peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/interpolate
/_pade.py
from numpy import zeros, asarray, eye, poly1d, hstack, r_ | |
from scipy import linalg | |
__all__ = ["pade"] | |
def pade(an, m, n=None): | |
""" | |
Return Pade approximation to a polynomial as the ratio of two polynomials. | |
Parameters | |
---------- | |
an : (N,) array_like | |
Taylor series coefficients. | |
m : int | |
The order of the returned approximating polynomial `q`. | |
n : int, optional | |
The order of the returned approximating polynomial `p`. By default, | |
the order is ``len(an)-1-m``. | |
Returns | |
------- | |
p, q : Polynomial class | |
The Pade approximation of the polynomial defined by `an` is | |
``p(x)/q(x)``. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.interpolate import pade | |
>>> e_exp = [1.0, 1.0, 1.0/2.0, 1.0/6.0, 1.0/24.0, 1.0/120.0] | |
>>> p, q = pade(e_exp, 2) | |
>>> e_exp.reverse() | |
>>> e_poly = np.poly1d(e_exp) | |
Compare ``e_poly(x)`` and the Pade approximation ``p(x)/q(x)`` | |
>>> e_poly(1) | |
2.7166666666666668 | |
>>> p(1)/q(1) | |
2.7179487179487181 | |
""" | |
an = asarray(an) | |
if n is None: | |
n = len(an) - 1 - m | |
if n < 0: | |
raise ValueError("Order of q <m> must be smaller than len(an)-1.") | |
if n < 0: | |
raise ValueError("Order of p <n> must be greater than 0.") | |
N = m + n | |
if N > len(an)-1: | |
raise ValueError("Order of q+p <m+n> must be smaller than len(an).") | |
an = an[:N+1] | |
Akj = eye(N+1, n+1, dtype=an.dtype) | |
Bkj = zeros((N+1, m), dtype=an.dtype) | |
for row in range(1, m+1): | |
Bkj[row,:row] = -(an[:row])[::-1] | |
for row in range(m+1, N+1): | |
Bkj[row,:] = -(an[row-m:row])[::-1] | |
C = hstack((Akj, Bkj)) | |
pq = linalg.solve(C, an) | |
p = pq[:n+1] | |
q = r_[1.0, pq[n+1:]] | |
return poly1d(p[::-1]), poly1d(q[::-1]) | |