self.c = self._raise_degree(self.c, k - self.c.shape[0]) | |
c = self._raise_degree(c, k - c.shape[0]) | |
return _PPolyBase.extend(self, c, x) | |
extend.__doc__ = _PPolyBase.extend.__doc__ | |
def from_power_basis(cls, pp, extrapolate=None): | |
""" | |
Construct a piecewise polynomial in Bernstein basis | |
from a power basis polynomial. | |
Parameters | |
---------- | |
pp : PPoly | |
A piecewise polynomial in the power basis | |
extrapolate : bool or 'periodic', optional | |
If bool, determines whether to extrapolate to out-of-bounds points | |
based on first and last intervals, or to return NaNs. | |
If 'periodic', periodic extrapolation is used. Default is True. | |
""" | |
if not isinstance(pp, PPoly): | |
raise TypeError(".from_power_basis only accepts PPoly instances. " | |
"Got %s instead." % type(pp)) | |
dx = np.diff(pp.x) | |
k = pp.c.shape[0] - 1 # polynomial order | |
rest = (None,)*(pp.c.ndim-2) | |
c = np.zeros_like(pp.c) | |
for a in range(k+1): | |
factor = pp.c[a] / comb(k, k-a) * dx[(slice(None),)+rest]**(k-a) | |
for j in range(k-a, k+1): | |
c[j] += factor * comb(j, k-a) | |
if extrapolate is None: | |
extrapolate = pp.extrapolate | |
return cls.construct_fast(c, pp.x, extrapolate, pp.axis) | |
def from_derivatives(cls, xi, yi, orders=None, extrapolate=None): | |
"""Construct a piecewise polynomial in the Bernstein basis, | |
compatible with the specified values and derivatives at breakpoints. | |
Parameters | |
---------- | |
xi : array_like | |
sorted 1-D array of x-coordinates | |
yi : array_like or list of array_likes | |
``yi[i][j]`` is the ``j``\\ th derivative known at ``xi[i]`` | |
orders : None or int or array_like of ints. Default: None. | |
Specifies the degree of local polynomials. If not None, some | |
derivatives are ignored. | |
extrapolate : bool or 'periodic', optional | |
If bool, determines whether to extrapolate to out-of-bounds points | |
based on first and last intervals, or to return NaNs. | |
If 'periodic', periodic extrapolation is used. Default is True. | |
Notes | |
----- | |
If ``k`` derivatives are specified at a breakpoint ``x``, the | |
constructed polynomial is exactly ``k`` times continuously | |
differentiable at ``x``, unless the ``order`` is provided explicitly. | |
In the latter case, the smoothness of the polynomial at | |
the breakpoint is controlled by the ``order``. | |
Deduces the number of derivatives to match at each end | |
from ``order`` and the number of derivatives available. If | |
possible it uses the same number of derivatives from | |
each end; if the number is odd it tries to take the | |
extra one from y2. In any case if not enough derivatives | |
are available at one end or another it draws enough to | |
make up the total from the other end. | |
If the order is too high and not enough derivatives are available, | |
an exception is raised. | |
Examples | |
-------- | |
>>> from scipy.interpolate import BPoly | |
>>> BPoly.from_derivatives([0, 1], [[1, 2], [3, 4]]) | |
Creates a polynomial `f(x)` of degree 3, defined on `[0, 1]` | |
such that `f(0) = 1, df/dx(0) = 2, f(1) = 3, df/dx(1) = 4` | |
>>> BPoly.from_derivatives([0, 1, 2], [[0, 1], [0], [2]]) | |
Creates a piecewise polynomial `f(x)`, such that | |
`f(0) = f(1) = 0`, `f(2) = 2`, and `df/dx(0) = 1`. | |
Based on the number of derivatives provided, the order of the | |
local polynomials is 2 on `[0, 1]` and 1 on `[1, 2]`. | |
Notice that no restriction is imposed on the derivatives at | |
``x = 1`` and ``x = 2``. | |
Indeed, the explicit form of the polynomial is:: | |
f(x) = | x * (1 - x), 0 <= x < 1 | |
| 2 * (x - 1), 1 <= x <= 2 | |
So that f'(1-0) = -1 and f'(1+0) = 2 | |
""" | |
xi = np.asarray(xi) | |
if len(xi) != len(yi): | |
raise ValueError("xi and yi need to have the same length") | |
if np.any(xi[1:] - xi[:1] <= 0): | |
raise ValueError("x coordinates are not in increasing order") | |
# number of intervals | |
m = len(xi) - 1 | |
# global poly order is k-1, local orders are <=k and can vary | |
try: | |
k = max(len(yi[i]) + len(yi[i+1]) for i in range(m)) | |
except TypeError as e: | |
raise ValueError( | |
"Using a 1-D array for y? Please .reshape(-1, 1)." | |
) from e | |
if orders is None: | |
orders = [None] * m | |
else: | |
if isinstance(orders, (int, np.integer)): | |
orders = [orders] * m | |
k = max(k, max(orders)) | |
if any(o <= 0 for o in orders): | |
raise ValueError("Orders must be positive.") | |
c = [] | |
for i in range(m): | |
y1, y2 = yi[i], yi[i+1] | |
if orders[i] is None: | |
n1, n2 = len(y1), len(y2) | |
else: | |
n = orders[i]+1 | |
n1 = min(n//2, len(y1)) | |
n2 = min(n - n1, len(y2)) | |
n1 = min(n - n2, len(y2)) | |
if n1+n2 != n: | |
mesg = ("Point %g has %d derivatives, point %g" | |
" has %d derivatives, but order %d requested" % ( | |
xi[i], len(y1), xi[i+1], len(y2), orders[i])) | |
raise ValueError(mesg) | |
if not (n1 <= len(y1) and n2 <= len(y2)): | |
raise ValueError("`order` input incompatible with" | |
" length y1 or y2.") | |
b = BPoly._construct_from_derivatives(xi[i], xi[i+1], | |
y1[:n1], y2[:n2]) | |
if len(b) < k: | |
b = BPoly._raise_degree(b, k - len(b)) | |
c.append(b) | |
c = np.asarray(c) | |
return cls(c.swapaxes(0, 1), xi, extrapolate) | |
def _construct_from_derivatives(xa, xb, ya, yb): | |
r"""Compute the coefficients of a polynomial in the Bernstein basis | |
given the values and derivatives at the edges. | |
Return the coefficients of a polynomial in the Bernstein basis | |
defined on ``[xa, xb]`` and having the values and derivatives at the | |
endpoints `xa` and `xb` as specified by `ya` and `yb`. | |
The polynomial constructed is of the minimal possible degree, i.e., | |
if the lengths of `ya` and `yb` are `na` and `nb`, the degree | |
of the polynomial is ``na + nb - 1``. | |
Parameters | |
---------- | |
xa : float | |
Left-hand end point of the interval | |
xb : float | |
Right-hand end point of the interval | |
ya : array_like | |
Derivatives at `xa`. ``ya[0]`` is the value of the function, and | |
``ya[i]`` for ``i > 0`` is the value of the ``i``\ th derivative. | |
yb : array_like | |
Derivatives at `xb`. | |
Returns | |
------- | |
array | |
coefficient array of a polynomial having specified derivatives | |
Notes | |
----- | |
This uses several facts from life of Bernstein basis functions. | |
First of all, | |
.. math:: b'_{a, n} = n (b_{a-1, n-1} - b_{a, n-1}) | |
If B(x) is a linear combination of the form | |
.. math:: B(x) = \sum_{a=0}^{n} c_a b_{a, n}, | |
then :math: B'(x) = n \sum_{a=0}^{n-1} (c_{a+1} - c_{a}) b_{a, n-1}. | |
Iterating the latter one, one finds for the q-th derivative | |
.. math:: B^{q}(x) = n!/(n-q)! \sum_{a=0}^{n-q} Q_a b_{a, n-q}, | |
with | |
.. math:: Q_a = \sum_{j=0}^{q} (-)^{j+q} comb(q, j) c_{j+a} | |
This way, only `a=0` contributes to :math: `B^{q}(x = xa)`, and | |
`c_q` are found one by one by iterating `q = 0, ..., na`. | |
At ``x = xb`` it's the same with ``a = n - q``. | |
""" | |
ya, yb = np.asarray(ya), np.asarray(yb) | |
if ya.shape[1:] != yb.shape[1:]: | |
raise ValueError('Shapes of ya {} and yb {} are incompatible' | |
.format(ya.shape, yb.shape)) | |
dta, dtb = ya.dtype, yb.dtype | |
if (np.issubdtype(dta, np.complexfloating) or | |
np.issubdtype(dtb, np.complexfloating)): | |
dt = np.complex128 | |
else: | |
dt = np.float64 | |
na, nb = len(ya), len(yb) | |
n = na + nb | |
c = np.empty((na+nb,) + ya.shape[1:], dtype=dt) | |
# compute coefficients of a polynomial degree na+nb-1 | |
# walk left-to-right | |
for q in range(0, na): | |
c[q] = ya[q] / spec.poch(n - q, q) * (xb - xa)**q | |
for j in range(0, q): | |
c[q] -= (-1)**(j+q) * comb(q, j) * c[j] | |
# now walk right-to-left | |
for q in range(0, nb): | |
c[-q-1] = yb[q] / spec.poch(n - q, q) * (-1)**q * (xb - xa)**q | |
for j in range(0, q): | |
c[-q-1] -= (-1)**(j+1) * comb(q, j+1) * c[-q+j] | |
return c | |
def _raise_degree(c, d): | |
r"""Raise a degree of a polynomial in the Bernstein basis. | |
Given the coefficients of a polynomial degree `k`, return (the | |
coefficients of) the equivalent polynomial of degree `k+d`. | |
Parameters | |
---------- | |
c : array_like | |
coefficient array, 1-D | |
d : integer | |
Returns | |
------- | |
array | |
coefficient array, 1-D array of length `c.shape[0] + d` | |
Notes | |
----- | |
This uses the fact that a Bernstein polynomial `b_{a, k}` can be | |
identically represented as a linear combination of polynomials of | |
a higher degree `k+d`: | |
.. math:: b_{a, k} = comb(k, a) \sum_{j=0}^{d} b_{a+j, k+d} \ | |
comb(d, j) / comb(k+d, a+j) | |
""" | |
if d == 0: | |
return c | |
k = c.shape[0] - 1 | |
out = np.zeros((c.shape[0] + d,) + c.shape[1:], dtype=c.dtype) | |
for a in range(c.shape[0]): | |
f = c[a] * comb(k, a) | |
for j in range(d+1): | |
out[a+j] += f * comb(d, j) / comb(k+d, a+j) | |
return out | |
class NdPPoly: | |
""" | |
Piecewise tensor product polynomial | |
The value at point ``xp = (x', y', z', ...)`` is evaluated by first | |
computing the interval indices `i` such that:: | |
x[0][i[0]] <= x' < x[0][i[0]+1] | |
x[1][i[1]] <= y' < x[1][i[1]+1] | |
... | |
and then computing:: | |
S = sum(c[k0-m0-1,...,kn-mn-1,i[0],...,i[n]] | |
* (xp[0] - x[0][i[0]])**m0 | |
* ... | |
* (xp[n] - x[n][i[n]])**mn | |
for m0 in range(k[0]+1) | |
... | |
for mn in range(k[n]+1)) | |
where ``k[j]`` is the degree of the polynomial in dimension j. This | |
representation is the piecewise multivariate power basis. | |
Parameters | |
---------- | |
c : ndarray, shape (k0, ..., kn, m0, ..., mn, ...) | |
Polynomial coefficients, with polynomial order `kj` and | |
`mj+1` intervals for each dimension `j`. | |
x : ndim-tuple of ndarrays, shapes (mj+1,) | |
Polynomial breakpoints for each dimension. These must be | |
sorted in increasing order. | |
extrapolate : bool, optional | |
Whether to extrapolate to out-of-bounds points based on first | |
and last intervals, or to return NaNs. Default: True. | |
Attributes | |
---------- | |
x : tuple of ndarrays | |
Breakpoints. | |
c : ndarray | |
Coefficients of the polynomials. | |
Methods | |
------- | |
__call__ | |
derivative | |
antiderivative | |
integrate | |
integrate_1d | |
construct_fast | |
See also | |
-------- | |
PPoly : piecewise polynomials in 1D | |
Notes | |
----- | |
High-order polynomials in the power basis can be numerically | |
unstable. | |
""" | |
def __init__(self, c, x, extrapolate=None): | |
self.x = tuple(np.ascontiguousarray(v, dtype=np.float64) for v in x) | |
self.c = np.asarray(c) | |
if extrapolate is None: | |
extrapolate = True | |
self.extrapolate = bool(extrapolate) | |
ndim = len(self.x) | |
if any(v.ndim != 1 for v in self.x): | |
raise ValueError("x arrays must all be 1-dimensional") | |
if any(v.size < 2 for v in self.x): | |
raise ValueError("x arrays must all contain at least 2 points") | |
if c.ndim < 2*ndim: | |
raise ValueError("c must have at least 2*len(x) dimensions") | |
if any(np.any(v[1:] - v[:-1] < 0) for v in self.x): | |
raise ValueError("x-coordinates are not in increasing order") | |
if any(a != b.size - 1 for a, b in zip(c.shape[ndim:2*ndim], self.x)): | |
raise ValueError("x and c do not agree on the number of intervals") | |
dtype = self._get_dtype(self.c.dtype) | |
self.c = np.ascontiguousarray(self.c, dtype=dtype) | |
def construct_fast(cls, c, x, extrapolate=None): | |
""" | |
Construct the piecewise polynomial without making checks. | |
Takes the same parameters as the constructor. Input arguments | |
``c`` and ``x`` must be arrays of the correct shape and type. The | |
``c`` array can only be of dtypes float and complex, and ``x`` | |
array must have dtype float. | |
""" | |
self = object.__new__(cls) | |
self.c = c | |
self.x = x | |
if extrapolate is None: | |
extrapolate = True | |
self.extrapolate = extrapolate | |
return self | |
def _get_dtype(self, dtype): | |
if np.issubdtype(dtype, np.complexfloating) \ | |
or np.issubdtype(self.c.dtype, np.complexfloating): | |
return np.complex128 | |
else: | |
return np.float64 | |
def _ensure_c_contiguous(self): | |
if not self.c.flags.c_contiguous: | |
self.c = self.c.copy() | |
if not isinstance(self.x, tuple): | |
self.x = tuple(self.x) | |
def __call__(self, x, nu=None, extrapolate=None): | |
""" | |
Evaluate the piecewise polynomial or its derivative | |
Parameters | |
---------- | |
x : array-like | |
Points to evaluate the interpolant at. | |
nu : tuple, optional | |
Orders of derivatives to evaluate. Each must be non-negative. | |
extrapolate : bool, optional | |
Whether to extrapolate to out-of-bounds points based on first | |
and last intervals, or to return NaNs. | |
Returns | |
------- | |
y : array-like | |
Interpolated values. Shape is determined by replacing | |
the interpolation axis in the original array with the shape of x. | |
Notes | |
----- | |
Derivatives are evaluated piecewise for each polynomial | |
segment, even if the polynomial is not differentiable at the | |
breakpoints. The polynomial intervals are considered half-open, | |
``[a, b)``, except for the last interval which is closed | |
``[a, b]``. | |
""" | |
if extrapolate is None: | |
extrapolate = self.extrapolate | |
else: | |
extrapolate = bool(extrapolate) | |
ndim = len(self.x) | |
x = _ndim_coords_from_arrays(x) | |
x_shape = x.shape | |
x = np.ascontiguousarray(x.reshape(-1, x.shape[-1]), dtype=np.float64) | |
if nu is None: | |
nu = np.zeros((ndim,), dtype=np.intc) | |
else: | |
nu = np.asarray(nu, dtype=np.intc) | |
if nu.ndim != 1 or nu.shape[0] != ndim: | |
raise ValueError("invalid number of derivative orders nu") | |
dim1 = prod(self.c.shape[:ndim]) | |
dim2 = prod(self.c.shape[ndim:2*ndim]) | |
dim3 = prod(self.c.shape[2*ndim:]) | |
ks = np.array(self.c.shape[:ndim], dtype=np.intc) | |
out = np.empty((x.shape[0], dim3), dtype=self.c.dtype) | |
self._ensure_c_contiguous() | |
_ppoly.evaluate_nd(self.c.reshape(dim1, dim2, dim3), | |
self.x, | |
ks, | |
x, | |
nu, | |
bool(extrapolate), | |
out) | |
return out.reshape(x_shape[:-1] + self.c.shape[2*ndim:]) | |
def _derivative_inplace(self, nu, axis): | |
""" | |
Compute 1-D derivative along a selected dimension in-place | |
May result to non-contiguous c array. | |
""" | |
if nu < 0: | |
return self._antiderivative_inplace(-nu, axis) | |
ndim = len(self.x) | |
axis = axis % ndim | |
# reduce order | |
if nu == 0: | |
# noop | |
return | |
else: | |
sl = [slice(None)]*ndim | |
sl[axis] = slice(None, -nu, None) | |
c2 = self.c[tuple(sl)] | |
if c2.shape[axis] == 0: | |
# derivative of order 0 is zero | |
shp = list(c2.shape) | |
shp[axis] = 1 | |
c2 = np.zeros(shp, dtype=c2.dtype) | |
# multiply by the correct rising factorials | |
factor = spec.poch(np.arange(c2.shape[axis], 0, -1), nu) | |
sl = [None]*c2.ndim | |
sl[axis] = slice(None) | |
c2 *= factor[tuple(sl)] | |
self.c = c2 | |
def _antiderivative_inplace(self, nu, axis): | |
""" | |
Compute 1-D antiderivative along a selected dimension | |
May result to non-contiguous c array. | |
""" | |
if nu <= 0: | |
return self._derivative_inplace(-nu, axis) | |
ndim = len(self.x) | |
axis = axis % ndim | |
perm = list(range(ndim)) | |
perm[0], perm[axis] = perm[axis], perm[0] | |
perm = perm + list(range(ndim, self.c.ndim)) | |
c = self.c.transpose(perm) | |
c2 = np.zeros((c.shape[0] + nu,) + c.shape[1:], | |
dtype=c.dtype) | |
c2[:-nu] = c | |
# divide by the correct rising factorials | |
factor = spec.poch(np.arange(c.shape[0], 0, -1), nu) | |
c2[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)] | |
# fix continuity of added degrees of freedom | |
perm2 = list(range(c2.ndim)) | |
perm2[1], perm2[ndim+axis] = perm2[ndim+axis], perm2[1] | |
c2 = c2.transpose(perm2) | |
c2 = c2.copy() | |
_ppoly.fix_continuity(c2.reshape(c2.shape[0], c2.shape[1], -1), | |
self.x[axis], nu-1) | |
c2 = c2.transpose(perm2) | |
c2 = c2.transpose(perm) | |
# Done | |
self.c = c2 | |
def derivative(self, nu): | |
""" | |
Construct a new piecewise polynomial representing the derivative. | |
Parameters | |
---------- | |
nu : ndim-tuple of int | |
Order of derivatives to evaluate for each dimension. | |
If negative, the antiderivative is returned. | |
Returns | |
------- | |
pp : NdPPoly | |
Piecewise polynomial of orders (k[0] - nu[0], ..., k[n] - nu[n]) | |
representing the derivative of this polynomial. | |
Notes | |
----- | |
Derivatives are evaluated piecewise for each polynomial | |
segment, even if the polynomial is not differentiable at the | |
breakpoints. The polynomial intervals in each dimension are | |
considered half-open, ``[a, b)``, except for the last interval | |
which is closed ``[a, b]``. | |
""" | |
p = self.construct_fast(self.c.copy(), self.x, self.extrapolate) | |
for axis, n in enumerate(nu): | |
p._derivative_inplace(n, axis) | |
p._ensure_c_contiguous() | |
return p | |
def antiderivative(self, nu): | |
""" | |
Construct a new piecewise polynomial representing the antiderivative. | |
Antiderivative is also the indefinite integral of the function, | |
and derivative is its inverse operation. | |
Parameters | |
---------- | |
nu : ndim-tuple of int | |
Order of derivatives to evaluate for each dimension. | |
If negative, the derivative is returned. | |
Returns | |
------- | |
pp : PPoly | |
Piecewise polynomial of order k2 = k + n representing | |
the antiderivative of this polynomial. | |
Notes | |
----- | |
The antiderivative returned by this function is continuous and | |
continuously differentiable to order n-1, up to floating point | |
rounding error. | |
""" | |
p = self.construct_fast(self.c.copy(), self.x, self.extrapolate) | |
for axis, n in enumerate(nu): | |
p._antiderivative_inplace(n, axis) | |
p._ensure_c_contiguous() | |
return p | |
def integrate_1d(self, a, b, axis, extrapolate=None): | |
r""" | |
Compute NdPPoly representation for one dimensional definite integral | |
The result is a piecewise polynomial representing the integral: | |
.. math:: | |
p(y, z, ...) = \int_a^b dx\, p(x, y, z, ...) | |
where the dimension integrated over is specified with the | |
`axis` parameter. | |
Parameters | |
---------- | |
a, b : float | |
Lower and upper bound for integration. | |
axis : int | |
Dimension over which to compute the 1-D integrals | |
extrapolate : bool, optional | |
Whether to extrapolate to out-of-bounds points based on first | |
and last intervals, or to return NaNs. | |
Returns | |
------- | |
ig : NdPPoly or array-like | |
Definite integral of the piecewise polynomial over [a, b]. | |
If the polynomial was 1D, an array is returned, | |
otherwise, an NdPPoly object. | |
""" | |
if extrapolate is None: | |
extrapolate = self.extrapolate | |
else: | |
extrapolate = bool(extrapolate) | |
ndim = len(self.x) | |
axis = int(axis) % ndim | |
# reuse 1-D integration routines | |
c = self.c | |
swap = list(range(c.ndim)) | |
swap.insert(0, swap[axis]) | |
del swap[axis + 1] | |
swap.insert(1, swap[ndim + axis]) | |
del swap[ndim + axis + 1] | |
c = c.transpose(swap) | |
p = PPoly.construct_fast(c.reshape(c.shape[0], c.shape[1], -1), | |
self.x[axis], | |
extrapolate=extrapolate) | |
out = p.integrate(a, b, extrapolate=extrapolate) | |
# Construct result | |
if ndim == 1: | |
return out.reshape(c.shape[2:]) | |
else: | |
c = out.reshape(c.shape[2:]) | |
x = self.x[:axis] + self.x[axis+1:] | |
return self.construct_fast(c, x, extrapolate=extrapolate) | |
def integrate(self, ranges, extrapolate=None): | |
""" | |
Compute a definite integral over a piecewise polynomial. | |
Parameters | |
---------- | |
ranges : ndim-tuple of 2-tuples float | |
Sequence of lower and upper bounds for each dimension, | |
``[(a[0], b[0]), ..., (a[ndim-1], b[ndim-1])]`` | |
extrapolate : bool, optional | |
Whether to extrapolate to out-of-bounds points based on first | |
and last intervals, or to return NaNs. | |
Returns | |
------- | |
ig : array_like | |
Definite integral of the piecewise polynomial over | |
[a[0], b[0]] x ... x [a[ndim-1], b[ndim-1]] | |
""" | |
ndim = len(self.x) | |
if extrapolate is None: | |
extrapolate = self.extrapolate | |
else: | |
extrapolate = bool(extrapolate) | |
if not hasattr(ranges, '__len__') or len(ranges) != ndim: | |
raise ValueError("Range not a sequence of correct length") | |
self._ensure_c_contiguous() | |
# Reuse 1D integration routine | |
c = self.c | |
for n, (a, b) in enumerate(ranges): | |
swap = list(range(c.ndim)) | |
swap.insert(1, swap[ndim - n]) | |
del swap[ndim - n + 1] | |
c = c.transpose(swap) | |
p = PPoly.construct_fast(c, self.x[n], extrapolate=extrapolate) | |
out = p.integrate(a, b, extrapolate=extrapolate) | |
c = out.reshape(c.shape[2:]) | |
return c | |