peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/interpolate
/tests
/test_bsplines.py
import os | |
import operator | |
import itertools | |
import numpy as np | |
from numpy.testing import assert_equal, assert_allclose, assert_ | |
from pytest import raises as assert_raises | |
import pytest | |
from scipy.interpolate import ( | |
BSpline, BPoly, PPoly, make_interp_spline, make_lsq_spline, _bspl, | |
splev, splrep, splprep, splder, splantider, sproot, splint, insert, | |
CubicSpline, NdBSpline, make_smoothing_spline, RegularGridInterpolator, | |
) | |
import scipy.linalg as sl | |
import scipy.sparse.linalg as ssl | |
from scipy.interpolate._bsplines import (_not_a_knot, _augknt, | |
_woodbury_algorithm, _periodic_knots, | |
_make_interp_per_full_matr) | |
import scipy.interpolate._fitpack_impl as _impl | |
from scipy._lib._util import AxisError | |
# XXX: move to the interpolate namespace | |
from scipy.interpolate._ndbspline import make_ndbspl | |
from scipy.interpolate import dfitpack | |
from scipy.interpolate import _bsplines as _b | |
class TestBSpline: | |
def test_ctor(self): | |
# knots should be an ordered 1-D array of finite real numbers | |
assert_raises((TypeError, ValueError), BSpline, | |
**dict(t=[1, 1.j], c=[1.], k=0)) | |
with np.errstate(invalid='ignore'): | |
assert_raises(ValueError, BSpline, **dict(t=[1, np.nan], c=[1.], k=0)) | |
assert_raises(ValueError, BSpline, **dict(t=[1, np.inf], c=[1.], k=0)) | |
assert_raises(ValueError, BSpline, **dict(t=[1, -1], c=[1.], k=0)) | |
assert_raises(ValueError, BSpline, **dict(t=[[1], [1]], c=[1.], k=0)) | |
# for n+k+1 knots and degree k need at least n coefficients | |
assert_raises(ValueError, BSpline, **dict(t=[0, 1, 2], c=[1], k=0)) | |
assert_raises(ValueError, BSpline, | |
**dict(t=[0, 1, 2, 3, 4], c=[1., 1.], k=2)) | |
# non-integer orders | |
assert_raises(TypeError, BSpline, | |
**dict(t=[0., 0., 1., 2., 3., 4.], c=[1., 1., 1.], k="cubic")) | |
assert_raises(TypeError, BSpline, | |
**dict(t=[0., 0., 1., 2., 3., 4.], c=[1., 1., 1.], k=2.5)) | |
# basic interval cannot have measure zero (here: [1..1]) | |
assert_raises(ValueError, BSpline, | |
**dict(t=[0., 0, 1, 1, 2, 3], c=[1., 1, 1], k=2)) | |
# tck vs self.tck | |
n, k = 11, 3 | |
t = np.arange(n+k+1) | |
c = np.random.random(n) | |
b = BSpline(t, c, k) | |
assert_allclose(t, b.t) | |
assert_allclose(c, b.c) | |
assert_equal(k, b.k) | |
def test_tck(self): | |
b = _make_random_spline() | |
tck = b.tck | |
assert_allclose(b.t, tck[0], atol=1e-15, rtol=1e-15) | |
assert_allclose(b.c, tck[1], atol=1e-15, rtol=1e-15) | |
assert_equal(b.k, tck[2]) | |
# b.tck is read-only | |
with pytest.raises(AttributeError): | |
b.tck = 'foo' | |
def test_degree_0(self): | |
xx = np.linspace(0, 1, 10) | |
b = BSpline(t=[0, 1], c=[3.], k=0) | |
assert_allclose(b(xx), 3) | |
b = BSpline(t=[0, 0.35, 1], c=[3, 4], k=0) | |
assert_allclose(b(xx), np.where(xx < 0.35, 3, 4)) | |
def test_degree_1(self): | |
t = [0, 1, 2, 3, 4] | |
c = [1, 2, 3] | |
k = 1 | |
b = BSpline(t, c, k) | |
x = np.linspace(1, 3, 50) | |
assert_allclose(c[0]*B_012(x) + c[1]*B_012(x-1) + c[2]*B_012(x-2), | |
b(x), atol=1e-14) | |
assert_allclose(splev(x, (t, c, k)), b(x), atol=1e-14) | |
def test_bernstein(self): | |
# a special knot vector: Bernstein polynomials | |
k = 3 | |
t = np.asarray([0]*(k+1) + [1]*(k+1)) | |
c = np.asarray([1., 2., 3., 4.]) | |
bp = BPoly(c.reshape(-1, 1), [0, 1]) | |
bspl = BSpline(t, c, k) | |
xx = np.linspace(-1., 2., 10) | |
assert_allclose(bp(xx, extrapolate=True), | |
bspl(xx, extrapolate=True), atol=1e-14) | |
assert_allclose(splev(xx, (t, c, k)), | |
bspl(xx), atol=1e-14) | |
def test_rndm_naive_eval(self): | |
# test random coefficient spline *on the base interval*, | |
# t[k] <= x < t[-k-1] | |
b = _make_random_spline() | |
t, c, k = b.tck | |
xx = np.linspace(t[k], t[-k-1], 50) | |
y_b = b(xx) | |
y_n = [_naive_eval(x, t, c, k) for x in xx] | |
assert_allclose(y_b, y_n, atol=1e-14) | |
y_n2 = [_naive_eval_2(x, t, c, k) for x in xx] | |
assert_allclose(y_b, y_n2, atol=1e-14) | |
def test_rndm_splev(self): | |
b = _make_random_spline() | |
t, c, k = b.tck | |
xx = np.linspace(t[k], t[-k-1], 50) | |
assert_allclose(b(xx), splev(xx, (t, c, k)), atol=1e-14) | |
def test_rndm_splrep(self): | |
np.random.seed(1234) | |
x = np.sort(np.random.random(20)) | |
y = np.random.random(20) | |
tck = splrep(x, y) | |
b = BSpline(*tck) | |
t, k = b.t, b.k | |
xx = np.linspace(t[k], t[-k-1], 80) | |
assert_allclose(b(xx), splev(xx, tck), atol=1e-14) | |
def test_rndm_unity(self): | |
b = _make_random_spline() | |
b.c = np.ones_like(b.c) | |
xx = np.linspace(b.t[b.k], b.t[-b.k-1], 100) | |
assert_allclose(b(xx), 1.) | |
def test_vectorization(self): | |
n, k = 22, 3 | |
t = np.sort(np.random.random(n)) | |
c = np.random.random(size=(n, 6, 7)) | |
b = BSpline(t, c, k) | |
tm, tp = t[k], t[-k-1] | |
xx = tm + (tp - tm) * np.random.random((3, 4, 5)) | |
assert_equal(b(xx).shape, (3, 4, 5, 6, 7)) | |
def test_len_c(self): | |
# for n+k+1 knots, only first n coefs are used. | |
# and BTW this is consistent with FITPACK | |
n, k = 33, 3 | |
t = np.sort(np.random.random(n+k+1)) | |
c = np.random.random(n) | |
# pad coefficients with random garbage | |
c_pad = np.r_[c, np.random.random(k+1)] | |
b, b_pad = BSpline(t, c, k), BSpline(t, c_pad, k) | |
dt = t[-1] - t[0] | |
xx = np.linspace(t[0] - dt, t[-1] + dt, 50) | |
assert_allclose(b(xx), b_pad(xx), atol=1e-14) | |
assert_allclose(b(xx), splev(xx, (t, c, k)), atol=1e-14) | |
assert_allclose(b(xx), splev(xx, (t, c_pad, k)), atol=1e-14) | |
def test_endpoints(self): | |
# base interval is closed | |
b = _make_random_spline() | |
t, _, k = b.tck | |
tm, tp = t[k], t[-k-1] | |
for extrap in (True, False): | |
assert_allclose(b([tm, tp], extrap), | |
b([tm + 1e-10, tp - 1e-10], extrap), atol=1e-9) | |
def test_continuity(self): | |
# assert continuity at internal knots | |
b = _make_random_spline() | |
t, _, k = b.tck | |
assert_allclose(b(t[k+1:-k-1] - 1e-10), b(t[k+1:-k-1] + 1e-10), | |
atol=1e-9) | |
def test_extrap(self): | |
b = _make_random_spline() | |
t, c, k = b.tck | |
dt = t[-1] - t[0] | |
xx = np.linspace(t[k] - dt, t[-k-1] + dt, 50) | |
mask = (t[k] < xx) & (xx < t[-k-1]) | |
# extrap has no effect within the base interval | |
assert_allclose(b(xx[mask], extrapolate=True), | |
b(xx[mask], extrapolate=False)) | |
# extrapolated values agree with FITPACK | |
assert_allclose(b(xx, extrapolate=True), | |
splev(xx, (t, c, k), ext=0)) | |
def test_default_extrap(self): | |
# BSpline defaults to extrapolate=True | |
b = _make_random_spline() | |
t, _, k = b.tck | |
xx = [t[0] - 1, t[-1] + 1] | |
yy = b(xx) | |
assert_(not np.all(np.isnan(yy))) | |
def test_periodic_extrap(self): | |
np.random.seed(1234) | |
t = np.sort(np.random.random(8)) | |
c = np.random.random(4) | |
k = 3 | |
b = BSpline(t, c, k, extrapolate='periodic') | |
n = t.size - (k + 1) | |
dt = t[-1] - t[0] | |
xx = np.linspace(t[k] - dt, t[n] + dt, 50) | |
xy = t[k] + (xx - t[k]) % (t[n] - t[k]) | |
assert_allclose(b(xx), splev(xy, (t, c, k))) | |
# Direct check | |
xx = [-1, 0, 0.5, 1] | |
xy = t[k] + (xx - t[k]) % (t[n] - t[k]) | |
assert_equal(b(xx, extrapolate='periodic'), b(xy, extrapolate=True)) | |
def test_ppoly(self): | |
b = _make_random_spline() | |
t, c, k = b.tck | |
pp = PPoly.from_spline((t, c, k)) | |
xx = np.linspace(t[k], t[-k], 100) | |
assert_allclose(b(xx), pp(xx), atol=1e-14, rtol=1e-14) | |
def test_derivative_rndm(self): | |
b = _make_random_spline() | |
t, c, k = b.tck | |
xx = np.linspace(t[0], t[-1], 50) | |
xx = np.r_[xx, t] | |
for der in range(1, k+1): | |
yd = splev(xx, (t, c, k), der=der) | |
assert_allclose(yd, b(xx, nu=der), atol=1e-14) | |
# higher derivatives all vanish | |
assert_allclose(b(xx, nu=k+1), 0, atol=1e-14) | |
def test_derivative_jumps(self): | |
# example from de Boor, Chap IX, example (24) | |
# NB: knots augmented & corresp coefs are zeroed out | |
# in agreement with the convention (29) | |
k = 2 | |
t = [-1, -1, 0, 1, 1, 3, 4, 6, 6, 6, 7, 7] | |
np.random.seed(1234) | |
c = np.r_[0, 0, np.random.random(5), 0, 0] | |
b = BSpline(t, c, k) | |
# b is continuous at x != 6 (triple knot) | |
x = np.asarray([1, 3, 4, 6]) | |
assert_allclose(b(x[x != 6] - 1e-10), | |
b(x[x != 6] + 1e-10)) | |
assert_(not np.allclose(b(6.-1e-10), b(6+1e-10))) | |
# 1st derivative jumps at double knots, 1 & 6: | |
x0 = np.asarray([3, 4]) | |
assert_allclose(b(x0 - 1e-10, nu=1), | |
b(x0 + 1e-10, nu=1)) | |
x1 = np.asarray([1, 6]) | |
assert_(not np.all(np.allclose(b(x1 - 1e-10, nu=1), | |
b(x1 + 1e-10, nu=1)))) | |
# 2nd derivative is not guaranteed to be continuous either | |
assert_(not np.all(np.allclose(b(x - 1e-10, nu=2), | |
b(x + 1e-10, nu=2)))) | |
def test_basis_element_quadratic(self): | |
xx = np.linspace(-1, 4, 20) | |
b = BSpline.basis_element(t=[0, 1, 2, 3]) | |
assert_allclose(b(xx), | |
splev(xx, (b.t, b.c, b.k)), atol=1e-14) | |
assert_allclose(b(xx), | |
B_0123(xx), atol=1e-14) | |
b = BSpline.basis_element(t=[0, 1, 1, 2]) | |
xx = np.linspace(0, 2, 10) | |
assert_allclose(b(xx), | |
np.where(xx < 1, xx*xx, (2.-xx)**2), atol=1e-14) | |
def test_basis_element_rndm(self): | |
b = _make_random_spline() | |
t, c, k = b.tck | |
xx = np.linspace(t[k], t[-k-1], 20) | |
assert_allclose(b(xx), _sum_basis_elements(xx, t, c, k), atol=1e-14) | |
def test_cmplx(self): | |
b = _make_random_spline() | |
t, c, k = b.tck | |
cc = c * (1. + 3.j) | |
b = BSpline(t, cc, k) | |
b_re = BSpline(t, b.c.real, k) | |
b_im = BSpline(t, b.c.imag, k) | |
xx = np.linspace(t[k], t[-k-1], 20) | |
assert_allclose(b(xx).real, b_re(xx), atol=1e-14) | |
assert_allclose(b(xx).imag, b_im(xx), atol=1e-14) | |
def test_nan(self): | |
# nan in, nan out. | |
b = BSpline.basis_element([0, 1, 1, 2]) | |
assert_(np.isnan(b(np.nan))) | |
def test_derivative_method(self): | |
b = _make_random_spline(k=5) | |
t, c, k = b.tck | |
b0 = BSpline(t, c, k) | |
xx = np.linspace(t[k], t[-k-1], 20) | |
for j in range(1, k): | |
b = b.derivative() | |
assert_allclose(b0(xx, j), b(xx), atol=1e-12, rtol=1e-12) | |
def test_antiderivative_method(self): | |
b = _make_random_spline() | |
t, c, k = b.tck | |
xx = np.linspace(t[k], t[-k-1], 20) | |
assert_allclose(b.antiderivative().derivative()(xx), | |
b(xx), atol=1e-14, rtol=1e-14) | |
# repeat with N-D array for c | |
c = np.c_[c, c, c] | |
c = np.dstack((c, c)) | |
b = BSpline(t, c, k) | |
assert_allclose(b.antiderivative().derivative()(xx), | |
b(xx), atol=1e-14, rtol=1e-14) | |
def test_integral(self): | |
b = BSpline.basis_element([0, 1, 2]) # x for x < 1 else 2 - x | |
assert_allclose(b.integrate(0, 1), 0.5) | |
assert_allclose(b.integrate(1, 0), -1 * 0.5) | |
assert_allclose(b.integrate(1, 0), -0.5) | |
# extrapolate or zeros outside of [0, 2]; default is yes | |
assert_allclose(b.integrate(-1, 1), 0) | |
assert_allclose(b.integrate(-1, 1, extrapolate=True), 0) | |
assert_allclose(b.integrate(-1, 1, extrapolate=False), 0.5) | |
assert_allclose(b.integrate(1, -1, extrapolate=False), -1 * 0.5) | |
# Test ``_fitpack._splint()`` | |
assert_allclose(b.integrate(1, -1, extrapolate=False), | |
_impl.splint(1, -1, b.tck)) | |
# Test ``extrapolate='periodic'``. | |
b.extrapolate = 'periodic' | |
i = b.antiderivative() | |
period_int = i(2) - i(0) | |
assert_allclose(b.integrate(0, 2), period_int) | |
assert_allclose(b.integrate(2, 0), -1 * period_int) | |
assert_allclose(b.integrate(-9, -7), period_int) | |
assert_allclose(b.integrate(-8, -4), 2 * period_int) | |
assert_allclose(b.integrate(0.5, 1.5), i(1.5) - i(0.5)) | |
assert_allclose(b.integrate(1.5, 3), i(1) - i(0) + i(2) - i(1.5)) | |
assert_allclose(b.integrate(1.5 + 12, 3 + 12), | |
i(1) - i(0) + i(2) - i(1.5)) | |
assert_allclose(b.integrate(1.5, 3 + 12), | |
i(1) - i(0) + i(2) - i(1.5) + 6 * period_int) | |
assert_allclose(b.integrate(0, -1), i(0) - i(1)) | |
assert_allclose(b.integrate(-9, -10), i(0) - i(1)) | |
assert_allclose(b.integrate(0, -9), i(1) - i(2) - 4 * period_int) | |
def test_integrate_ppoly(self): | |
# test .integrate method to be consistent with PPoly.integrate | |
x = [0, 1, 2, 3, 4] | |
b = make_interp_spline(x, x) | |
b.extrapolate = 'periodic' | |
p = PPoly.from_spline(b) | |
for x0, x1 in [(-5, 0.5), (0.5, 5), (-4, 13)]: | |
assert_allclose(b.integrate(x0, x1), | |
p.integrate(x0, x1)) | |
def test_subclassing(self): | |
# classmethods should not decay to the base class | |
class B(BSpline): | |
pass | |
b = B.basis_element([0, 1, 2, 2]) | |
assert_equal(b.__class__, B) | |
assert_equal(b.derivative().__class__, B) | |
assert_equal(b.antiderivative().__class__, B) | |
def test_axis(self, axis): | |
n, k = 22, 3 | |
t = np.linspace(0, 1, n + k + 1) | |
sh = [6, 7, 8] | |
# We need the positive axis for some of the indexing and slices used | |
# in this test. | |
pos_axis = axis % 4 | |
sh.insert(pos_axis, n) # [22, 6, 7, 8] etc | |
c = np.random.random(size=sh) | |
b = BSpline(t, c, k, axis=axis) | |
assert_equal(b.c.shape, | |
[sh[pos_axis],] + sh[:pos_axis] + sh[pos_axis+1:]) | |
xp = np.random.random((3, 4, 5)) | |
assert_equal(b(xp).shape, | |
sh[:pos_axis] + list(xp.shape) + sh[pos_axis+1:]) | |
# -c.ndim <= axis < c.ndim | |
for ax in [-c.ndim - 1, c.ndim]: | |
assert_raises(AxisError, BSpline, | |
**dict(t=t, c=c, k=k, axis=ax)) | |
# derivative, antiderivative keeps the axis | |
for b1 in [BSpline(t, c, k, axis=axis).derivative(), | |
BSpline(t, c, k, axis=axis).derivative(2), | |
BSpline(t, c, k, axis=axis).antiderivative(), | |
BSpline(t, c, k, axis=axis).antiderivative(2)]: | |
assert_equal(b1.axis, b.axis) | |
def test_neg_axis(self): | |
k = 2 | |
t = [0, 1, 2, 3, 4, 5, 6] | |
c = np.array([[-1, 2, 0, -1], [2, 0, -3, 1]]) | |
spl = BSpline(t, c, k, axis=-1) | |
spl0 = BSpline(t, c[0], k) | |
spl1 = BSpline(t, c[1], k) | |
assert_equal(spl(2.5), [spl0(2.5), spl1(2.5)]) | |
def test_design_matrix_bc_types(self): | |
''' | |
Splines with different boundary conditions are built on different | |
types of vectors of knots. As far as design matrix depends only on | |
vector of knots, `k` and `x` it is useful to make tests for different | |
boundary conditions (and as following different vectors of knots). | |
''' | |
def run_design_matrix_tests(n, k, bc_type): | |
''' | |
To avoid repetition of code the following function is provided. | |
''' | |
np.random.seed(1234) | |
x = np.sort(np.random.random_sample(n) * 40 - 20) | |
y = np.random.random_sample(n) * 40 - 20 | |
if bc_type == "periodic": | |
y[0] = y[-1] | |
bspl = make_interp_spline(x, y, k=k, bc_type=bc_type) | |
c = np.eye(len(bspl.t) - k - 1) | |
des_matr_def = BSpline(bspl.t, c, k)(x) | |
des_matr_csr = BSpline.design_matrix(x, | |
bspl.t, | |
k).toarray() | |
assert_allclose(des_matr_csr @ bspl.c, y, atol=1e-14) | |
assert_allclose(des_matr_def, des_matr_csr, atol=1e-14) | |
# "clamped" and "natural" work only with `k = 3` | |
n = 11 | |
k = 3 | |
for bc in ["clamped", "natural"]: | |
run_design_matrix_tests(n, k, bc) | |
# "not-a-knot" works with odd `k` | |
for k in range(3, 8, 2): | |
run_design_matrix_tests(n, k, "not-a-knot") | |
# "periodic" works with any `k` (even more than `n`) | |
n = 5 # smaller `n` to test `k > n` case | |
for k in range(2, 7): | |
run_design_matrix_tests(n, k, "periodic") | |
def test_design_matrix_same_as_BSpline_call(self, extrapolate, degree): | |
"""Test that design_matrix(x) is equivalent to BSpline(..)(x).""" | |
np.random.seed(1234) | |
x = np.random.random_sample(10 * (degree + 1)) | |
xmin, xmax = np.amin(x), np.amax(x) | |
k = degree | |
t = np.r_[np.linspace(xmin - 2, xmin - 1, degree), | |
np.linspace(xmin, xmax, 2 * (degree + 1)), | |
np.linspace(xmax + 1, xmax + 2, degree)] | |
c = np.eye(len(t) - k - 1) | |
bspline = BSpline(t, c, k, extrapolate) | |
assert_allclose( | |
bspline(x), BSpline.design_matrix(x, t, k, extrapolate).toarray() | |
) | |
# extrapolation regime | |
x = np.array([xmin - 10, xmin - 1, xmax + 1.5, xmax + 10]) | |
if not extrapolate: | |
with pytest.raises(ValueError): | |
BSpline.design_matrix(x, t, k, extrapolate) | |
else: | |
assert_allclose( | |
bspline(x), | |
BSpline.design_matrix(x, t, k, extrapolate).toarray() | |
) | |
def test_design_matrix_x_shapes(self): | |
# test for different `x` shapes | |
np.random.seed(1234) | |
n = 10 | |
k = 3 | |
x = np.sort(np.random.random_sample(n) * 40 - 20) | |
y = np.random.random_sample(n) * 40 - 20 | |
bspl = make_interp_spline(x, y, k=k) | |
for i in range(1, 4): | |
xc = x[:i] | |
yc = y[:i] | |
des_matr_csr = BSpline.design_matrix(xc, | |
bspl.t, | |
k).toarray() | |
assert_allclose(des_matr_csr @ bspl.c, yc, atol=1e-14) | |
def test_design_matrix_t_shapes(self): | |
# test for minimal possible `t` shape | |
t = [1., 1., 1., 2., 3., 4., 4., 4.] | |
des_matr = BSpline.design_matrix(2., t, 3).toarray() | |
assert_allclose(des_matr, | |
[[0.25, 0.58333333, 0.16666667, 0.]], | |
atol=1e-14) | |
def test_design_matrix_asserts(self): | |
np.random.seed(1234) | |
n = 10 | |
k = 3 | |
x = np.sort(np.random.random_sample(n) * 40 - 20) | |
y = np.random.random_sample(n) * 40 - 20 | |
bspl = make_interp_spline(x, y, k=k) | |
# invalid vector of knots (should be a 1D non-descending array) | |
# here the actual vector of knots is reversed, so it is invalid | |
with assert_raises(ValueError): | |
BSpline.design_matrix(x, bspl.t[::-1], k) | |
k = 2 | |
t = [0., 1., 2., 3., 4., 5.] | |
x = [1., 2., 3., 4.] | |
# out of bounds | |
with assert_raises(ValueError): | |
BSpline.design_matrix(x, t, k) | |
def test_from_power_basis(self, bc_type): | |
np.random.seed(1234) | |
x = np.sort(np.random.random(20)) | |
y = np.random.random(20) | |
if bc_type == 'periodic': | |
y[-1] = y[0] | |
cb = CubicSpline(x, y, bc_type=bc_type) | |
bspl = BSpline.from_power_basis(cb, bc_type=bc_type) | |
xx = np.linspace(0, 1, 20) | |
assert_allclose(cb(xx), bspl(xx), atol=1e-15) | |
bspl_new = make_interp_spline(x, y, bc_type=bc_type) | |
assert_allclose(bspl.c, bspl_new.c, atol=1e-15) | |
def test_from_power_basis_complex(self, bc_type): | |
np.random.seed(1234) | |
x = np.sort(np.random.random(20)) | |
y = np.random.random(20) + np.random.random(20) * 1j | |
if bc_type == 'periodic': | |
y[-1] = y[0] | |
cb = CubicSpline(x, y, bc_type=bc_type) | |
bspl = BSpline.from_power_basis(cb, bc_type=bc_type) | |
bspl_new_real = make_interp_spline(x, y.real, bc_type=bc_type) | |
bspl_new_imag = make_interp_spline(x, y.imag, bc_type=bc_type) | |
assert_equal(bspl.c.dtype, (bspl_new_real.c | |
+ 1j * bspl_new_imag.c).dtype) | |
assert_allclose(bspl.c, bspl_new_real.c | |
+ 1j * bspl_new_imag.c, atol=1e-15) | |
def test_from_power_basis_exmp(self): | |
''' | |
For x = [0, 1, 2, 3, 4] and y = [1, 1, 1, 1, 1] | |
the coefficients of Cubic Spline in the power basis: | |
$[[0, 0, 0, 0, 0],\\$ | |
$[0, 0, 0, 0, 0],\\$ | |
$[0, 0, 0, 0, 0],\\$ | |
$[1, 1, 1, 1, 1]]$ | |
It could be shown explicitly that coefficients of the interpolating | |
function in B-spline basis are c = [1, 1, 1, 1, 1, 1, 1] | |
''' | |
x = np.array([0, 1, 2, 3, 4]) | |
y = np.array([1, 1, 1, 1, 1]) | |
bspl = BSpline.from_power_basis(CubicSpline(x, y, bc_type='natural'), | |
bc_type='natural') | |
assert_allclose(bspl.c, [1, 1, 1, 1, 1, 1, 1], atol=1e-15) | |
def test_read_only(self): | |
# BSpline must work on read-only knots and coefficients. | |
t = np.array([0, 1]) | |
c = np.array([3.0]) | |
t.setflags(write=False) | |
c.setflags(write=False) | |
xx = np.linspace(0, 1, 10) | |
xx.setflags(write=False) | |
b = BSpline(t=t, c=c, k=0) | |
assert_allclose(b(xx), 3) | |
class TestInsert: | |
def test_insert(self, xval): | |
# insert a knot, incl edges (0.0, 7.0) and exactly at an existing knot (4.0) | |
x = np.arange(8) | |
y = np.sin(x)**3 | |
spl = make_interp_spline(x, y, k=3) | |
spl_1f = insert(xval, spl) # FITPACK | |
spl_1 = spl.insert_knot(xval) | |
assert_allclose(spl_1.t, spl_1f.t, atol=1e-15) | |
assert_allclose(spl_1.c, spl_1f.c[:-spl.k-1], atol=1e-15) | |
# knot insertion preserves values, unless multiplicity >= k+1 | |
xx = x if xval != x[-1] else x[:-1] | |
xx = np.r_[xx, 0.5*(x[1:] + x[:-1])] | |
assert_allclose(spl(xx), spl_1(xx), atol=1e-15) | |
# ... repeat with ndim > 1 | |
y1 = np.cos(x)**3 | |
spl_y1 = make_interp_spline(x, y1, k=3) | |
spl_yy = make_interp_spline(x, np.c_[y, y1], k=3) | |
spl_yy1 = spl_yy.insert_knot(xval) | |
assert_allclose(spl_yy1.t, spl_1.t, atol=1e-15) | |
assert_allclose(spl_yy1.c, np.c_[spl.insert_knot(xval).c, | |
spl_y1.insert_knot(xval).c], atol=1e-15) | |
xx = x if xval != x[-1] else x[:-1] | |
xx = np.r_[xx, 0.5*(x[1:] + x[:-1])] | |
assert_allclose(spl_yy(xx), spl_yy1(xx), atol=1e-15) | |
def test_insert_multi(self, xval, m): | |
x = np.arange(8) | |
y = np.sin(x)**3 | |
spl = make_interp_spline(x, y, k=3) | |
spl_1f = insert(xval, spl, m=m) | |
spl_1 = spl.insert_knot(xval, m) | |
assert_allclose(spl_1.t, spl_1f.t, atol=1e-15) | |
assert_allclose(spl_1.c, spl_1f.c[:-spl.k-1], atol=1e-15) | |
xx = x if xval != x[-1] else x[:-1] | |
xx = np.r_[xx, 0.5*(x[1:] + x[:-1])] | |
assert_allclose(spl(xx), spl_1(xx), atol=1e-15) | |
def test_insert_random(self): | |
rng = np.random.default_rng(12345) | |
n, k = 11, 3 | |
t = np.sort(rng.uniform(size=n+k+1)) | |
c = rng.uniform(size=(n, 3, 2)) | |
spl = BSpline(t, c, k) | |
xv = rng.uniform(low=t[k+1], high=t[-k-1]) | |
spl_1 = spl.insert_knot(xv) | |
xx = rng.uniform(low=t[k+1], high=t[-k-1], size=33) | |
assert_allclose(spl(xx), spl_1(xx), atol=1e-15) | |
def test_insert_periodic(self, xv): | |
x = np.arange(8) | |
y = np.sin(x)**3 | |
tck = splrep(x, y, k=3) | |
spl = BSpline(*tck, extrapolate="periodic") | |
spl_1 = spl.insert_knot(xv) | |
tf, cf, k = insert(xv, spl.tck, per=True) | |
assert_allclose(spl_1.t, tf, atol=1e-15) | |
assert_allclose(spl_1.c[:-k-1], cf[:-k-1], atol=1e-15) | |
xx = np.random.default_rng(1234).uniform(low=0, high=7, size=41) | |
assert_allclose(spl_1(xx), splev(xx, (tf, cf, k)), atol=1e-15) | |
def test_insert_periodic_too_few_internal_knots(self): | |
# both FITPACK and spl.insert_knot raise when there's not enough | |
# internal knots to make a periodic extension. | |
# Below the internal knots are 2, 3, , 4, 5 | |
# ^ | |
# 2, 3, 3.5, 4, 5 | |
# so two knots from each side from the new one, while need at least | |
# from either left or right. | |
xv = 3.5 | |
k = 3 | |
t = np.array([0]*(k+1) + [2, 3, 4, 5] + [7]*(k+1)) | |
c = np.ones(len(t) - k - 1) | |
spl = BSpline(t, c, k, extrapolate="periodic") | |
with assert_raises(ValueError): | |
insert(xv, (t, c, k), per=True) | |
with assert_raises(ValueError): | |
spl.insert_knot(xv) | |
def test_insert_no_extrap(self): | |
k = 3 | |
t = np.array([0]*(k+1) + [2, 3, 4, 5] + [7]*(k+1)) | |
c = np.ones(len(t) - k - 1) | |
spl = BSpline(t, c, k) | |
with assert_raises(ValueError): | |
spl.insert_knot(-1) | |
with assert_raises(ValueError): | |
spl.insert_knot(8) | |
with assert_raises(ValueError): | |
spl.insert_knot(3, m=0) | |
def test_knots_multiplicity(): | |
# Take a spline w/ random coefficients, throw in knots of varying | |
# multiplicity. | |
def check_splev(b, j, der=0, atol=1e-14, rtol=1e-14): | |
# check evaluations against FITPACK, incl extrapolations | |
t, c, k = b.tck | |
x = np.unique(t) | |
x = np.r_[t[0]-0.1, 0.5*(x[1:] + x[:1]), t[-1]+0.1] | |
assert_allclose(splev(x, (t, c, k), der), b(x, der), | |
atol=atol, rtol=rtol, err_msg=f'der = {der} k = {b.k}') | |
# test loop itself | |
# [the index `j` is for interpreting the traceback in case of a failure] | |
for k in [1, 2, 3, 4, 5]: | |
b = _make_random_spline(k=k) | |
for j, b1 in enumerate(_make_multiples(b)): | |
check_splev(b1, j) | |
for der in range(1, k+1): | |
check_splev(b1, j, der, 1e-12, 1e-12) | |
### stolen from @pv, verbatim | |
def _naive_B(x, k, i, t): | |
""" | |
Naive way to compute B-spline basis functions. Useful only for testing! | |
computes B(x; t[i],..., t[i+k+1]) | |
""" | |
if k == 0: | |
return 1.0 if t[i] <= x < t[i+1] else 0.0 | |
if t[i+k] == t[i]: | |
c1 = 0.0 | |
else: | |
c1 = (x - t[i])/(t[i+k] - t[i]) * _naive_B(x, k-1, i, t) | |
if t[i+k+1] == t[i+1]: | |
c2 = 0.0 | |
else: | |
c2 = (t[i+k+1] - x)/(t[i+k+1] - t[i+1]) * _naive_B(x, k-1, i+1, t) | |
return (c1 + c2) | |
### stolen from @pv, verbatim | |
def _naive_eval(x, t, c, k): | |
""" | |
Naive B-spline evaluation. Useful only for testing! | |
""" | |
if x == t[k]: | |
i = k | |
else: | |
i = np.searchsorted(t, x) - 1 | |
assert t[i] <= x <= t[i+1] | |
assert i >= k and i < len(t) - k | |
return sum(c[i-j] * _naive_B(x, k, i-j, t) for j in range(0, k+1)) | |
def _naive_eval_2(x, t, c, k): | |
"""Naive B-spline evaluation, another way.""" | |
n = len(t) - (k+1) | |
assert n >= k+1 | |
assert len(c) >= n | |
assert t[k] <= x <= t[n] | |
return sum(c[i] * _naive_B(x, k, i, t) for i in range(n)) | |
def _sum_basis_elements(x, t, c, k): | |
n = len(t) - (k+1) | |
assert n >= k+1 | |
assert len(c) >= n | |
s = 0. | |
for i in range(n): | |
b = BSpline.basis_element(t[i:i+k+2], extrapolate=False)(x) | |
s += c[i] * np.nan_to_num(b) # zero out out-of-bounds elements | |
return s | |
def B_012(x): | |
""" A linear B-spline function B(x | 0, 1, 2).""" | |
x = np.atleast_1d(x) | |
return np.piecewise(x, [(x < 0) | (x > 2), | |
(x >= 0) & (x < 1), | |
(x >= 1) & (x <= 2)], | |
[lambda x: 0., lambda x: x, lambda x: 2.-x]) | |
def B_0123(x, der=0): | |
"""A quadratic B-spline function B(x | 0, 1, 2, 3).""" | |
x = np.atleast_1d(x) | |
conds = [x < 1, (x > 1) & (x < 2), x > 2] | |
if der == 0: | |
funcs = [lambda x: x*x/2., | |
lambda x: 3./4 - (x-3./2)**2, | |
lambda x: (3.-x)**2 / 2] | |
elif der == 2: | |
funcs = [lambda x: 1., | |
lambda x: -2., | |
lambda x: 1.] | |
else: | |
raise ValueError('never be here: der=%s' % der) | |
pieces = np.piecewise(x, conds, funcs) | |
return pieces | |
def _make_random_spline(n=35, k=3): | |
np.random.seed(123) | |
t = np.sort(np.random.random(n+k+1)) | |
c = np.random.random(n) | |
return BSpline.construct_fast(t, c, k) | |
def _make_multiples(b): | |
"""Increase knot multiplicity.""" | |
c, k = b.c, b.k | |
t1 = b.t.copy() | |
t1[17:19] = t1[17] | |
t1[22] = t1[21] | |
yield BSpline(t1, c, k) | |
t1 = b.t.copy() | |
t1[:k+1] = t1[0] | |
yield BSpline(t1, c, k) | |
t1 = b.t.copy() | |
t1[-k-1:] = t1[-1] | |
yield BSpline(t1, c, k) | |
class TestInterop: | |
# | |
# Test that FITPACK-based spl* functions can deal with BSpline objects | |
# | |
def setup_method(self): | |
xx = np.linspace(0, 4.*np.pi, 41) | |
yy = np.cos(xx) | |
b = make_interp_spline(xx, yy) | |
self.tck = (b.t, b.c, b.k) | |
self.xx, self.yy, self.b = xx, yy, b | |
self.xnew = np.linspace(0, 4.*np.pi, 21) | |
c2 = np.c_[b.c, b.c, b.c] | |
self.c2 = np.dstack((c2, c2)) | |
self.b2 = BSpline(b.t, self.c2, b.k) | |
def test_splev(self): | |
xnew, b, b2 = self.xnew, self.b, self.b2 | |
# check that splev works with 1-D array of coefficients | |
# for array and scalar `x` | |
assert_allclose(splev(xnew, b), | |
b(xnew), atol=1e-15, rtol=1e-15) | |
assert_allclose(splev(xnew, b.tck), | |
b(xnew), atol=1e-15, rtol=1e-15) | |
assert_allclose([splev(x, b) for x in xnew], | |
b(xnew), atol=1e-15, rtol=1e-15) | |
# With N-D coefficients, there's a quirck: | |
# splev(x, BSpline) is equivalent to BSpline(x) | |
with assert_raises(ValueError, match="Calling splev.. with BSpline"): | |
splev(xnew, b2) | |
# However, splev(x, BSpline.tck) needs some transposes. This is because | |
# BSpline interpolates along the first axis, while the legacy FITPACK | |
# wrapper does list(map(...)) which effectively interpolates along the | |
# last axis. Like so: | |
sh = tuple(range(1, b2.c.ndim)) + (0,) # sh = (1, 2, 0) | |
cc = b2.c.transpose(sh) | |
tck = (b2.t, cc, b2.k) | |
assert_allclose(splev(xnew, tck), | |
b2(xnew).transpose(sh), atol=1e-15, rtol=1e-15) | |
def test_splrep(self): | |
x, y = self.xx, self.yy | |
# test that "new" splrep is equivalent to _impl.splrep | |
tck = splrep(x, y) | |
t, c, k = _impl.splrep(x, y) | |
assert_allclose(tck[0], t, atol=1e-15) | |
assert_allclose(tck[1], c, atol=1e-15) | |
assert_equal(tck[2], k) | |
# also cover the `full_output=True` branch | |
tck_f, _, _, _ = splrep(x, y, full_output=True) | |
assert_allclose(tck_f[0], t, atol=1e-15) | |
assert_allclose(tck_f[1], c, atol=1e-15) | |
assert_equal(tck_f[2], k) | |
# test that the result of splrep roundtrips with splev: | |
# evaluate the spline on the original `x` points | |
yy = splev(x, tck) | |
assert_allclose(y, yy, atol=1e-15) | |
# ... and also it roundtrips if wrapped in a BSpline | |
b = BSpline(*tck) | |
assert_allclose(y, b(x), atol=1e-15) | |
def test_splrep_errors(self): | |
# test that both "old" and "new" splrep raise for an N-D ``y`` array | |
# with n > 1 | |
x, y = self.xx, self.yy | |
y2 = np.c_[y, y] | |
with assert_raises(ValueError): | |
splrep(x, y2) | |
with assert_raises(ValueError): | |
_impl.splrep(x, y2) | |
# input below minimum size | |
with assert_raises(TypeError, match="m > k must hold"): | |
splrep(x[:3], y[:3]) | |
with assert_raises(TypeError, match="m > k must hold"): | |
_impl.splrep(x[:3], y[:3]) | |
def test_splprep(self): | |
x = np.arange(15).reshape((3, 5)) | |
b, u = splprep(x) | |
tck, u1 = _impl.splprep(x) | |
# test the roundtrip with splev for both "old" and "new" output | |
assert_allclose(u, u1, atol=1e-15) | |
assert_allclose(splev(u, b), x, atol=1e-15) | |
assert_allclose(splev(u, tck), x, atol=1e-15) | |
# cover the ``full_output=True`` branch | |
(b_f, u_f), _, _, _ = splprep(x, s=0, full_output=True) | |
assert_allclose(u, u_f, atol=1e-15) | |
assert_allclose(splev(u_f, b_f), x, atol=1e-15) | |
def test_splprep_errors(self): | |
# test that both "old" and "new" code paths raise for x.ndim > 2 | |
x = np.arange(3*4*5).reshape((3, 4, 5)) | |
with assert_raises(ValueError, match="too many values to unpack"): | |
splprep(x) | |
with assert_raises(ValueError, match="too many values to unpack"): | |
_impl.splprep(x) | |
# input below minimum size | |
x = np.linspace(0, 40, num=3) | |
with assert_raises(TypeError, match="m > k must hold"): | |
splprep([x]) | |
with assert_raises(TypeError, match="m > k must hold"): | |
_impl.splprep([x]) | |
# automatically calculated parameters are non-increasing | |
# see gh-7589 | |
x = [-50.49072266, -50.49072266, -54.49072266, -54.49072266] | |
with assert_raises(ValueError, match="Invalid inputs"): | |
splprep([x]) | |
with assert_raises(ValueError, match="Invalid inputs"): | |
_impl.splprep([x]) | |
# given non-increasing parameter values u | |
x = [1, 3, 2, 4] | |
u = [0, 0.3, 0.2, 1] | |
with assert_raises(ValueError, match="Invalid inputs"): | |
splprep(*[[x], None, u]) | |
def test_sproot(self): | |
b, b2 = self.b, self.b2 | |
roots = np.array([0.5, 1.5, 2.5, 3.5])*np.pi | |
# sproot accepts a BSpline obj w/ 1-D coef array | |
assert_allclose(sproot(b), roots, atol=1e-7, rtol=1e-7) | |
assert_allclose(sproot((b.t, b.c, b.k)), roots, atol=1e-7, rtol=1e-7) | |
# ... and deals with trailing dimensions if coef array is N-D | |
with assert_raises(ValueError, match="Calling sproot.. with BSpline"): | |
sproot(b2, mest=50) | |
# and legacy behavior is preserved for a tck tuple w/ N-D coef | |
c2r = b2.c.transpose(1, 2, 0) | |
rr = np.asarray(sproot((b2.t, c2r, b2.k), mest=50)) | |
assert_equal(rr.shape, (3, 2, 4)) | |
assert_allclose(rr - roots, 0, atol=1e-12) | |
def test_splint(self): | |
# test that splint accepts BSpline objects | |
b, b2 = self.b, self.b2 | |
assert_allclose(splint(0, 1, b), | |
splint(0, 1, b.tck), atol=1e-14) | |
assert_allclose(splint(0, 1, b), | |
b.integrate(0, 1), atol=1e-14) | |
# ... and deals with N-D arrays of coefficients | |
with assert_raises(ValueError, match="Calling splint.. with BSpline"): | |
splint(0, 1, b2) | |
# and the legacy behavior is preserved for a tck tuple w/ N-D coef | |
c2r = b2.c.transpose(1, 2, 0) | |
integr = np.asarray(splint(0, 1, (b2.t, c2r, b2.k))) | |
assert_equal(integr.shape, (3, 2)) | |
assert_allclose(integr, | |
splint(0, 1, b), atol=1e-14) | |
def test_splder(self): | |
for b in [self.b, self.b2]: | |
# pad the c array (FITPACK convention) | |
ct = len(b.t) - len(b.c) | |
if ct > 0: | |
b.c = np.r_[b.c, np.zeros((ct,) + b.c.shape[1:])] | |
for n in [1, 2, 3]: | |
bd = splder(b) | |
tck_d = _impl.splder((b.t, b.c, b.k)) | |
assert_allclose(bd.t, tck_d[0], atol=1e-15) | |
assert_allclose(bd.c, tck_d[1], atol=1e-15) | |
assert_equal(bd.k, tck_d[2]) | |
assert_(isinstance(bd, BSpline)) | |
assert_(isinstance(tck_d, tuple)) # back-compat: tck in and out | |
def test_splantider(self): | |
for b in [self.b, self.b2]: | |
# pad the c array (FITPACK convention) | |
ct = len(b.t) - len(b.c) | |
if ct > 0: | |
b.c = np.r_[b.c, np.zeros((ct,) + b.c.shape[1:])] | |
for n in [1, 2, 3]: | |
bd = splantider(b) | |
tck_d = _impl.splantider((b.t, b.c, b.k)) | |
assert_allclose(bd.t, tck_d[0], atol=1e-15) | |
assert_allclose(bd.c, tck_d[1], atol=1e-15) | |
assert_equal(bd.k, tck_d[2]) | |
assert_(isinstance(bd, BSpline)) | |
assert_(isinstance(tck_d, tuple)) # back-compat: tck in and out | |
def test_insert(self): | |
b, b2, xx = self.b, self.b2, self.xx | |
j = b.t.size // 2 | |
tn = 0.5*(b.t[j] + b.t[j+1]) | |
bn, tck_n = insert(tn, b), insert(tn, (b.t, b.c, b.k)) | |
assert_allclose(splev(xx, bn), | |
splev(xx, tck_n), atol=1e-15) | |
assert_(isinstance(bn, BSpline)) | |
assert_(isinstance(tck_n, tuple)) # back-compat: tck in, tck out | |
# for N-D array of coefficients, BSpline.c needs to be transposed | |
# after that, the results are equivalent. | |
sh = tuple(range(b2.c.ndim)) | |
c_ = b2.c.transpose(sh[1:] + (0,)) | |
tck_n2 = insert(tn, (b2.t, c_, b2.k)) | |
bn2 = insert(tn, b2) | |
# need a transpose for comparing the results, cf test_splev | |
assert_allclose(np.asarray(splev(xx, tck_n2)).transpose(2, 0, 1), | |
bn2(xx), atol=1e-15) | |
assert_(isinstance(bn2, BSpline)) | |
assert_(isinstance(tck_n2, tuple)) # back-compat: tck in, tck out | |
class TestInterp: | |
# | |
# Test basic ways of constructing interpolating splines. | |
# | |
xx = np.linspace(0., 2.*np.pi) | |
yy = np.sin(xx) | |
def test_non_int_order(self): | |
with assert_raises(TypeError): | |
make_interp_spline(self.xx, self.yy, k=2.5) | |
def test_order_0(self): | |
b = make_interp_spline(self.xx, self.yy, k=0) | |
assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14) | |
b = make_interp_spline(self.xx, self.yy, k=0, axis=-1) | |
assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14) | |
def test_linear(self): | |
b = make_interp_spline(self.xx, self.yy, k=1) | |
assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14) | |
b = make_interp_spline(self.xx, self.yy, k=1, axis=-1) | |
assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14) | |
def test_incompatible_x_y(self, k): | |
x = [0, 1, 2, 3, 4, 5] | |
y = [0, 1, 2, 3, 4, 5, 6, 7] | |
with assert_raises(ValueError, match="Shapes of x"): | |
make_interp_spline(x, y, k=k) | |
def test_broken_x(self, k): | |
x = [0, 1, 1, 2, 3, 4] # duplicates | |
y = [0, 1, 2, 3, 4, 5] | |
with assert_raises(ValueError, match="x to not have duplicates"): | |
make_interp_spline(x, y, k=k) | |
x = [0, 2, 1, 3, 4, 5] # unsorted | |
with assert_raises(ValueError, match="Expect x to be a 1D strictly"): | |
make_interp_spline(x, y, k=k) | |
x = [0, 1, 2, 3, 4, 5] | |
x = np.asarray(x).reshape((1, -1)) # 1D | |
with assert_raises(ValueError, match="Expect x to be a 1D strictly"): | |
make_interp_spline(x, y, k=k) | |
def test_not_a_knot(self): | |
for k in [3, 5]: | |
b = make_interp_spline(self.xx, self.yy, k) | |
assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14) | |
def test_periodic(self): | |
# k = 5 here for more derivatives | |
b = make_interp_spline(self.xx, self.yy, k=5, bc_type='periodic') | |
assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14) | |
# in periodic case it is expected equality of k-1 first | |
# derivatives at the boundaries | |
for i in range(1, 5): | |
assert_allclose(b(self.xx[0], nu=i), b(self.xx[-1], nu=i), atol=1e-11) | |
# tests for axis=-1 | |
b = make_interp_spline(self.xx, self.yy, k=5, bc_type='periodic', axis=-1) | |
assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14) | |
for i in range(1, 5): | |
assert_allclose(b(self.xx[0], nu=i), b(self.xx[-1], nu=i), atol=1e-11) | |
def test_periodic_random(self, k): | |
# tests for both cases (k > n and k <= n) | |
n = 5 | |
np.random.seed(1234) | |
x = np.sort(np.random.random_sample(n) * 10) | |
y = np.random.random_sample(n) * 100 | |
y[0] = y[-1] | |
b = make_interp_spline(x, y, k=k, bc_type='periodic') | |
assert_allclose(b(x), y, atol=1e-14) | |
def test_periodic_axis(self): | |
n = self.xx.shape[0] | |
np.random.seed(1234) | |
x = np.random.random_sample(n) * 2 * np.pi | |
x = np.sort(x) | |
x[0] = 0. | |
x[-1] = 2 * np.pi | |
y = np.zeros((2, n)) | |
y[0] = np.sin(x) | |
y[1] = np.cos(x) | |
b = make_interp_spline(x, y, k=5, bc_type='periodic', axis=1) | |
for i in range(n): | |
assert_allclose(b(x[i]), y[:, i], atol=1e-14) | |
assert_allclose(b(x[0]), b(x[-1]), atol=1e-14) | |
def test_periodic_points_exception(self): | |
# first and last points should match when periodic case expected | |
np.random.seed(1234) | |
k = 5 | |
n = 8 | |
x = np.sort(np.random.random_sample(n)) | |
y = np.random.random_sample(n) | |
y[0] = y[-1] - 1 # to be sure that they are not equal | |
with assert_raises(ValueError): | |
make_interp_spline(x, y, k=k, bc_type='periodic') | |
def test_periodic_knots_exception(self): | |
# `periodic` case does not work with passed vector of knots | |
np.random.seed(1234) | |
k = 3 | |
n = 7 | |
x = np.sort(np.random.random_sample(n)) | |
y = np.random.random_sample(n) | |
t = np.zeros(n + 2 * k) | |
with assert_raises(ValueError): | |
make_interp_spline(x, y, k, t, 'periodic') | |
def test_periodic_splev(self, k): | |
# comparison values of periodic b-spline with splev | |
b = make_interp_spline(self.xx, self.yy, k=k, bc_type='periodic') | |
tck = splrep(self.xx, self.yy, per=True, k=k) | |
spl = splev(self.xx, tck) | |
assert_allclose(spl, b(self.xx), atol=1e-14) | |
# comparison derivatives of periodic b-spline with splev | |
for i in range(1, k): | |
spl = splev(self.xx, tck, der=i) | |
assert_allclose(spl, b(self.xx, nu=i), atol=1e-10) | |
def test_periodic_cubic(self): | |
# comparison values of cubic periodic b-spline with CubicSpline | |
b = make_interp_spline(self.xx, self.yy, k=3, bc_type='periodic') | |
cub = CubicSpline(self.xx, self.yy, bc_type='periodic') | |
assert_allclose(b(self.xx), cub(self.xx), atol=1e-14) | |
# edge case: Cubic interpolation on 3 points | |
n = 3 | |
x = np.sort(np.random.random_sample(n) * 10) | |
y = np.random.random_sample(n) * 100 | |
y[0] = y[-1] | |
b = make_interp_spline(x, y, k=3, bc_type='periodic') | |
cub = CubicSpline(x, y, bc_type='periodic') | |
assert_allclose(b(x), cub(x), atol=1e-14) | |
def test_periodic_full_matrix(self): | |
# comparison values of cubic periodic b-spline with | |
# solution of the system with full matrix | |
k = 3 | |
b = make_interp_spline(self.xx, self.yy, k=k, bc_type='periodic') | |
t = _periodic_knots(self.xx, k) | |
c = _make_interp_per_full_matr(self.xx, self.yy, t, k) | |
b1 = np.vectorize(lambda x: _naive_eval(x, t, c, k)) | |
assert_allclose(b(self.xx), b1(self.xx), atol=1e-14) | |
def test_quadratic_deriv(self): | |
der = [(1, 8.)] # order, value: f'(x) = 8. | |
# derivative at right-hand edge | |
b = make_interp_spline(self.xx, self.yy, k=2, bc_type=(None, der)) | |
assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14) | |
assert_allclose(b(self.xx[-1], 1), der[0][1], atol=1e-14, rtol=1e-14) | |
# derivative at left-hand edge | |
b = make_interp_spline(self.xx, self.yy, k=2, bc_type=(der, None)) | |
assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14) | |
assert_allclose(b(self.xx[0], 1), der[0][1], atol=1e-14, rtol=1e-14) | |
def test_cubic_deriv(self): | |
k = 3 | |
# first derivatives at left & right edges: | |
der_l, der_r = [(1, 3.)], [(1, 4.)] | |
b = make_interp_spline(self.xx, self.yy, k, bc_type=(der_l, der_r)) | |
assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14) | |
assert_allclose([b(self.xx[0], 1), b(self.xx[-1], 1)], | |
[der_l[0][1], der_r[0][1]], atol=1e-14, rtol=1e-14) | |
# 'natural' cubic spline, zero out 2nd derivatives at the boundaries | |
der_l, der_r = [(2, 0)], [(2, 0)] | |
b = make_interp_spline(self.xx, self.yy, k, bc_type=(der_l, der_r)) | |
assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14) | |
def test_quintic_derivs(self): | |
k, n = 5, 7 | |
x = np.arange(n).astype(np.float64) | |
y = np.sin(x) | |
der_l = [(1, -12.), (2, 1)] | |
der_r = [(1, 8.), (2, 3.)] | |
b = make_interp_spline(x, y, k=k, bc_type=(der_l, der_r)) | |
assert_allclose(b(x), y, atol=1e-14, rtol=1e-14) | |
assert_allclose([b(x[0], 1), b(x[0], 2)], | |
[val for (nu, val) in der_l]) | |
assert_allclose([b(x[-1], 1), b(x[-1], 2)], | |
[val for (nu, val) in der_r]) | |
def test_cubic_deriv_unstable(self): | |
# 1st and 2nd derivative at x[0], no derivative information at x[-1] | |
# The problem is not that it fails [who would use this anyway], | |
# the problem is that it fails *silently*, and I've no idea | |
# how to detect this sort of instability. | |
# In this particular case: it's OK for len(t) < 20, goes haywire | |
# at larger `len(t)`. | |
k = 3 | |
t = _augknt(self.xx, k) | |
der_l = [(1, 3.), (2, 4.)] | |
b = make_interp_spline(self.xx, self.yy, k, t, bc_type=(der_l, None)) | |
assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14) | |
def test_knots_not_data_sites(self): | |
# Knots need not coincide with the data sites. | |
# use a quadratic spline, knots are at data averages, | |
# two additional constraints are zero 2nd derivatives at edges | |
k = 2 | |
t = np.r_[(self.xx[0],)*(k+1), | |
(self.xx[1:] + self.xx[:-1]) / 2., | |
(self.xx[-1],)*(k+1)] | |
b = make_interp_spline(self.xx, self.yy, k, t, | |
bc_type=([(2, 0)], [(2, 0)])) | |
assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14) | |
assert_allclose([b(self.xx[0], 2), b(self.xx[-1], 2)], [0., 0.], | |
atol=1e-14) | |
def test_minimum_points_and_deriv(self): | |
# interpolation of f(x) = x**3 between 0 and 1. f'(x) = 3 * xx**2 and | |
# f'(0) = 0, f'(1) = 3. | |
k = 3 | |
x = [0., 1.] | |
y = [0., 1.] | |
b = make_interp_spline(x, y, k, bc_type=([(1, 0.)], [(1, 3.)])) | |
xx = np.linspace(0., 1.) | |
yy = xx**3 | |
assert_allclose(b(xx), yy, atol=1e-14, rtol=1e-14) | |
def test_deriv_spec(self): | |
# If one of the derivatives is omitted, the spline definition is | |
# incomplete. | |
x = y = [1.0, 2, 3, 4, 5, 6] | |
with assert_raises(ValueError): | |
make_interp_spline(x, y, bc_type=([(1, 0.)], None)) | |
with assert_raises(ValueError): | |
make_interp_spline(x, y, bc_type=(1, 0.)) | |
with assert_raises(ValueError): | |
make_interp_spline(x, y, bc_type=[(1, 0.)]) | |
with assert_raises(ValueError): | |
make_interp_spline(x, y, bc_type=42) | |
# CubicSpline expects`bc_type=(left_pair, right_pair)`, while | |
# here we expect `bc_type=(iterable, iterable)`. | |
l, r = (1, 0.0), (1, 0.0) | |
with assert_raises(ValueError): | |
make_interp_spline(x, y, bc_type=(l, r)) | |
def test_complex(self): | |
k = 3 | |
xx = self.xx | |
yy = self.yy + 1.j*self.yy | |
# first derivatives at left & right edges: | |
der_l, der_r = [(1, 3.j)], [(1, 4.+2.j)] | |
b = make_interp_spline(xx, yy, k, bc_type=(der_l, der_r)) | |
assert_allclose(b(xx), yy, atol=1e-14, rtol=1e-14) | |
assert_allclose([b(xx[0], 1), b(xx[-1], 1)], | |
[der_l[0][1], der_r[0][1]], atol=1e-14, rtol=1e-14) | |
# also test zero and first order | |
for k in (0, 1): | |
b = make_interp_spline(xx, yy, k=k) | |
assert_allclose(b(xx), yy, atol=1e-14, rtol=1e-14) | |
def test_int_xy(self): | |
x = np.arange(10).astype(int) | |
y = np.arange(10).astype(int) | |
# Cython chokes on "buffer type mismatch" (construction) or | |
# "no matching signature found" (evaluation) | |
for k in (0, 1, 2, 3): | |
b = make_interp_spline(x, y, k=k) | |
b(x) | |
def test_sliced_input(self): | |
# Cython code chokes on non C contiguous arrays | |
xx = np.linspace(-1, 1, 100) | |
x = xx[::5] | |
y = xx[::5] | |
for k in (0, 1, 2, 3): | |
make_interp_spline(x, y, k=k) | |
def test_check_finite(self): | |
# check_finite defaults to True; nans and such trigger a ValueError | |
x = np.arange(10).astype(float) | |
y = x**2 | |
for z in [np.nan, np.inf, -np.inf]: | |
y[-1] = z | |
assert_raises(ValueError, make_interp_spline, x, y) | |
def test_list_input(self, k): | |
# regression test for gh-8714: TypeError for x, y being lists and k=2 | |
x = list(range(10)) | |
y = [a**2 for a in x] | |
make_interp_spline(x, y, k=k) | |
def test_multiple_rhs(self): | |
yy = np.c_[np.sin(self.xx), np.cos(self.xx)] | |
der_l = [(1, [1., 2.])] | |
der_r = [(1, [3., 4.])] | |
b = make_interp_spline(self.xx, yy, k=3, bc_type=(der_l, der_r)) | |
assert_allclose(b(self.xx), yy, atol=1e-14, rtol=1e-14) | |
assert_allclose(b(self.xx[0], 1), der_l[0][1], atol=1e-14, rtol=1e-14) | |
assert_allclose(b(self.xx[-1], 1), der_r[0][1], atol=1e-14, rtol=1e-14) | |
def test_shapes(self): | |
np.random.seed(1234) | |
k, n = 3, 22 | |
x = np.sort(np.random.random(size=n)) | |
y = np.random.random(size=(n, 5, 6, 7)) | |
b = make_interp_spline(x, y, k) | |
assert_equal(b.c.shape, (n, 5, 6, 7)) | |
# now throw in some derivatives | |
d_l = [(1, np.random.random((5, 6, 7)))] | |
d_r = [(1, np.random.random((5, 6, 7)))] | |
b = make_interp_spline(x, y, k, bc_type=(d_l, d_r)) | |
assert_equal(b.c.shape, (n + k - 1, 5, 6, 7)) | |
def test_string_aliases(self): | |
yy = np.sin(self.xx) | |
# a single string is duplicated | |
b1 = make_interp_spline(self.xx, yy, k=3, bc_type='natural') | |
b2 = make_interp_spline(self.xx, yy, k=3, bc_type=([(2, 0)], [(2, 0)])) | |
assert_allclose(b1.c, b2.c, atol=1e-15) | |
# two strings are handled | |
b1 = make_interp_spline(self.xx, yy, k=3, | |
bc_type=('natural', 'clamped')) | |
b2 = make_interp_spline(self.xx, yy, k=3, | |
bc_type=([(2, 0)], [(1, 0)])) | |
assert_allclose(b1.c, b2.c, atol=1e-15) | |
# one-sided BCs are OK | |
b1 = make_interp_spline(self.xx, yy, k=2, bc_type=(None, 'clamped')) | |
b2 = make_interp_spline(self.xx, yy, k=2, bc_type=(None, [(1, 0.0)])) | |
assert_allclose(b1.c, b2.c, atol=1e-15) | |
# 'not-a-knot' is equivalent to None | |
b1 = make_interp_spline(self.xx, yy, k=3, bc_type='not-a-knot') | |
b2 = make_interp_spline(self.xx, yy, k=3, bc_type=None) | |
assert_allclose(b1.c, b2.c, atol=1e-15) | |
# unknown strings do not pass | |
with assert_raises(ValueError): | |
make_interp_spline(self.xx, yy, k=3, bc_type='typo') | |
# string aliases are handled for 2D values | |
yy = np.c_[np.sin(self.xx), np.cos(self.xx)] | |
der_l = [(1, [0., 0.])] | |
der_r = [(2, [0., 0.])] | |
b2 = make_interp_spline(self.xx, yy, k=3, bc_type=(der_l, der_r)) | |
b1 = make_interp_spline(self.xx, yy, k=3, | |
bc_type=('clamped', 'natural')) | |
assert_allclose(b1.c, b2.c, atol=1e-15) | |
# ... and for N-D values: | |
np.random.seed(1234) | |
k, n = 3, 22 | |
x = np.sort(np.random.random(size=n)) | |
y = np.random.random(size=(n, 5, 6, 7)) | |
# now throw in some derivatives | |
d_l = [(1, np.zeros((5, 6, 7)))] | |
d_r = [(1, np.zeros((5, 6, 7)))] | |
b1 = make_interp_spline(x, y, k, bc_type=(d_l, d_r)) | |
b2 = make_interp_spline(x, y, k, bc_type='clamped') | |
assert_allclose(b1.c, b2.c, atol=1e-15) | |
def test_full_matrix(self): | |
np.random.seed(1234) | |
k, n = 3, 7 | |
x = np.sort(np.random.random(size=n)) | |
y = np.random.random(size=n) | |
t = _not_a_knot(x, k) | |
b = make_interp_spline(x, y, k, t) | |
cf = make_interp_full_matr(x, y, t, k) | |
assert_allclose(b.c, cf, atol=1e-14, rtol=1e-14) | |
def test_woodbury(self): | |
''' | |
Random elements in diagonal matrix with blocks in the | |
left lower and right upper corners checking the | |
implementation of Woodbury algorithm. | |
''' | |
np.random.seed(1234) | |
n = 201 | |
for k in range(3, 32, 2): | |
offset = int((k - 1) / 2) | |
a = np.diagflat(np.random.random((1, n))) | |
for i in range(1, offset + 1): | |
a[:-i, i:] += np.diagflat(np.random.random((1, n - i))) | |
a[i:, :-i] += np.diagflat(np.random.random((1, n - i))) | |
ur = np.random.random((offset, offset)) | |
a[:offset, -offset:] = ur | |
ll = np.random.random((offset, offset)) | |
a[-offset:, :offset] = ll | |
d = np.zeros((k, n)) | |
for i, j in enumerate(range(offset, -offset - 1, -1)): | |
if j < 0: | |
d[i, :j] = np.diagonal(a, offset=j) | |
else: | |
d[i, j:] = np.diagonal(a, offset=j) | |
b = np.random.random(n) | |
assert_allclose(_woodbury_algorithm(d, ur, ll, b, k), | |
np.linalg.solve(a, b), atol=1e-14) | |
def make_interp_full_matr(x, y, t, k): | |
"""Assemble an spline order k with knots t to interpolate | |
y(x) using full matrices. | |
Not-a-knot BC only. | |
This routine is here for testing only (even though it's functional). | |
""" | |
assert x.size == y.size | |
assert t.size == x.size + k + 1 | |
n = x.size | |
A = np.zeros((n, n), dtype=np.float64) | |
for j in range(n): | |
xval = x[j] | |
if xval == t[k]: | |
left = k | |
else: | |
left = np.searchsorted(t, xval) - 1 | |
# fill a row | |
bb = _bspl.evaluate_all_bspl(t, k, xval, left) | |
A[j, left-k:left+1] = bb | |
c = sl.solve(A, y) | |
return c | |
def make_lsq_full_matrix(x, y, t, k=3): | |
"""Make the least-square spline, full matrices.""" | |
x, y, t = map(np.asarray, (x, y, t)) | |
m = x.size | |
n = t.size - k - 1 | |
A = np.zeros((m, n), dtype=np.float64) | |
for j in range(m): | |
xval = x[j] | |
# find interval | |
if xval == t[k]: | |
left = k | |
else: | |
left = np.searchsorted(t, xval) - 1 | |
# fill a row | |
bb = _bspl.evaluate_all_bspl(t, k, xval, left) | |
A[j, left-k:left+1] = bb | |
# have observation matrix, can solve the LSQ problem | |
B = np.dot(A.T, A) | |
Y = np.dot(A.T, y) | |
c = sl.solve(B, Y) | |
return c, (A, Y) | |
class TestLSQ: | |
# | |
# Test make_lsq_spline | |
# | |
np.random.seed(1234) | |
n, k = 13, 3 | |
x = np.sort(np.random.random(n)) | |
y = np.random.random(n) | |
t = _augknt(np.linspace(x[0], x[-1], 7), k) | |
def test_lstsq(self): | |
# check LSQ construction vs a full matrix version | |
x, y, t, k = self.x, self.y, self.t, self.k | |
c0, AY = make_lsq_full_matrix(x, y, t, k) | |
b = make_lsq_spline(x, y, t, k) | |
assert_allclose(b.c, c0) | |
assert_equal(b.c.shape, (t.size - k - 1,)) | |
# also check against numpy.lstsq | |
aa, yy = AY | |
c1, _, _, _ = np.linalg.lstsq(aa, y, rcond=-1) | |
assert_allclose(b.c, c1) | |
def test_weights(self): | |
# weights = 1 is same as None | |
x, y, t, k = self.x, self.y, self.t, self.k | |
w = np.ones_like(x) | |
b = make_lsq_spline(x, y, t, k) | |
b_w = make_lsq_spline(x, y, t, k, w=w) | |
assert_allclose(b.t, b_w.t, atol=1e-14) | |
assert_allclose(b.c, b_w.c, atol=1e-14) | |
assert_equal(b.k, b_w.k) | |
def test_multiple_rhs(self): | |
x, t, k, n = self.x, self.t, self.k, self.n | |
y = np.random.random(size=(n, 5, 6, 7)) | |
b = make_lsq_spline(x, y, t, k) | |
assert_equal(b.c.shape, (t.size-k-1, 5, 6, 7)) | |
def test_complex(self): | |
# cmplx-valued `y` | |
x, t, k = self.x, self.t, self.k | |
yc = self.y * (1. + 2.j) | |
b = make_lsq_spline(x, yc, t, k) | |
b_re = make_lsq_spline(x, yc.real, t, k) | |
b_im = make_lsq_spline(x, yc.imag, t, k) | |
assert_allclose(b(x), b_re(x) + 1.j*b_im(x), atol=1e-15, rtol=1e-15) | |
def test_int_xy(self): | |
x = np.arange(10).astype(int) | |
y = np.arange(10).astype(int) | |
t = _augknt(x, k=1) | |
# Cython chokes on "buffer type mismatch" | |
make_lsq_spline(x, y, t, k=1) | |
def test_sliced_input(self): | |
# Cython code chokes on non C contiguous arrays | |
xx = np.linspace(-1, 1, 100) | |
x = xx[::3] | |
y = xx[::3] | |
t = _augknt(x, 1) | |
make_lsq_spline(x, y, t, k=1) | |
def test_checkfinite(self): | |
# check_finite defaults to True; nans and such trigger a ValueError | |
x = np.arange(12).astype(float) | |
y = x**2 | |
t = _augknt(x, 3) | |
for z in [np.nan, np.inf, -np.inf]: | |
y[-1] = z | |
assert_raises(ValueError, make_lsq_spline, x, y, t) | |
def test_read_only(self): | |
# Check that make_lsq_spline works with read only arrays | |
x, y, t = self.x, self.y, self.t | |
x.setflags(write=False) | |
y.setflags(write=False) | |
t.setflags(write=False) | |
make_lsq_spline(x=x, y=y, t=t) | |
def data_file(basename): | |
return os.path.join(os.path.abspath(os.path.dirname(__file__)), | |
'data', basename) | |
class TestSmoothingSpline: | |
# | |
# test make_smoothing_spline | |
# | |
def test_invalid_input(self): | |
np.random.seed(1234) | |
n = 100 | |
x = np.sort(np.random.random_sample(n) * 4 - 2) | |
y = x**2 * np.sin(4 * x) + x**3 + np.random.normal(0., 1.5, n) | |
# ``x`` and ``y`` should have same shapes (1-D array) | |
with assert_raises(ValueError): | |
make_smoothing_spline(x, y[1:]) | |
with assert_raises(ValueError): | |
make_smoothing_spline(x[1:], y) | |
with assert_raises(ValueError): | |
make_smoothing_spline(x.reshape(1, n), y) | |
# ``x`` should be an ascending array | |
with assert_raises(ValueError): | |
make_smoothing_spline(x[::-1], y) | |
x_dupl = np.copy(x) | |
x_dupl[0] = x_dupl[1] | |
with assert_raises(ValueError): | |
make_smoothing_spline(x_dupl, y) | |
# x and y length must be >= 5 | |
x = np.arange(4) | |
y = np.ones(4) | |
exception_message = "``x`` and ``y`` length must be at least 5" | |
with pytest.raises(ValueError, match=exception_message): | |
make_smoothing_spline(x, y) | |
def test_compare_with_GCVSPL(self): | |
""" | |
Data is generated in the following way: | |
>>> np.random.seed(1234) | |
>>> n = 100 | |
>>> x = np.sort(np.random.random_sample(n) * 4 - 2) | |
>>> y = np.sin(x) + np.random.normal(scale=.5, size=n) | |
>>> np.savetxt('x.csv', x) | |
>>> np.savetxt('y.csv', y) | |
We obtain the result of performing the GCV smoothing splines | |
package (by Woltring, gcvspl) on the sample data points | |
using its version for Octave (https://github.com/srkuberski/gcvspl). | |
In order to use this implementation, one should clone the repository | |
and open the folder in Octave. | |
In Octave, we load up ``x`` and ``y`` (generated from Python code | |
above): | |
>>> x = csvread('x.csv'); | |
>>> y = csvread('y.csv'); | |
Then, in order to access the implementation, we compile gcvspl files in | |
Octave: | |
>>> mex gcvsplmex.c gcvspl.c | |
>>> mex spldermex.c gcvspl.c | |
The first function computes the vector of unknowns from the dataset | |
(x, y) while the second one evaluates the spline in certain points | |
with known vector of coefficients. | |
>>> c = gcvsplmex( x, y, 2 ); | |
>>> y0 = spldermex( x, c, 2, x, 0 ); | |
If we want to compare the results of the gcvspl code, we can save | |
``y0`` in csv file: | |
>>> csvwrite('y0.csv', y0); | |
""" | |
# load the data sample | |
with np.load(data_file('gcvspl.npz')) as data: | |
# data points | |
x = data['x'] | |
y = data['y'] | |
y_GCVSPL = data['y_GCVSPL'] | |
y_compr = make_smoothing_spline(x, y)(x) | |
# such tolerance is explained by the fact that the spline is built | |
# using an iterative algorithm for minimizing the GCV criteria. These | |
# algorithms may vary, so the tolerance should be rather low. | |
assert_allclose(y_compr, y_GCVSPL, atol=1e-4, rtol=1e-4) | |
def test_non_regularized_case(self): | |
""" | |
In case the regularization parameter is 0, the resulting spline | |
is an interpolation spline with natural boundary conditions. | |
""" | |
# create data sample | |
np.random.seed(1234) | |
n = 100 | |
x = np.sort(np.random.random_sample(n) * 4 - 2) | |
y = x**2 * np.sin(4 * x) + x**3 + np.random.normal(0., 1.5, n) | |
spline_GCV = make_smoothing_spline(x, y, lam=0.) | |
spline_interp = make_interp_spline(x, y, 3, bc_type='natural') | |
grid = np.linspace(x[0], x[-1], 2 * n) | |
assert_allclose(spline_GCV(grid), | |
spline_interp(grid), | |
atol=1e-15) | |
def test_weighted_smoothing_spline(self): | |
# create data sample | |
np.random.seed(1234) | |
n = 100 | |
x = np.sort(np.random.random_sample(n) * 4 - 2) | |
y = x**2 * np.sin(4 * x) + x**3 + np.random.normal(0., 1.5, n) | |
spl = make_smoothing_spline(x, y) | |
# in order not to iterate over all of the indices, we select 10 of | |
# them randomly | |
for ind in np.random.choice(range(100), size=10): | |
w = np.ones(n) | |
w[ind] = 30. | |
spl_w = make_smoothing_spline(x, y, w) | |
# check that spline with weight in a certain point is closer to the | |
# original point than the one without weights | |
orig = abs(spl(x[ind]) - y[ind]) | |
weighted = abs(spl_w(x[ind]) - y[ind]) | |
if orig < weighted: | |
raise ValueError(f'Spline with weights should be closer to the' | |
f' points than the original one: {orig:.4} < ' | |
f'{weighted:.4}') | |
################################ | |
# NdBSpline tests | |
def bspline2(xy, t, c, k): | |
"""A naive 2D tensort product spline evaluation.""" | |
x, y = xy | |
tx, ty = t | |
nx = len(tx) - k - 1 | |
assert (nx >= k+1) | |
ny = len(ty) - k - 1 | |
assert (ny >= k+1) | |
return sum(c[ix, iy] * B(x, k, ix, tx) * B(y, k, iy, ty) | |
for ix in range(nx) for iy in range(ny)) | |
def B(x, k, i, t): | |
if k == 0: | |
return 1.0 if t[i] <= x < t[i+1] else 0.0 | |
if t[i+k] == t[i]: | |
c1 = 0.0 | |
else: | |
c1 = (x - t[i])/(t[i+k] - t[i]) * B(x, k-1, i, t) | |
if t[i+k+1] == t[i+1]: | |
c2 = 0.0 | |
else: | |
c2 = (t[i+k+1] - x)/(t[i+k+1] - t[i+1]) * B(x, k-1, i+1, t) | |
return c1 + c2 | |
def bspline(x, t, c, k): | |
n = len(t) - k - 1 | |
assert (n >= k+1) and (len(c) >= n) | |
return sum(c[i] * B(x, k, i, t) for i in range(n)) | |
class NdBSpline0: | |
def __init__(self, t, c, k=3): | |
"""Tensor product spline object. | |
c[i1, i2, ..., id] * B(x1, i1) * B(x2, i2) * ... * B(xd, id) | |
Parameters | |
---------- | |
c : ndarray, shape (n1, n2, ..., nd, ...) | |
b-spline coefficients | |
t : tuple of 1D ndarrays | |
knot vectors in directions 1, 2, ... d | |
``len(t[i]) == n[i] + k + 1`` | |
k : int or length-d tuple of integers | |
spline degrees. | |
""" | |
ndim = len(t) | |
assert ndim <= len(c.shape) | |
try: | |
len(k) | |
except TypeError: | |
# make k a tuple | |
k = (k,)*ndim | |
self.k = tuple(operator.index(ki) for ki in k) | |
self.t = tuple(np.asarray(ti, dtype=float) for ti in t) | |
self.c = c | |
def __call__(self, x): | |
ndim = len(self.t) | |
# a single evaluation point: `x` is a 1D array_like, shape (ndim,) | |
assert len(x) == ndim | |
# get the indices in an ndim-dimensional vector | |
i = ['none', ]*ndim | |
for d in range(ndim): | |
td, xd = self.t[d], x[d] | |
k = self.k[d] | |
# find the index for x[d] | |
if xd == td[k]: | |
i[d] = k | |
else: | |
i[d] = np.searchsorted(td, xd) - 1 | |
assert td[i[d]] <= xd <= td[i[d]+1] | |
assert i[d] >= k and i[d] < len(td) - k | |
i = tuple(i) | |
# iterate over the dimensions, form linear combinations of | |
# products B(x_1) * B(x_2) * ... B(x_N) of (k+1)**N b-splines | |
# which are non-zero at `i = (i_1, i_2, ..., i_N)`. | |
result = 0 | |
iters = [range(i[d] - self.k[d], i[d] + 1) for d in range(ndim)] | |
for idx in itertools.product(*iters): | |
term = self.c[idx] * np.prod([B(x[d], self.k[d], idx[d], self.t[d]) | |
for d in range(ndim)]) | |
result += term | |
return result | |
class TestNdBSpline: | |
def test_1D(self): | |
# test ndim=1 agrees with BSpline | |
rng = np.random.default_rng(12345) | |
n, k = 11, 3 | |
n_tr = 7 | |
t = np.sort(rng.uniform(size=n + k + 1)) | |
c = rng.uniform(size=(n, n_tr)) | |
b = BSpline(t, c, k) | |
nb = NdBSpline((t,), c, k) | |
xi = rng.uniform(size=21) | |
# NdBSpline expects xi.shape=(npts, ndim) | |
assert_allclose(nb(xi[:, None]), | |
b(xi), atol=1e-14) | |
assert nb(xi[:, None]).shape == (xi.shape[0], c.shape[1]) | |
def make_2d_case(self): | |
# make a 2D separable spline | |
x = np.arange(6) | |
y = x**3 | |
spl = make_interp_spline(x, y, k=3) | |
y_1 = x**3 + 2*x | |
spl_1 = make_interp_spline(x, y_1, k=3) | |
t2 = (spl.t, spl_1.t) | |
c2 = spl.c[:, None] * spl_1.c[None, :] | |
return t2, c2, 3 | |
def make_2d_mixed(self): | |
# make a 2D separable spline w/ kx=3, ky=2 | |
x = np.arange(6) | |
y = x**3 | |
spl = make_interp_spline(x, y, k=3) | |
x = np.arange(5) + 1.5 | |
y_1 = x**2 + 2*x | |
spl_1 = make_interp_spline(x, y_1, k=2) | |
t2 = (spl.t, spl_1.t) | |
c2 = spl.c[:, None] * spl_1.c[None, :] | |
return t2, c2, spl.k, spl_1.k | |
def test_2D_separable(self): | |
xi = [(1.5, 2.5), (2.5, 1), (0.5, 1.5)] | |
t2, c2, k = self.make_2d_case() | |
target = [x**3 * (y**3 + 2*y) for (x, y) in xi] | |
# sanity check: bspline2 gives the product as constructed | |
assert_allclose([bspline2(xy, t2, c2, k) for xy in xi], | |
target, | |
atol=1e-14) | |
# check evaluation on a 2D array: the 1D array of 2D points | |
bspl2 = NdBSpline(t2, c2, k=3) | |
assert bspl2(xi).shape == (len(xi), ) | |
assert_allclose(bspl2(xi), | |
target, atol=1e-14) | |
# now check on a multidim xi | |
rng = np.random.default_rng(12345) | |
xi = rng.uniform(size=(4, 3, 2)) * 5 | |
result = bspl2(xi) | |
assert result.shape == (4, 3) | |
# also check the values | |
x, y = xi.reshape((-1, 2)).T | |
assert_allclose(result.ravel(), | |
x**3 * (y**3 + 2*y), atol=1e-14) | |
def test_2D_separable_2(self): | |
# test `c` with trailing dimensions, i.e. c.ndim > ndim | |
ndim = 2 | |
xi = [(1.5, 2.5), (2.5, 1), (0.5, 1.5)] | |
target = [x**3 * (y**3 + 2*y) for (x, y) in xi] | |
t2, c2, k = self.make_2d_case() | |
c2_4 = np.dstack((c2, c2, c2, c2)) # c22.shape = (6, 6, 4) | |
xy = (1.5, 2.5) | |
bspl2_4 = NdBSpline(t2, c2_4, k=3) | |
result = bspl2_4(xy) | |
val_single = NdBSpline(t2, c2, k)(xy) | |
assert result.shape == (4,) | |
assert_allclose(result, | |
[val_single, ]*4, atol=1e-14) | |
# now try the array xi : the output.shape is (3, 4) where 3 | |
# is the number of points in xi and 4 is the trailing dimension of c | |
assert bspl2_4(xi).shape == np.shape(xi)[:-1] + bspl2_4.c.shape[ndim:] | |
assert_allclose(bspl2_4(xi) - np.asarray(target)[:, None], | |
0, atol=5e-14) | |
# two trailing dimensions | |
c2_22 = c2_4.reshape((6, 6, 2, 2)) | |
bspl2_22 = NdBSpline(t2, c2_22, k=3) | |
result = bspl2_22(xy) | |
assert result.shape == (2, 2) | |
assert_allclose(result, | |
[[val_single, val_single], | |
[val_single, val_single]], atol=1e-14) | |
# now try the array xi : the output shape is (3, 2, 2) | |
# for 3 points in xi and c trailing dimensions being (2, 2) | |
assert (bspl2_22(xi).shape == | |
np.shape(xi)[:-1] + bspl2_22.c.shape[ndim:]) | |
assert_allclose(bspl2_22(xi) - np.asarray(target)[:, None, None], | |
0, atol=5e-14) | |
def test_2D_random(self): | |
rng = np.random.default_rng(12345) | |
k = 3 | |
tx = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=7)) * 3, 3, 3, 3, 3] | |
ty = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=8)) * 4, 4, 4, 4, 4] | |
c = rng.uniform(size=(tx.size-k-1, ty.size-k-1)) | |
spl = NdBSpline((tx, ty), c, k=k) | |
xi = (1., 1.) | |
assert_allclose(spl(xi), | |
bspline2(xi, (tx, ty), c, k), atol=1e-14) | |
xi = np.c_[[1, 1.5, 2], | |
[1.1, 1.6, 2.1]] | |
assert_allclose(spl(xi), | |
[bspline2(xy, (tx, ty), c, k) for xy in xi], | |
atol=1e-14) | |
def test_2D_mixed(self): | |
t2, c2, kx, ky = self.make_2d_mixed() | |
xi = [(1.4, 4.5), (2.5, 2.4), (4.5, 3.5)] | |
target = [x**3 * (y**2 + 2*y) for (x, y) in xi] | |
bspl2 = NdBSpline(t2, c2, k=(kx, ky)) | |
assert bspl2(xi).shape == (len(xi), ) | |
assert_allclose(bspl2(xi), | |
target, atol=1e-14) | |
def test_2D_derivative(self): | |
t2, c2, kx, ky = self.make_2d_mixed() | |
xi = [(1.4, 4.5), (2.5, 2.4), (4.5, 3.5)] | |
bspl2 = NdBSpline(t2, c2, k=(kx, ky)) | |
der = bspl2(xi, nu=(1, 0)) | |
assert_allclose(der, | |
[3*x**2 * (y**2 + 2*y) for x, y in xi], atol=1e-14) | |
der = bspl2(xi, nu=(1, 1)) | |
assert_allclose(der, | |
[3*x**2 * (2*y + 2) for x, y in xi], atol=1e-14) | |
der = bspl2(xi, nu=(0, 0)) | |
assert_allclose(der, | |
[x**3 * (y**2 + 2*y) for x, y in xi], atol=1e-14) | |
with assert_raises(ValueError): | |
# all(nu >= 0) | |
der = bspl2(xi, nu=(-1, 0)) | |
with assert_raises(ValueError): | |
# len(nu) == ndim | |
der = bspl2(xi, nu=(-1, 0, 1)) | |
def test_2D_mixed_random(self): | |
rng = np.random.default_rng(12345) | |
kx, ky = 2, 3 | |
tx = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=7)) * 3, 3, 3, 3, 3] | |
ty = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=8)) * 4, 4, 4, 4, 4] | |
c = rng.uniform(size=(tx.size - kx - 1, ty.size - ky - 1)) | |
xi = np.c_[[1, 1.5, 2], | |
[1.1, 1.6, 2.1]] | |
bspl2 = NdBSpline((tx, ty), c, k=(kx, ky)) | |
bspl2_0 = NdBSpline0((tx, ty), c, k=(kx, ky)) | |
assert_allclose(bspl2(xi), | |
[bspl2_0(xp) for xp in xi], atol=1e-14) | |
def test_tx_neq_ty(self): | |
# 2D separable spline w/ len(tx) != len(ty) | |
x = np.arange(6) | |
y = np.arange(7) + 1.5 | |
spl_x = make_interp_spline(x, x**3, k=3) | |
spl_y = make_interp_spline(y, y**2 + 2*y, k=3) | |
cc = spl_x.c[:, None] * spl_y.c[None, :] | |
bspl = NdBSpline((spl_x.t, spl_y.t), cc, (spl_x.k, spl_y.k)) | |
values = (x**3)[:, None] * (y**2 + 2*y)[None, :] | |
rgi = RegularGridInterpolator((x, y), values) | |
xi = [(a, b) for a, b in itertools.product(x, y)] | |
bxi = bspl(xi) | |
assert not np.isnan(bxi).any() | |
assert_allclose(bxi, rgi(xi), atol=1e-14) | |
assert_allclose(bxi.reshape(values.shape), values, atol=1e-14) | |
def make_3d_case(self): | |
# make a 3D separable spline | |
x = np.arange(6) | |
y = x**3 | |
spl = make_interp_spline(x, y, k=3) | |
y_1 = x**3 + 2*x | |
spl_1 = make_interp_spline(x, y_1, k=3) | |
y_2 = x**3 + 3*x + 1 | |
spl_2 = make_interp_spline(x, y_2, k=3) | |
t2 = (spl.t, spl_1.t, spl_2.t) | |
c2 = (spl.c[:, None, None] * | |
spl_1.c[None, :, None] * | |
spl_2.c[None, None, :]) | |
return t2, c2, 3 | |
def test_3D_separable(self): | |
rng = np.random.default_rng(12345) | |
x, y, z = rng.uniform(size=(3, 11)) * 5 | |
target = x**3 * (y**3 + 2*y) * (z**3 + 3*z + 1) | |
t3, c3, k = self.make_3d_case() | |
bspl3 = NdBSpline(t3, c3, k=3) | |
xi = [_ for _ in zip(x, y, z)] | |
result = bspl3(xi) | |
assert result.shape == (11,) | |
assert_allclose(result, target, atol=1e-14) | |
def test_3D_derivative(self): | |
t3, c3, k = self.make_3d_case() | |
bspl3 = NdBSpline(t3, c3, k=3) | |
rng = np.random.default_rng(12345) | |
x, y, z = rng.uniform(size=(3, 11)) * 5 | |
xi = [_ for _ in zip(x, y, z)] | |
assert_allclose(bspl3(xi, nu=(1, 0, 0)), | |
3*x**2 * (y**3 + 2*y) * (z**3 + 3*z + 1), atol=1e-14) | |
assert_allclose(bspl3(xi, nu=(2, 0, 0)), | |
6*x * (y**3 + 2*y) * (z**3 + 3*z + 1), atol=1e-14) | |
assert_allclose(bspl3(xi, nu=(2, 1, 0)), | |
6*x * (3*y**2 + 2) * (z**3 + 3*z + 1), atol=1e-14) | |
assert_allclose(bspl3(xi, nu=(2, 1, 3)), | |
6*x * (3*y**2 + 2) * (6), atol=1e-14) | |
assert_allclose(bspl3(xi, nu=(2, 1, 4)), | |
np.zeros(len(xi)), atol=1e-14) | |
def test_3D_random(self): | |
rng = np.random.default_rng(12345) | |
k = 3 | |
tx = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=7)) * 3, 3, 3, 3, 3] | |
ty = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=8)) * 4, 4, 4, 4, 4] | |
tz = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=8)) * 4, 4, 4, 4, 4] | |
c = rng.uniform(size=(tx.size-k-1, ty.size-k-1, tz.size-k-1)) | |
spl = NdBSpline((tx, ty, tz), c, k=k) | |
spl_0 = NdBSpline0((tx, ty, tz), c, k=k) | |
xi = (1., 1., 1) | |
assert_allclose(spl(xi), spl_0(xi), atol=1e-14) | |
xi = np.c_[[1, 1.5, 2], | |
[1.1, 1.6, 2.1], | |
[0.9, 1.4, 1.9]] | |
assert_allclose(spl(xi), [spl_0(xp) for xp in xi], atol=1e-14) | |
def test_3D_random_complex(self): | |
rng = np.random.default_rng(12345) | |
k = 3 | |
tx = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=7)) * 3, 3, 3, 3, 3] | |
ty = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=8)) * 4, 4, 4, 4, 4] | |
tz = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=8)) * 4, 4, 4, 4, 4] | |
c = (rng.uniform(size=(tx.size-k-1, ty.size-k-1, tz.size-k-1)) + | |
rng.uniform(size=(tx.size-k-1, ty.size-k-1, tz.size-k-1))*1j) | |
spl = NdBSpline((tx, ty, tz), c, k=k) | |
spl_re = NdBSpline((tx, ty, tz), c.real, k=k) | |
spl_im = NdBSpline((tx, ty, tz), c.imag, k=k) | |
xi = np.c_[[1, 1.5, 2], | |
[1.1, 1.6, 2.1], | |
[0.9, 1.4, 1.9]] | |
assert_allclose(spl(xi), | |
spl_re(xi) + 1j*spl_im(xi), atol=1e-14) | |
def test_extrapolate_3D_separable(self, cls_extrap, call_extrap): | |
# test that extrapolate=True does extrapolate | |
t3, c3, k = self.make_3d_case() | |
bspl3 = NdBSpline(t3, c3, k=3, extrapolate=cls_extrap) | |
# evaluate out of bounds | |
x, y, z = [-2, -1, 7], [-3, -0.5, 6.5], [-1, -1.5, 7.5] | |
x, y, z = map(np.asarray, (x, y, z)) | |
xi = [_ for _ in zip(x, y, z)] | |
target = x**3 * (y**3 + 2*y) * (z**3 + 3*z + 1) | |
result = bspl3(xi, extrapolate=call_extrap) | |
assert_allclose(result, target, atol=1e-14) | |
def test_extrapolate_3D_separable_2(self, extrap): | |
# test that call(..., extrapolate=None) defers to self.extrapolate, | |
# otherwise supersedes self.extrapolate | |
t3, c3, k = self.make_3d_case() | |
cls_extrap, call_extrap = extrap | |
bspl3 = NdBSpline(t3, c3, k=3, extrapolate=cls_extrap) | |
# evaluate out of bounds | |
x, y, z = [-2, -1, 7], [-3, -0.5, 6.5], [-1, -1.5, 7.5] | |
x, y, z = map(np.asarray, (x, y, z)) | |
xi = [_ for _ in zip(x, y, z)] | |
target = x**3 * (y**3 + 2*y) * (z**3 + 3*z + 1) | |
result = bspl3(xi, extrapolate=call_extrap) | |
assert_allclose(result, target, atol=1e-14) | |
def test_extrapolate_false_3D_separable(self): | |
# test that extrapolate=False produces nans for out-of-bounds values | |
t3, c3, k = self.make_3d_case() | |
bspl3 = NdBSpline(t3, c3, k=3) | |
# evaluate out of bounds and inside | |
x, y, z = [-2, 1, 7], [-3, 0.5, 6.5], [-1, 1.5, 7.5] | |
x, y, z = map(np.asarray, (x, y, z)) | |
xi = [_ for _ in zip(x, y, z)] | |
target = x**3 * (y**3 + 2*y) * (z**3 + 3*z + 1) | |
result = bspl3(xi, extrapolate=False) | |
assert np.isnan(result[0]) | |
assert np.isnan(result[-1]) | |
assert_allclose(result[1:-1], target[1:-1], atol=1e-14) | |
def test_x_nan_3D(self): | |
# test that spline(nan) is nan | |
t3, c3, k = self.make_3d_case() | |
bspl3 = NdBSpline(t3, c3, k=3) | |
# evaluate out of bounds and inside | |
x = np.asarray([-2, 3, np.nan, 1, 2, 7, np.nan]) | |
y = np.asarray([-3, 3.5, 1, np.nan, 3, 6.5, 6.5]) | |
z = np.asarray([-1, 3.5, 2, 3, np.nan, 7.5, 7.5]) | |
xi = [_ for _ in zip(x, y, z)] | |
target = x**3 * (y**3 + 2*y) * (z**3 + 3*z + 1) | |
mask = np.isnan(x) | np.isnan(y) | np.isnan(z) | |
target[mask] = np.nan | |
result = bspl3(xi) | |
assert np.isnan(result[mask]).all() | |
assert_allclose(result, target, atol=1e-14) | |
def test_non_c_contiguous(self): | |
# check that non C-contiguous inputs are OK | |
rng = np.random.default_rng(12345) | |
kx, ky = 3, 3 | |
tx = np.sort(rng.uniform(low=0, high=4, size=16)) | |
tx = np.r_[(tx[0],)*kx, tx, (tx[-1],)*kx] | |
ty = np.sort(rng.uniform(low=0, high=4, size=16)) | |
ty = np.r_[(ty[0],)*ky, ty, (ty[-1],)*ky] | |
assert not tx[::2].flags.c_contiguous | |
assert not ty[::2].flags.c_contiguous | |
c = rng.uniform(size=(tx.size//2 - kx - 1, ty.size//2 - ky - 1)) | |
c = c.T | |
assert not c.flags.c_contiguous | |
xi = np.c_[[1, 1.5, 2], | |
[1.1, 1.6, 2.1]] | |
bspl2 = NdBSpline((tx[::2], ty[::2]), c, k=(kx, ky)) | |
bspl2_0 = NdBSpline0((tx[::2], ty[::2]), c, k=(kx, ky)) | |
assert_allclose(bspl2(xi), | |
[bspl2_0(xp) for xp in xi], atol=1e-14) | |
def test_readonly(self): | |
t3, c3, k = self.make_3d_case() | |
bspl3 = NdBSpline(t3, c3, k=3) | |
for i in range(3): | |
t3[i].flags.writeable = False | |
c3.flags.writeable = False | |
bspl3_ = NdBSpline(t3, c3, k=3) | |
assert bspl3((1, 2, 3)) == bspl3_((1, 2, 3)) | |
def test_design_matrix(self): | |
t3, c3, k = self.make_3d_case() | |
xi = np.asarray([[1, 2, 3], [4, 5, 6]]) | |
dm = NdBSpline(t3, c3, k).design_matrix(xi, t3, k) | |
dm1 = NdBSpline.design_matrix(xi, t3, [k, k, k]) | |
assert dm.shape[0] == xi.shape[0] | |
assert_allclose(dm.todense(), dm1.todense(), atol=1e-16) | |
with assert_raises(ValueError): | |
NdBSpline.design_matrix([1, 2, 3], t3, [k]*3) | |
with assert_raises(ValueError, match="Data and knots*"): | |
NdBSpline.design_matrix([[1, 2]], t3, [k]*3) | |
class TestMakeND: | |
def test_2D_separable_simple(self): | |
x = np.arange(6) | |
y = np.arange(6) + 0.5 | |
values = x[:, None]**3 * (y**3 + 2*y)[None, :] | |
xi = [(a, b) for a, b in itertools.product(x, y)] | |
bspl = make_ndbspl((x, y), values, k=1) | |
assert_allclose(bspl(xi), values.ravel(), atol=1e-15) | |
# test the coefficients vs outer product of 1D coefficients | |
spl_x = make_interp_spline(x, x**3, k=1) | |
spl_y = make_interp_spline(y, y**3 + 2*y, k=1) | |
cc = spl_x.c[:, None] * spl_y.c[None, :] | |
assert_allclose(cc, bspl.c, atol=1e-11, rtol=0) | |
# test against RGI | |
from scipy.interpolate import RegularGridInterpolator as RGI | |
rgi = RGI((x, y), values, method='linear') | |
assert_allclose(rgi(xi), bspl(xi), atol=1e-14) | |
def test_2D_separable_trailing_dims(self): | |
# test `c` with trailing dimensions, i.e. c.ndim > ndim | |
x = np.arange(6) | |
y = np.arange(6) | |
xi = [(a, b) for a, b in itertools.product(x, y)] | |
# make values4.shape = (6, 6, 4) | |
values = x[:, None]**3 * (y**3 + 2*y)[None, :] | |
values4 = np.dstack((values, values, values, values)) | |
bspl = make_ndbspl((x, y), values4, k=3, solver=ssl.spsolve) | |
result = bspl(xi) | |
target = np.dstack((values, values, values, values)) | |
assert result.shape == (36, 4) | |
assert_allclose(result.reshape(6, 6, 4), | |
target, atol=1e-14) | |
# now two trailing dimensions | |
values22 = values4.reshape((6, 6, 2, 2)) | |
bspl = make_ndbspl((x, y), values22, k=3, solver=ssl.spsolve) | |
result = bspl(xi) | |
assert result.shape == (36, 2, 2) | |
assert_allclose(result.reshape(6, 6, 2, 2), | |
target.reshape((6, 6, 2, 2)), atol=1e-14) | |
def test_2D_mixed(self, k): | |
# make a 2D separable spline w/ len(tx) != len(ty) | |
x = np.arange(6) | |
y = np.arange(7) + 1.5 | |
xi = [(a, b) for a, b in itertools.product(x, y)] | |
values = (x**3)[:, None] * (y**2 + 2*y)[None, :] | |
bspl = make_ndbspl((x, y), values, k=k, solver=ssl.spsolve) | |
assert_allclose(bspl(xi), values.ravel(), atol=1e-15) | |
def _get_sample_2d_data(self): | |
# from test_rgi.py::TestIntepN | |
x = np.array([.5, 2., 3., 4., 5.5, 6.]) | |
y = np.array([.5, 2., 3., 4., 5.5, 6.]) | |
z = np.array( | |
[ | |
[1, 2, 1, 2, 1, 1], | |
[1, 2, 1, 2, 1, 1], | |
[1, 2, 3, 2, 1, 1], | |
[1, 2, 2, 2, 1, 1], | |
[1, 2, 1, 2, 1, 1], | |
[1, 2, 2, 2, 1, 1], | |
] | |
) | |
return x, y, z | |
def test_2D_vs_RGI_linear(self): | |
x, y, z = self._get_sample_2d_data() | |
bspl = make_ndbspl((x, y), z, k=1) | |
rgi = RegularGridInterpolator((x, y), z, method='linear') | |
xi = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3], | |
[1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T | |
assert_allclose(bspl(xi), rgi(xi), atol=1e-14) | |
def test_2D_vs_RGI_cubic(self): | |
x, y, z = self._get_sample_2d_data() | |
bspl = make_ndbspl((x, y), z, k=3, solver=ssl.spsolve) | |
rgi = RegularGridInterpolator((x, y), z, method='cubic_legacy') | |
xi = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3], | |
[1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T | |
assert_allclose(bspl(xi), rgi(xi), atol=1e-14) | |
def test_2D_vs_RGI_cubic_iterative(self, solver): | |
# same as `test_2D_vs_RGI_cubic`, only with an iterative solver. | |
# Note the need to add an explicit `rtol` solver_arg to achieve the | |
# target accuracy of 1e-14. (the relation between solver atol/rtol | |
# and the accuracy of the final result is not direct and needs experimenting) | |
x, y, z = self._get_sample_2d_data() | |
bspl = make_ndbspl((x, y), z, k=3, solver=solver, rtol=1e-6) | |
rgi = RegularGridInterpolator((x, y), z, method='cubic_legacy') | |
xi = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3], | |
[1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T | |
assert_allclose(bspl(xi), rgi(xi), atol=1e-14) | |
def test_2D_vs_RGI_quintic(self): | |
x, y, z = self._get_sample_2d_data() | |
bspl = make_ndbspl((x, y), z, k=5, solver=ssl.spsolve) | |
rgi = RegularGridInterpolator((x, y), z, method='quintic_legacy') | |
xi = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3], | |
[1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T | |
assert_allclose(bspl(xi), rgi(xi), atol=1e-14) | |
def test_3D_random_vs_RGI(self, k, meth): | |
rndm = np.random.default_rng(123456) | |
x = np.cumsum(rndm.uniform(size=6)) | |
y = np.cumsum(rndm.uniform(size=7)) | |
z = np.cumsum(rndm.uniform(size=8)) | |
values = rndm.uniform(size=(6, 7, 8)) | |
bspl = make_ndbspl((x, y, z), values, k=k, solver=ssl.spsolve) | |
rgi = RegularGridInterpolator((x, y, z), values, method=meth) | |
xi = np.random.uniform(low=0.7, high=2.1, size=(11, 3)) | |
assert_allclose(bspl(xi), rgi(xi), atol=1e-14) | |
def test_solver_err_not_converged(self): | |
x, y, z = self._get_sample_2d_data() | |
solver_args = {'maxiter': 1} | |
with assert_raises(ValueError, match='solver'): | |
make_ndbspl((x, y), z, k=3, **solver_args) | |
with assert_raises(ValueError, match='solver'): | |
make_ndbspl((x, y), np.dstack((z, z)), k=3, **solver_args) | |
class TestFpchec: | |
# https://github.com/scipy/scipy/blob/main/scipy/interpolate/fitpack/fpchec.f | |
def test_1D_x_t(self): | |
k = 1 | |
t = np.arange(12).reshape(2, 6) | |
x = np.arange(12) | |
with pytest.raises(ValueError, match="1D sequence"): | |
_b.fpcheck(x, t, k) | |
with pytest.raises(ValueError, match="1D sequence"): | |
_b.fpcheck(t, x, k) | |
def test_condition_1(self): | |
# c 1) k+1 <= n-k-1 <= m | |
k = 3 | |
n = 2*(k + 1) - 1 # not OK | |
m = n + 11 # OK | |
t = np.arange(n) | |
x = np.arange(m) | |
assert dfitpack.fpchec(x, t, k) == 10 | |
with pytest.raises(ValueError, match="Need k+1*"): | |
_b.fpcheck(x, t, k) | |
n = 2*(k+1) + 1 # OK | |
m = n - k - 2 # not OK | |
t = np.arange(n) | |
x = np.arange(m) | |
assert dfitpack.fpchec(x, t, k) == 10 | |
with pytest.raises(ValueError, match="Need k+1*"): | |
_b.fpcheck(x, t, k) | |
def test_condition_2(self): | |
# c 2) t(1) <= t(2) <= ... <= t(k+1) | |
# c t(n-k) <= t(n-k+1) <= ... <= t(n) | |
k = 3 | |
t = [0]*(k+1) + [2] + [5]*(k+1) # this is OK | |
x = [1, 2, 3, 4, 4.5] | |
assert dfitpack.fpchec(x, t, k) == 0 | |
assert _b.fpcheck(x, t, k) is None # does not raise | |
tt = t.copy() | |
tt[-1] = tt[0] # not OK | |
assert dfitpack.fpchec(x, tt, k) == 20 | |
with pytest.raises(ValueError, match="Last k knots*"): | |
_b.fpcheck(x, tt, k) | |
tt = t.copy() | |
tt[0] = tt[-1] # not OK | |
assert dfitpack.fpchec(x, tt, k) == 20 | |
with pytest.raises(ValueError, match="First k knots*"): | |
_b.fpcheck(x, tt, k) | |
def test_condition_3(self): | |
# c 3) t(k+1) < t(k+2) < ... < t(n-k) | |
k = 3 | |
t = [0]*(k+1) + [2, 3] + [5]*(k+1) # this is OK | |
x = [1, 2, 3, 3.5, 4, 4.5] | |
assert dfitpack.fpchec(x, t, k) == 0 | |
assert _b.fpcheck(x, t, k) is None | |
t = [0]*(k+1) + [2, 2] + [5]*(k+1) # this is not OK | |
assert dfitpack.fpchec(x, t, k) == 30 | |
with pytest.raises(ValueError, match="Internal knots*"): | |
_b.fpcheck(x, t, k) | |
def test_condition_4(self): | |
# c 4) t(k+1) <= x(i) <= t(n-k) | |
# NB: FITPACK's fpchec only checks x[0] & x[-1], so we follow. | |
k = 3 | |
t = [0]*(k+1) + [5]*(k+1) | |
x = [1, 2, 3, 3.5, 4, 4.5] # this is OK | |
assert dfitpack.fpchec(x, t, k) == 0 | |
assert _b.fpcheck(x, t, k) is None | |
xx = x.copy() | |
xx[0] = t[0] # still OK | |
assert dfitpack.fpchec(xx, t, k) == 0 | |
assert _b.fpcheck(x, t, k) is None | |
xx = x.copy() | |
xx[0] = t[0] - 1 # not OK | |
assert dfitpack.fpchec(xx, t, k) == 40 | |
with pytest.raises(ValueError, match="Out of bounds*"): | |
_b.fpcheck(xx, t, k) | |
xx = x.copy() | |
xx[-1] = t[-1] + 1 # not OK | |
assert dfitpack.fpchec(xx, t, k) == 40 | |
with pytest.raises(ValueError, match="Out of bounds*"): | |
_b.fpcheck(xx, t, k) | |
# ### Test the S-W condition (no 5) | |
# c 5) the conditions specified by schoenberg and whitney must hold | |
# c for at least one subset of data points, i.e. there must be a | |
# c subset of data points y(j) such that | |
# c t(j) < y(j) < t(j+k+1), j=1,2,...,n-k-1 | |
def test_condition_5_x1xm(self): | |
# x(1).ge.t(k2) .or. x(m).le.t(nk1) | |
k = 1 | |
t = [0, 0, 1, 2, 2] | |
x = [1.1, 1.1, 1.1] | |
assert dfitpack.fpchec(x, t, k) == 50 | |
with pytest.raises(ValueError, match="Schoenberg-Whitney*"): | |
_b.fpcheck(x, t, k) | |
x = [0.5, 0.5, 0.5] | |
assert dfitpack.fpchec(x, t, k) == 50 | |
with pytest.raises(ValueError, match="Schoenberg-Whitney*"): | |
_b.fpcheck(x, t, k) | |
def test_condition_5_k1(self): | |
# special case nk3 (== n - k - 2) < 2 | |
k = 1 | |
t = [0, 0, 1, 1] | |
x = [0.5, 0.6] | |
assert dfitpack.fpchec(x, t, k) == 0 | |
assert _b.fpcheck(x, t, k) is None | |
def test_condition_5_1(self): | |
# basically, there can't be an interval of t[j]..t[j+k+1] with no x | |
k = 3 | |
t = [0]*(k+1) + [2] + [5]*(k+1) | |
x = [3]*5 | |
assert dfitpack.fpchec(x, t, k) == 50 | |
with pytest.raises(ValueError, match="Schoenberg-Whitney*"): | |
_b.fpcheck(x, t, k) | |
t = [0]*(k+1) + [2] + [5]*(k+1) | |
x = [1]*5 | |
assert dfitpack.fpchec(x, t, k) == 50 | |
with pytest.raises(ValueError, match="Schoenberg-Whitney*"): | |
_b.fpcheck(x, t, k) | |
def test_condition_5_2(self): | |
# same as _5_1, only the empty interval is in the middle | |
k = 3 | |
t = [0]*(k+1) + [2, 3] + [5]*(k+1) | |
x = [1.1]*5 + [4] | |
assert dfitpack.fpchec(x, t, k) == 50 | |
with pytest.raises(ValueError, match="Schoenberg-Whitney*"): | |
_b.fpcheck(x, t, k) | |
# and this one is OK | |
x = [1.1]*4 + [4, 4] | |
assert dfitpack.fpchec(x, t, k) == 0 | |
assert _b.fpcheck(x, t, k) is None | |
def test_condition_5_3(self): | |
# similar to _5_2, covers a different failure branch | |
k = 1 | |
t = [0, 0, 2, 3, 4, 5, 6, 7, 7] | |
x = [1, 1, 1, 5.2, 5.2, 5.2, 6.5] | |
assert dfitpack.fpchec(x, t, k) == 50 | |
with pytest.raises(ValueError, match="Schoenberg-Whitney*"): | |
_b.fpcheck(x, t, k) | |