peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/interpolate
/_rbfinterp.py
"""Module for RBF interpolation.""" | |
import warnings | |
from itertools import combinations_with_replacement | |
import numpy as np | |
from numpy.linalg import LinAlgError | |
from scipy.spatial import KDTree | |
from scipy.special import comb | |
from scipy.linalg.lapack import dgesv # type: ignore[attr-defined] | |
from ._rbfinterp_pythran import (_build_system, | |
_build_evaluation_coefficients, | |
_polynomial_matrix) | |
__all__ = ["RBFInterpolator"] | |
# These RBFs are implemented. | |
_AVAILABLE = { | |
"linear", | |
"thin_plate_spline", | |
"cubic", | |
"quintic", | |
"multiquadric", | |
"inverse_multiquadric", | |
"inverse_quadratic", | |
"gaussian" | |
} | |
# The shape parameter does not need to be specified when using these RBFs. | |
_SCALE_INVARIANT = {"linear", "thin_plate_spline", "cubic", "quintic"} | |
# For RBFs that are conditionally positive definite of order m, the interpolant | |
# should include polynomial terms with degree >= m - 1. Define the minimum | |
# degrees here. These values are from Chapter 8 of Fasshauer's "Meshfree | |
# Approximation Methods with MATLAB". The RBFs that are not in this dictionary | |
# are positive definite and do not need polynomial terms. | |
_NAME_TO_MIN_DEGREE = { | |
"multiquadric": 0, | |
"linear": 0, | |
"thin_plate_spline": 1, | |
"cubic": 1, | |
"quintic": 2 | |
} | |
def _monomial_powers(ndim, degree): | |
"""Return the powers for each monomial in a polynomial. | |
Parameters | |
---------- | |
ndim : int | |
Number of variables in the polynomial. | |
degree : int | |
Degree of the polynomial. | |
Returns | |
------- | |
(nmonos, ndim) int ndarray | |
Array where each row contains the powers for each variable in a | |
monomial. | |
""" | |
nmonos = comb(degree + ndim, ndim, exact=True) | |
out = np.zeros((nmonos, ndim), dtype=np.dtype("long")) | |
count = 0 | |
for deg in range(degree + 1): | |
for mono in combinations_with_replacement(range(ndim), deg): | |
# `mono` is a tuple of variables in the current monomial with | |
# multiplicity indicating power (e.g., (0, 1, 1) represents x*y**2) | |
for var in mono: | |
out[count, var] += 1 | |
count += 1 | |
return out | |
def _build_and_solve_system(y, d, smoothing, kernel, epsilon, powers): | |
"""Build and solve the RBF interpolation system of equations. | |
Parameters | |
---------- | |
y : (P, N) float ndarray | |
Data point coordinates. | |
d : (P, S) float ndarray | |
Data values at `y`. | |
smoothing : (P,) float ndarray | |
Smoothing parameter for each data point. | |
kernel : str | |
Name of the RBF. | |
epsilon : float | |
Shape parameter. | |
powers : (R, N) int ndarray | |
The exponents for each monomial in the polynomial. | |
Returns | |
------- | |
coeffs : (P + R, S) float ndarray | |
Coefficients for each RBF and monomial. | |
shift : (N,) float ndarray | |
Domain shift used to create the polynomial matrix. | |
scale : (N,) float ndarray | |
Domain scaling used to create the polynomial matrix. | |
""" | |
lhs, rhs, shift, scale = _build_system( | |
y, d, smoothing, kernel, epsilon, powers | |
) | |
_, _, coeffs, info = dgesv(lhs, rhs, overwrite_a=True, overwrite_b=True) | |
if info < 0: | |
raise ValueError(f"The {-info}-th argument had an illegal value.") | |
elif info > 0: | |
msg = "Singular matrix." | |
nmonos = powers.shape[0] | |
if nmonos > 0: | |
pmat = _polynomial_matrix((y - shift)/scale, powers) | |
rank = np.linalg.matrix_rank(pmat) | |
if rank < nmonos: | |
msg = ( | |
"Singular matrix. The matrix of monomials evaluated at " | |
"the data point coordinates does not have full column " | |
f"rank ({rank}/{nmonos})." | |
) | |
raise LinAlgError(msg) | |
return shift, scale, coeffs | |
class RBFInterpolator: | |
"""Radial basis function (RBF) interpolation in N dimensions. | |
Parameters | |
---------- | |
y : (npoints, ndims) array_like | |
2-D array of data point coordinates. | |
d : (npoints, ...) array_like | |
N-D array of data values at `y`. The length of `d` along the first | |
axis must be equal to the length of `y`. Unlike some interpolators, the | |
interpolation axis cannot be changed. | |
neighbors : int, optional | |
If specified, the value of the interpolant at each evaluation point | |
will be computed using only this many nearest data points. All the data | |
points are used by default. | |
smoothing : float or (npoints, ) array_like, optional | |
Smoothing parameter. The interpolant perfectly fits the data when this | |
is set to 0. For large values, the interpolant approaches a least | |
squares fit of a polynomial with the specified degree. Default is 0. | |
kernel : str, optional | |
Type of RBF. This should be one of | |
- 'linear' : ``-r`` | |
- 'thin_plate_spline' : ``r**2 * log(r)`` | |
- 'cubic' : ``r**3`` | |
- 'quintic' : ``-r**5`` | |
- 'multiquadric' : ``-sqrt(1 + r**2)`` | |
- 'inverse_multiquadric' : ``1/sqrt(1 + r**2)`` | |
- 'inverse_quadratic' : ``1/(1 + r**2)`` | |
- 'gaussian' : ``exp(-r**2)`` | |
Default is 'thin_plate_spline'. | |
epsilon : float, optional | |
Shape parameter that scales the input to the RBF. If `kernel` is | |
'linear', 'thin_plate_spline', 'cubic', or 'quintic', this defaults to | |
1 and can be ignored because it has the same effect as scaling the | |
smoothing parameter. Otherwise, this must be specified. | |
degree : int, optional | |
Degree of the added polynomial. For some RBFs the interpolant may not | |
be well-posed if the polynomial degree is too small. Those RBFs and | |
their corresponding minimum degrees are | |
- 'multiquadric' : 0 | |
- 'linear' : 0 | |
- 'thin_plate_spline' : 1 | |
- 'cubic' : 1 | |
- 'quintic' : 2 | |
The default value is the minimum degree for `kernel` or 0 if there is | |
no minimum degree. Set this to -1 for no added polynomial. | |
Notes | |
----- | |
An RBF is a scalar valued function in N-dimensional space whose value at | |
:math:`x` can be expressed in terms of :math:`r=||x - c||`, where :math:`c` | |
is the center of the RBF. | |
An RBF interpolant for the vector of data values :math:`d`, which are from | |
locations :math:`y`, is a linear combination of RBFs centered at :math:`y` | |
plus a polynomial with a specified degree. The RBF interpolant is written | |
as | |
.. math:: | |
f(x) = K(x, y) a + P(x) b, | |
where :math:`K(x, y)` is a matrix of RBFs with centers at :math:`y` | |
evaluated at the points :math:`x`, and :math:`P(x)` is a matrix of | |
monomials, which span polynomials with the specified degree, evaluated at | |
:math:`x`. The coefficients :math:`a` and :math:`b` are the solution to the | |
linear equations | |
.. math:: | |
(K(y, y) + \\lambda I) a + P(y) b = d | |
and | |
.. math:: | |
P(y)^T a = 0, | |
where :math:`\\lambda` is a non-negative smoothing parameter that controls | |
how well we want to fit the data. The data are fit exactly when the | |
smoothing parameter is 0. | |
The above system is uniquely solvable if the following requirements are | |
met: | |
- :math:`P(y)` must have full column rank. :math:`P(y)` always has full | |
column rank when `degree` is -1 or 0. When `degree` is 1, | |
:math:`P(y)` has full column rank if the data point locations are not | |
all collinear (N=2), coplanar (N=3), etc. | |
- If `kernel` is 'multiquadric', 'linear', 'thin_plate_spline', | |
'cubic', or 'quintic', then `degree` must not be lower than the | |
minimum value listed above. | |
- If `smoothing` is 0, then each data point location must be distinct. | |
When using an RBF that is not scale invariant ('multiquadric', | |
'inverse_multiquadric', 'inverse_quadratic', or 'gaussian'), an appropriate | |
shape parameter must be chosen (e.g., through cross validation). Smaller | |
values for the shape parameter correspond to wider RBFs. The problem can | |
become ill-conditioned or singular when the shape parameter is too small. | |
The memory required to solve for the RBF interpolation coefficients | |
increases quadratically with the number of data points, which can become | |
impractical when interpolating more than about a thousand data points. | |
To overcome memory limitations for large interpolation problems, the | |
`neighbors` argument can be specified to compute an RBF interpolant for | |
each evaluation point using only the nearest data points. | |
.. versionadded:: 1.7.0 | |
See Also | |
-------- | |
NearestNDInterpolator | |
LinearNDInterpolator | |
CloughTocher2DInterpolator | |
References | |
---------- | |
.. [1] Fasshauer, G., 2007. Meshfree Approximation Methods with Matlab. | |
World Scientific Publishing Co. | |
.. [2] http://amadeus.math.iit.edu/~fass/603_ch3.pdf | |
.. [3] Wahba, G., 1990. Spline Models for Observational Data. SIAM. | |
.. [4] http://pages.stat.wisc.edu/~wahba/stat860public/lect/lect8/lect8.pdf | |
Examples | |
-------- | |
Demonstrate interpolating scattered data to a grid in 2-D. | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> from scipy.interpolate import RBFInterpolator | |
>>> from scipy.stats.qmc import Halton | |
>>> rng = np.random.default_rng() | |
>>> xobs = 2*Halton(2, seed=rng).random(100) - 1 | |
>>> yobs = np.sum(xobs, axis=1)*np.exp(-6*np.sum(xobs**2, axis=1)) | |
>>> xgrid = np.mgrid[-1:1:50j, -1:1:50j] | |
>>> xflat = xgrid.reshape(2, -1).T | |
>>> yflat = RBFInterpolator(xobs, yobs)(xflat) | |
>>> ygrid = yflat.reshape(50, 50) | |
>>> fig, ax = plt.subplots() | |
>>> ax.pcolormesh(*xgrid, ygrid, vmin=-0.25, vmax=0.25, shading='gouraud') | |
>>> p = ax.scatter(*xobs.T, c=yobs, s=50, ec='k', vmin=-0.25, vmax=0.25) | |
>>> fig.colorbar(p) | |
>>> plt.show() | |
""" | |
def __init__(self, y, d, | |
neighbors=None, | |
smoothing=0.0, | |
kernel="thin_plate_spline", | |
epsilon=None, | |
degree=None): | |
y = np.asarray(y, dtype=float, order="C") | |
if y.ndim != 2: | |
raise ValueError("`y` must be a 2-dimensional array.") | |
ny, ndim = y.shape | |
d_dtype = complex if np.iscomplexobj(d) else float | |
d = np.asarray(d, dtype=d_dtype, order="C") | |
if d.shape[0] != ny: | |
raise ValueError( | |
f"Expected the first axis of `d` to have length {ny}." | |
) | |
d_shape = d.shape[1:] | |
d = d.reshape((ny, -1)) | |
# If `d` is complex, convert it to a float array with twice as many | |
# columns. Otherwise, the LHS matrix would need to be converted to | |
# complex and take up 2x more memory than necessary. | |
d = d.view(float) | |
if np.isscalar(smoothing): | |
smoothing = np.full(ny, smoothing, dtype=float) | |
else: | |
smoothing = np.asarray(smoothing, dtype=float, order="C") | |
if smoothing.shape != (ny,): | |
raise ValueError( | |
"Expected `smoothing` to be a scalar or have shape " | |
f"({ny},)." | |
) | |
kernel = kernel.lower() | |
if kernel not in _AVAILABLE: | |
raise ValueError(f"`kernel` must be one of {_AVAILABLE}.") | |
if epsilon is None: | |
if kernel in _SCALE_INVARIANT: | |
epsilon = 1.0 | |
else: | |
raise ValueError( | |
"`epsilon` must be specified if `kernel` is not one of " | |
f"{_SCALE_INVARIANT}." | |
) | |
else: | |
epsilon = float(epsilon) | |
min_degree = _NAME_TO_MIN_DEGREE.get(kernel, -1) | |
if degree is None: | |
degree = max(min_degree, 0) | |
else: | |
degree = int(degree) | |
if degree < -1: | |
raise ValueError("`degree` must be at least -1.") | |
elif -1 < degree < min_degree: | |
warnings.warn( | |
f"`degree` should not be below {min_degree} except -1 " | |
f"when `kernel` is '{kernel}'." | |
f"The interpolant may not be uniquely " | |
f"solvable, and the smoothing parameter may have an " | |
f"unintuitive effect.", | |
UserWarning, stacklevel=2 | |
) | |
if neighbors is None: | |
nobs = ny | |
else: | |
# Make sure the number of nearest neighbors used for interpolation | |
# does not exceed the number of observations. | |
neighbors = int(min(neighbors, ny)) | |
nobs = neighbors | |
powers = _monomial_powers(ndim, degree) | |
# The polynomial matrix must have full column rank in order for the | |
# interpolant to be well-posed, which is not possible if there are | |
# fewer observations than monomials. | |
if powers.shape[0] > nobs: | |
raise ValueError( | |
f"At least {powers.shape[0]} data points are required when " | |
f"`degree` is {degree} and the number of dimensions is {ndim}." | |
) | |
if neighbors is None: | |
shift, scale, coeffs = _build_and_solve_system( | |
y, d, smoothing, kernel, epsilon, powers | |
) | |
# Make these attributes private since they do not always exist. | |
self._shift = shift | |
self._scale = scale | |
self._coeffs = coeffs | |
else: | |
self._tree = KDTree(y) | |
self.y = y | |
self.d = d | |
self.d_shape = d_shape | |
self.d_dtype = d_dtype | |
self.neighbors = neighbors | |
self.smoothing = smoothing | |
self.kernel = kernel | |
self.epsilon = epsilon | |
self.powers = powers | |
def _chunk_evaluator( | |
self, | |
x, | |
y, | |
shift, | |
scale, | |
coeffs, | |
memory_budget=1000000 | |
): | |
""" | |
Evaluate the interpolation while controlling memory consumption. | |
We chunk the input if we need more memory than specified. | |
Parameters | |
---------- | |
x : (Q, N) float ndarray | |
array of points on which to evaluate | |
y: (P, N) float ndarray | |
array of points on which we know function values | |
shift: (N, ) ndarray | |
Domain shift used to create the polynomial matrix. | |
scale : (N,) float ndarray | |
Domain scaling used to create the polynomial matrix. | |
coeffs: (P+R, S) float ndarray | |
Coefficients in front of basis functions | |
memory_budget: int | |
Total amount of memory (in units of sizeof(float)) we wish | |
to devote for storing the array of coefficients for | |
interpolated points. If we need more memory than that, we | |
chunk the input. | |
Returns | |
------- | |
(Q, S) float ndarray | |
Interpolated array | |
""" | |
nx, ndim = x.shape | |
if self.neighbors is None: | |
nnei = len(y) | |
else: | |
nnei = self.neighbors | |
# in each chunk we consume the same space we already occupy | |
chunksize = memory_budget // (self.powers.shape[0] + nnei) + 1 | |
if chunksize <= nx: | |
out = np.empty((nx, self.d.shape[1]), dtype=float) | |
for i in range(0, nx, chunksize): | |
vec = _build_evaluation_coefficients( | |
x[i:i + chunksize, :], | |
y, | |
self.kernel, | |
self.epsilon, | |
self.powers, | |
shift, | |
scale) | |
out[i:i + chunksize, :] = np.dot(vec, coeffs) | |
else: | |
vec = _build_evaluation_coefficients( | |
x, | |
y, | |
self.kernel, | |
self.epsilon, | |
self.powers, | |
shift, | |
scale) | |
out = np.dot(vec, coeffs) | |
return out | |
def __call__(self, x): | |
"""Evaluate the interpolant at `x`. | |
Parameters | |
---------- | |
x : (Q, N) array_like | |
Evaluation point coordinates. | |
Returns | |
------- | |
(Q, ...) ndarray | |
Values of the interpolant at `x`. | |
""" | |
x = np.asarray(x, dtype=float, order="C") | |
if x.ndim != 2: | |
raise ValueError("`x` must be a 2-dimensional array.") | |
nx, ndim = x.shape | |
if ndim != self.y.shape[1]: | |
raise ValueError("Expected the second axis of `x` to have length " | |
f"{self.y.shape[1]}.") | |
# Our memory budget for storing RBF coefficients is | |
# based on how many floats in memory we already occupy | |
# If this number is below 1e6 we just use 1e6 | |
# This memory budget is used to decide how we chunk | |
# the inputs | |
memory_budget = max(x.size + self.y.size + self.d.size, 1000000) | |
if self.neighbors is None: | |
out = self._chunk_evaluator( | |
x, | |
self.y, | |
self._shift, | |
self._scale, | |
self._coeffs, | |
memory_budget=memory_budget) | |
else: | |
# Get the indices of the k nearest observation points to each | |
# evaluation point. | |
_, yindices = self._tree.query(x, self.neighbors) | |
if self.neighbors == 1: | |
# `KDTree` squeezes the output when neighbors=1. | |
yindices = yindices[:, None] | |
# Multiple evaluation points may have the same neighborhood of | |
# observation points. Make the neighborhoods unique so that we only | |
# compute the interpolation coefficients once for each | |
# neighborhood. | |
yindices = np.sort(yindices, axis=1) | |
yindices, inv = np.unique(yindices, return_inverse=True, axis=0) | |
inv = np.reshape(inv, (-1,)) # flatten, we need 1-D indices | |
# `inv` tells us which neighborhood will be used by each evaluation | |
# point. Now we find which evaluation points will be using each | |
# neighborhood. | |
xindices = [[] for _ in range(len(yindices))] | |
for i, j in enumerate(inv): | |
xindices[j].append(i) | |
out = np.empty((nx, self.d.shape[1]), dtype=float) | |
for xidx, yidx in zip(xindices, yindices): | |
# `yidx` are the indices of the observations in this | |
# neighborhood. `xidx` are the indices of the evaluation points | |
# that are using this neighborhood. | |
xnbr = x[xidx] | |
ynbr = self.y[yidx] | |
dnbr = self.d[yidx] | |
snbr = self.smoothing[yidx] | |
shift, scale, coeffs = _build_and_solve_system( | |
ynbr, | |
dnbr, | |
snbr, | |
self.kernel, | |
self.epsilon, | |
self.powers, | |
) | |
out[xidx] = self._chunk_evaluator( | |
xnbr, | |
ynbr, | |
shift, | |
scale, | |
coeffs, | |
memory_budget=memory_budget) | |
out = out.view(self.d_dtype) | |
out = out.reshape((nx, ) + self.d_shape) | |
return out | |