peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/interpolate
/_ndgriddata.py
""" | |
Convenience interface to N-D interpolation | |
.. versionadded:: 0.9 | |
""" | |
import numpy as np | |
from .interpnd import LinearNDInterpolator, NDInterpolatorBase, \ | |
CloughTocher2DInterpolator, _ndim_coords_from_arrays | |
from scipy.spatial import cKDTree | |
__all__ = ['griddata', 'NearestNDInterpolator', 'LinearNDInterpolator', | |
'CloughTocher2DInterpolator'] | |
#------------------------------------------------------------------------------ | |
# Nearest-neighbor interpolation | |
#------------------------------------------------------------------------------ | |
class NearestNDInterpolator(NDInterpolatorBase): | |
"""NearestNDInterpolator(x, y). | |
Nearest-neighbor interpolator in N > 1 dimensions. | |
.. versionadded:: 0.9 | |
Methods | |
------- | |
__call__ | |
Parameters | |
---------- | |
x : (npoints, ndims) 2-D ndarray of floats | |
Data point coordinates. | |
y : (npoints, ) 1-D ndarray of float or complex | |
Data values. | |
rescale : boolean, optional | |
Rescale points to unit cube before performing interpolation. | |
This is useful if some of the input dimensions have | |
incommensurable units and differ by many orders of magnitude. | |
.. versionadded:: 0.14.0 | |
tree_options : dict, optional | |
Options passed to the underlying ``cKDTree``. | |
.. versionadded:: 0.17.0 | |
See Also | |
-------- | |
griddata : | |
Interpolate unstructured D-D data. | |
LinearNDInterpolator : | |
Piecewise linear interpolator in N dimensions. | |
CloughTocher2DInterpolator : | |
Piecewise cubic, C1 smooth, curvature-minimizing interpolator in 2D. | |
interpn : Interpolation on a regular grid or rectilinear grid. | |
RegularGridInterpolator : Interpolator on a regular or rectilinear grid | |
in arbitrary dimensions (`interpn` wraps this | |
class). | |
Notes | |
----- | |
Uses ``scipy.spatial.cKDTree`` | |
.. note:: For data on a regular grid use `interpn` instead. | |
Examples | |
-------- | |
We can interpolate values on a 2D plane: | |
>>> from scipy.interpolate import NearestNDInterpolator | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> rng = np.random.default_rng() | |
>>> x = rng.random(10) - 0.5 | |
>>> y = rng.random(10) - 0.5 | |
>>> z = np.hypot(x, y) | |
>>> X = np.linspace(min(x), max(x)) | |
>>> Y = np.linspace(min(y), max(y)) | |
>>> X, Y = np.meshgrid(X, Y) # 2D grid for interpolation | |
>>> interp = NearestNDInterpolator(list(zip(x, y)), z) | |
>>> Z = interp(X, Y) | |
>>> plt.pcolormesh(X, Y, Z, shading='auto') | |
>>> plt.plot(x, y, "ok", label="input point") | |
>>> plt.legend() | |
>>> plt.colorbar() | |
>>> plt.axis("equal") | |
>>> plt.show() | |
""" | |
def __init__(self, x, y, rescale=False, tree_options=None): | |
NDInterpolatorBase.__init__(self, x, y, rescale=rescale, | |
need_contiguous=False, | |
need_values=False) | |
if tree_options is None: | |
tree_options = dict() | |
self.tree = cKDTree(self.points, **tree_options) | |
self.values = np.asarray(y) | |
def __call__(self, *args, **query_options): | |
""" | |
Evaluate interpolator at given points. | |
Parameters | |
---------- | |
x1, x2, ... xn : array-like of float | |
Points where to interpolate data at. | |
x1, x2, ... xn can be array-like of float with broadcastable shape. | |
or x1 can be array-like of float with shape ``(..., ndim)`` | |
**query_options | |
This allows ``eps``, ``p``, ``distance_upper_bound``, and ``workers`` | |
being passed to the cKDTree's query function to be explicitly set. | |
See `scipy.spatial.cKDTree.query` for an overview of the different options. | |
.. versionadded:: 1.12.0 | |
""" | |
# For the sake of enabling subclassing, NDInterpolatorBase._set_xi performs | |
# some operations which are not required by NearestNDInterpolator.__call__, | |
# hence here we operate on xi directly, without calling a parent class function. | |
xi = _ndim_coords_from_arrays(args, ndim=self.points.shape[1]) | |
xi = self._check_call_shape(xi) | |
xi = self._scale_x(xi) | |
# We need to handle two important cases: | |
# (1) the case where xi has trailing dimensions (..., ndim), and | |
# (2) the case where y has trailing dimensions | |
# We will first flatten xi to deal with case (1), | |
# do the computation in flattened array while retaining y's dimensionality, | |
# and then reshape the interpolated values back to match xi's shape. | |
# Flatten xi for the query | |
xi_flat = xi.reshape(-1, xi.shape[-1]) | |
original_shape = xi.shape | |
flattened_shape = xi_flat.shape | |
# if distance_upper_bound is set to not be infinite, | |
# then we need to consider the case where cKDtree | |
# does not find any points within distance_upper_bound to return. | |
# It marks those points as having infinte distance, which is what will be used | |
# below to mask the array and return only the points that were deemed | |
# to have a close enough neighbor to return something useful. | |
dist, i = self.tree.query(xi_flat, **query_options) | |
valid_mask = np.isfinite(dist) | |
# create a holder interp_values array and fill with nans. | |
if self.values.ndim > 1: | |
interp_shape = flattened_shape[:-1] + self.values.shape[1:] | |
else: | |
interp_shape = flattened_shape[:-1] | |
if np.issubdtype(self.values.dtype, np.complexfloating): | |
interp_values = np.full(interp_shape, np.nan, dtype=self.values.dtype) | |
else: | |
interp_values = np.full(interp_shape, np.nan) | |
interp_values[valid_mask] = self.values[i[valid_mask], ...] | |
if self.values.ndim > 1: | |
new_shape = original_shape[:-1] + self.values.shape[1:] | |
else: | |
new_shape = original_shape[:-1] | |
interp_values = interp_values.reshape(new_shape) | |
return interp_values | |
#------------------------------------------------------------------------------ | |
# Convenience interface function | |
#------------------------------------------------------------------------------ | |
def griddata(points, values, xi, method='linear', fill_value=np.nan, | |
rescale=False): | |
""" | |
Interpolate unstructured D-D data. | |
Parameters | |
---------- | |
points : 2-D ndarray of floats with shape (n, D), or length D tuple of 1-D ndarrays with shape (n,). | |
Data point coordinates. | |
values : ndarray of float or complex, shape (n,) | |
Data values. | |
xi : 2-D ndarray of floats with shape (m, D), or length D tuple of ndarrays broadcastable to the same shape. | |
Points at which to interpolate data. | |
method : {'linear', 'nearest', 'cubic'}, optional | |
Method of interpolation. One of | |
``nearest`` | |
return the value at the data point closest to | |
the point of interpolation. See `NearestNDInterpolator` for | |
more details. | |
``linear`` | |
tessellate the input point set to N-D | |
simplices, and interpolate linearly on each simplex. See | |
`LinearNDInterpolator` for more details. | |
``cubic`` (1-D) | |
return the value determined from a cubic | |
spline. | |
``cubic`` (2-D) | |
return the value determined from a | |
piecewise cubic, continuously differentiable (C1), and | |
approximately curvature-minimizing polynomial surface. See | |
`CloughTocher2DInterpolator` for more details. | |
fill_value : float, optional | |
Value used to fill in for requested points outside of the | |
convex hull of the input points. If not provided, then the | |
default is ``nan``. This option has no effect for the | |
'nearest' method. | |
rescale : bool, optional | |
Rescale points to unit cube before performing interpolation. | |
This is useful if some of the input dimensions have | |
incommensurable units and differ by many orders of magnitude. | |
.. versionadded:: 0.14.0 | |
Returns | |
------- | |
ndarray | |
Array of interpolated values. | |
See Also | |
-------- | |
LinearNDInterpolator : | |
Piecewise linear interpolator in N dimensions. | |
NearestNDInterpolator : | |
Nearest-neighbor interpolator in N dimensions. | |
CloughTocher2DInterpolator : | |
Piecewise cubic, C1 smooth, curvature-minimizing interpolator in 2D. | |
interpn : Interpolation on a regular grid or rectilinear grid. | |
RegularGridInterpolator : Interpolator on a regular or rectilinear grid | |
in arbitrary dimensions (`interpn` wraps this | |
class). | |
Notes | |
----- | |
.. versionadded:: 0.9 | |
.. note:: For data on a regular grid use `interpn` instead. | |
Examples | |
-------- | |
Suppose we want to interpolate the 2-D function | |
>>> import numpy as np | |
>>> def func(x, y): | |
... return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2 | |
on a grid in [0, 1]x[0, 1] | |
>>> grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j] | |
but we only know its values at 1000 data points: | |
>>> rng = np.random.default_rng() | |
>>> points = rng.random((1000, 2)) | |
>>> values = func(points[:,0], points[:,1]) | |
This can be done with `griddata` -- below we try out all of the | |
interpolation methods: | |
>>> from scipy.interpolate import griddata | |
>>> grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest') | |
>>> grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear') | |
>>> grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic') | |
One can see that the exact result is reproduced by all of the | |
methods to some degree, but for this smooth function the piecewise | |
cubic interpolant gives the best results: | |
>>> import matplotlib.pyplot as plt | |
>>> plt.subplot(221) | |
>>> plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower') | |
>>> plt.plot(points[:,0], points[:,1], 'k.', ms=1) | |
>>> plt.title('Original') | |
>>> plt.subplot(222) | |
>>> plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower') | |
>>> plt.title('Nearest') | |
>>> plt.subplot(223) | |
>>> plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower') | |
>>> plt.title('Linear') | |
>>> plt.subplot(224) | |
>>> plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower') | |
>>> plt.title('Cubic') | |
>>> plt.gcf().set_size_inches(6, 6) | |
>>> plt.show() | |
""" # numpy/numpydoc#87 # noqa: E501 | |
points = _ndim_coords_from_arrays(points) | |
if points.ndim < 2: | |
ndim = points.ndim | |
else: | |
ndim = points.shape[-1] | |
if ndim == 1 and method in ('nearest', 'linear', 'cubic'): | |
from ._interpolate import interp1d | |
points = points.ravel() | |
if isinstance(xi, tuple): | |
if len(xi) != 1: | |
raise ValueError("invalid number of dimensions in xi") | |
xi, = xi | |
# Sort points/values together, necessary as input for interp1d | |
idx = np.argsort(points) | |
points = points[idx] | |
values = values[idx] | |
if method == 'nearest': | |
fill_value = 'extrapolate' | |
ip = interp1d(points, values, kind=method, axis=0, bounds_error=False, | |
fill_value=fill_value) | |
return ip(xi) | |
elif method == 'nearest': | |
ip = NearestNDInterpolator(points, values, rescale=rescale) | |
return ip(xi) | |
elif method == 'linear': | |
ip = LinearNDInterpolator(points, values, fill_value=fill_value, | |
rescale=rescale) | |
return ip(xi) | |
elif method == 'cubic' and ndim == 2: | |
ip = CloughTocher2DInterpolator(points, values, fill_value=fill_value, | |
rescale=rescale) | |
return ip(xi) | |
else: | |
raise ValueError("Unknown interpolation method %r for " | |
"%d dimensional data" % (method, ndim)) | |