peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/interpolate
/tests
/test_fitpack.py
import itertools | |
import os | |
import numpy as np | |
from numpy.testing import (assert_equal, assert_allclose, assert_, | |
assert_almost_equal, assert_array_almost_equal) | |
from pytest import raises as assert_raises | |
import pytest | |
from scipy._lib._testutils import check_free_memory | |
from scipy.interpolate import RectBivariateSpline | |
from scipy.interpolate._fitpack_py import (splrep, splev, bisplrep, bisplev, | |
sproot, splprep, splint, spalde, splder, splantider, insert, dblint) | |
from scipy.interpolate.dfitpack import regrid_smth | |
from scipy.interpolate._fitpack2 import dfitpack_int | |
def data_file(basename): | |
return os.path.join(os.path.abspath(os.path.dirname(__file__)), | |
'data', basename) | |
def norm2(x): | |
return np.sqrt(np.dot(x.T, x)) | |
def f1(x, d=0): | |
"""Derivatives of sin->cos->-sin->-cos.""" | |
if d % 4 == 0: | |
return np.sin(x) | |
if d % 4 == 1: | |
return np.cos(x) | |
if d % 4 == 2: | |
return -np.sin(x) | |
if d % 4 == 3: | |
return -np.cos(x) | |
def makepairs(x, y): | |
"""Helper function to create an array of pairs of x and y.""" | |
xy = np.array(list(itertools.product(np.asarray(x), np.asarray(y)))) | |
return xy.T | |
class TestSmokeTests: | |
""" | |
Smoke tests (with a few asserts) for fitpack routines -- mostly | |
check that they are runnable | |
""" | |
def check_1(self, per=0, s=0, a=0, b=2*np.pi, at_nodes=False, | |
xb=None, xe=None): | |
if xb is None: | |
xb = a | |
if xe is None: | |
xe = b | |
N = 20 | |
# nodes and middle points of the nodes | |
x = np.linspace(a, b, N + 1) | |
x1 = a + (b - a) * np.arange(1, N, dtype=float) / float(N - 1) | |
v = f1(x) | |
def err_est(k, d): | |
# Assume f has all derivatives < 1 | |
h = 1.0 / N | |
tol = 5 * h**(.75*(k-d)) | |
if s > 0: | |
tol += 1e5*s | |
return tol | |
for k in range(1, 6): | |
tck = splrep(x, v, s=s, per=per, k=k, xe=xe) | |
tt = tck[0][k:-k] if at_nodes else x1 | |
for d in range(k+1): | |
tol = err_est(k, d) | |
err = norm2(f1(tt, d) - splev(tt, tck, d)) / norm2(f1(tt, d)) | |
assert err < tol | |
def check_2(self, per=0, N=20, ia=0, ib=2*np.pi): | |
a, b, dx = 0, 2*np.pi, 0.2*np.pi | |
x = np.linspace(a, b, N+1) # nodes | |
v = np.sin(x) | |
def err_est(k, d): | |
# Assume f has all derivatives < 1 | |
h = 1.0 / N | |
tol = 5 * h**(.75*(k-d)) | |
return tol | |
nk = [] | |
for k in range(1, 6): | |
tck = splrep(x, v, s=0, per=per, k=k, xe=b) | |
nk.append([splint(ia, ib, tck), spalde(dx, tck)]) | |
k = 1 | |
for r in nk: | |
d = 0 | |
for dr in r[1]: | |
tol = err_est(k, d) | |
assert_allclose(dr, f1(dx, d), atol=0, rtol=tol) | |
d = d+1 | |
k = k+1 | |
def test_smoke_splrep_splev(self): | |
self.check_1(s=1e-6) | |
self.check_1(b=1.5*np.pi) | |
self.check_1(b=1.5*np.pi, xe=2*np.pi, per=1, s=1e-1) | |
def test_smoke_splrep_splev_2(self, per, at_nodes): | |
self.check_1(per=per, at_nodes=at_nodes) | |
def test_smoke_splint_spalde(self, N, per): | |
self.check_2(per=per, N=N) | |
def test_smoke_splint_spalde_iaib(self, N, per): | |
self.check_2(ia=0.2*np.pi, ib=np.pi, N=N, per=per) | |
def test_smoke_sproot(self): | |
# sproot is only implemented for k=3 | |
a, b = 0.1, 15 | |
x = np.linspace(a, b, 20) | |
v = np.sin(x) | |
for k in [1, 2, 4, 5]: | |
tck = splrep(x, v, s=0, per=0, k=k, xe=b) | |
with assert_raises(ValueError): | |
sproot(tck) | |
k = 3 | |
tck = splrep(x, v, s=0, k=3) | |
roots = sproot(tck) | |
assert_allclose(splev(roots, tck), 0, atol=1e-10, rtol=1e-10) | |
assert_allclose(roots, np.pi * np.array([1, 2, 3, 4]), rtol=1e-3) | |
def test_smoke_splprep_splrep_splev(self, N, k): | |
a, b, dx = 0, 2.*np.pi, 0.2*np.pi | |
x = np.linspace(a, b, N+1) # nodes | |
v = np.sin(x) | |
tckp, u = splprep([x, v], s=0, per=0, k=k, nest=-1) | |
uv = splev(dx, tckp) | |
err1 = abs(uv[1] - np.sin(uv[0])) | |
assert err1 < 1e-2 | |
tck = splrep(x, v, s=0, per=0, k=k) | |
err2 = abs(splev(uv[0], tck) - np.sin(uv[0])) | |
assert err2 < 1e-2 | |
# Derivatives of parametric cubic spline at u (first function) | |
if k == 3: | |
tckp, u = splprep([x, v], s=0, per=0, k=k, nest=-1) | |
for d in range(1, k+1): | |
uv = splev(dx, tckp, d) | |
def test_smoke_bisplrep_bisplev(self): | |
xb, xe = 0, 2.*np.pi | |
yb, ye = 0, 2.*np.pi | |
kx, ky = 3, 3 | |
Nx, Ny = 20, 20 | |
def f2(x, y): | |
return np.sin(x+y) | |
x = np.linspace(xb, xe, Nx + 1) | |
y = np.linspace(yb, ye, Ny + 1) | |
xy = makepairs(x, y) | |
tck = bisplrep(xy[0], xy[1], f2(xy[0], xy[1]), s=0, kx=kx, ky=ky) | |
tt = [tck[0][kx:-kx], tck[1][ky:-ky]] | |
t2 = makepairs(tt[0], tt[1]) | |
v1 = bisplev(tt[0], tt[1], tck) | |
v2 = f2(t2[0], t2[1]) | |
v2.shape = len(tt[0]), len(tt[1]) | |
assert norm2(np.ravel(v1 - v2)) < 1e-2 | |
class TestSplev: | |
def test_1d_shape(self): | |
x = [1,2,3,4,5] | |
y = [4,5,6,7,8] | |
tck = splrep(x, y) | |
z = splev([1], tck) | |
assert_equal(z.shape, (1,)) | |
z = splev(1, tck) | |
assert_equal(z.shape, ()) | |
def test_2d_shape(self): | |
x = [1, 2, 3, 4, 5] | |
y = [4, 5, 6, 7, 8] | |
tck = splrep(x, y) | |
t = np.array([[1.0, 1.5, 2.0, 2.5], | |
[3.0, 3.5, 4.0, 4.5]]) | |
z = splev(t, tck) | |
z0 = splev(t[0], tck) | |
z1 = splev(t[1], tck) | |
assert_equal(z, np.vstack((z0, z1))) | |
def test_extrapolation_modes(self): | |
# test extrapolation modes | |
# * if ext=0, return the extrapolated value. | |
# * if ext=1, return 0 | |
# * if ext=2, raise a ValueError | |
# * if ext=3, return the boundary value. | |
x = [1,2,3] | |
y = [0,2,4] | |
tck = splrep(x, y, k=1) | |
rstl = [[-2, 6], [0, 0], None, [0, 4]] | |
for ext in (0, 1, 3): | |
assert_array_almost_equal(splev([0, 4], tck, ext=ext), rstl[ext]) | |
assert_raises(ValueError, splev, [0, 4], tck, ext=2) | |
class TestSplder: | |
def setup_method(self): | |
# non-uniform grid, just to make it sure | |
x = np.linspace(0, 1, 100)**3 | |
y = np.sin(20 * x) | |
self.spl = splrep(x, y) | |
# double check that knots are non-uniform | |
assert_(np.ptp(np.diff(self.spl[0])) > 0) | |
def test_inverse(self): | |
# Check that antiderivative + derivative is identity. | |
for n in range(5): | |
spl2 = splantider(self.spl, n) | |
spl3 = splder(spl2, n) | |
assert_allclose(self.spl[0], spl3[0]) | |
assert_allclose(self.spl[1], spl3[1]) | |
assert_equal(self.spl[2], spl3[2]) | |
def test_splder_vs_splev(self): | |
# Check derivative vs. FITPACK | |
for n in range(3+1): | |
# Also extrapolation! | |
xx = np.linspace(-1, 2, 2000) | |
if n == 3: | |
# ... except that FITPACK extrapolates strangely for | |
# order 0, so let's not check that. | |
xx = xx[(xx >= 0) & (xx <= 1)] | |
dy = splev(xx, self.spl, n) | |
spl2 = splder(self.spl, n) | |
dy2 = splev(xx, spl2) | |
if n == 1: | |
assert_allclose(dy, dy2, rtol=2e-6) | |
else: | |
assert_allclose(dy, dy2) | |
def test_splantider_vs_splint(self): | |
# Check antiderivative vs. FITPACK | |
spl2 = splantider(self.spl) | |
# no extrapolation, splint assumes function is zero outside | |
# range | |
xx = np.linspace(0, 1, 20) | |
for x1 in xx: | |
for x2 in xx: | |
y1 = splint(x1, x2, self.spl) | |
y2 = splev(x2, spl2) - splev(x1, spl2) | |
assert_allclose(y1, y2) | |
def test_order0_diff(self): | |
assert_raises(ValueError, splder, self.spl, 4) | |
def test_kink(self): | |
# Should refuse to differentiate splines with kinks | |
spl2 = insert(0.5, self.spl, m=2) | |
splder(spl2, 2) # Should work | |
assert_raises(ValueError, splder, spl2, 3) | |
spl2 = insert(0.5, self.spl, m=3) | |
splder(spl2, 1) # Should work | |
assert_raises(ValueError, splder, spl2, 2) | |
spl2 = insert(0.5, self.spl, m=4) | |
assert_raises(ValueError, splder, spl2, 1) | |
def test_multidim(self): | |
# c can have trailing dims | |
for n in range(3): | |
t, c, k = self.spl | |
c2 = np.c_[c, c, c] | |
c2 = np.dstack((c2, c2)) | |
spl2 = splantider((t, c2, k), n) | |
spl3 = splder(spl2, n) | |
assert_allclose(t, spl3[0]) | |
assert_allclose(c2, spl3[1]) | |
assert_equal(k, spl3[2]) | |
class TestSplint: | |
def test_len_c(self): | |
n, k = 7, 3 | |
x = np.arange(n) | |
y = x**3 | |
t, c, k = splrep(x, y, s=0) | |
# note that len(c) == len(t) == 11 (== len(x) + 2*(k-1)) | |
assert len(t) == len(c) == n + 2*(k-1) | |
# integrate directly: $\int_0^6 x^3 dx = 6^4 / 4$ | |
res = splint(0, 6, (t, c, k)) | |
assert_allclose(res, 6**4 / 4, atol=1e-15) | |
# check that the coefficients past len(t) - k - 1 are ignored | |
c0 = c.copy() | |
c0[len(t)-k-1:] = np.nan | |
res0 = splint(0, 6, (t, c0, k)) | |
assert_allclose(res0, 6**4 / 4, atol=1e-15) | |
# however, all other coefficients *are* used | |
c0[6] = np.nan | |
assert np.isnan(splint(0, 6, (t, c0, k))) | |
# check that the coefficient array can have length `len(t) - k - 1` | |
c1 = c[:len(t) - k - 1] | |
res1 = splint(0, 6, (t, c1, k)) | |
assert_allclose(res1, 6**4 / 4, atol=1e-15) | |
# however shorter c arrays raise. The error from f2py is a | |
# `dftipack.error`, which is an Exception but not ValueError etc. | |
with assert_raises(Exception, match=r">=n-k-1"): | |
splint(0, 1, (np.ones(10), np.ones(5), 3)) | |
class TestBisplrep: | |
def test_overflow(self): | |
from numpy.lib.stride_tricks import as_strided | |
if dfitpack_int.itemsize == 8: | |
size = 1500000**2 | |
else: | |
size = 400**2 | |
# Don't allocate a real array, as it's very big, but rely | |
# on that it's not referenced | |
x = as_strided(np.zeros(()), shape=(size,)) | |
assert_raises(OverflowError, bisplrep, x, x, x, w=x, | |
xb=0, xe=1, yb=0, ye=1, s=0) | |
def test_regression_1310(self): | |
# Regression test for gh-1310 | |
with np.load(data_file('bug-1310.npz')) as loaded_data: | |
data = loaded_data['data'] | |
# Shouldn't crash -- the input data triggers work array sizes | |
# that caused previously some data to not be aligned on | |
# sizeof(double) boundaries in memory, which made the Fortran | |
# code to crash when compiled with -O3 | |
bisplrep(data[:,0], data[:,1], data[:,2], kx=3, ky=3, s=0, | |
full_output=True) | |
def test_ilp64_bisplrep(self): | |
check_free_memory(28000) # VM size, doesn't actually use the pages | |
x = np.linspace(0, 1, 400) | |
y = np.linspace(0, 1, 400) | |
x, y = np.meshgrid(x, y) | |
z = np.zeros_like(x) | |
tck = bisplrep(x, y, z, kx=3, ky=3, s=0) | |
assert_allclose(bisplev(0.5, 0.5, tck), 0.0) | |
def test_dblint(): | |
# Basic test to see it runs and gives the correct result on a trivial | |
# problem. Note that `dblint` is not exposed in the interpolate namespace. | |
x = np.linspace(0, 1) | |
y = np.linspace(0, 1) | |
xx, yy = np.meshgrid(x, y) | |
rect = RectBivariateSpline(x, y, 4 * xx * yy) | |
tck = list(rect.tck) | |
tck.extend(rect.degrees) | |
assert_almost_equal(dblint(0, 1, 0, 1, tck), 1) | |
assert_almost_equal(dblint(0, 0.5, 0, 1, tck), 0.25) | |
assert_almost_equal(dblint(0.5, 1, 0, 1, tck), 0.75) | |
assert_almost_equal(dblint(-100, 100, -100, 100, tck), 1) | |
def test_splev_der_k(): | |
# regression test for gh-2188: splev(x, tck, der=k) gives garbage or crashes | |
# for x outside of knot range | |
# test case from gh-2188 | |
tck = (np.array([0., 0., 2.5, 2.5]), | |
np.array([-1.56679978, 2.43995873, 0., 0.]), | |
1) | |
t, c, k = tck | |
x = np.array([-3, 0, 2.5, 3]) | |
# an explicit form of the linear spline | |
assert_allclose(splev(x, tck), c[0] + (c[1] - c[0]) * x/t[2]) | |
assert_allclose(splev(x, tck, 1), (c[1]-c[0]) / t[2]) | |
# now check a random spline vs splder | |
np.random.seed(1234) | |
x = np.sort(np.random.random(30)) | |
y = np.random.random(30) | |
t, c, k = splrep(x, y) | |
x = [t[0] - 1., t[-1] + 1.] | |
tck2 = splder((t, c, k), k) | |
assert_allclose(splev(x, (t, c, k), k), splev(x, tck2)) | |
def test_splprep_segfault(): | |
# regression test for gh-3847: splprep segfaults if knots are specified | |
# for task=-1 | |
t = np.arange(0, 1.1, 0.1) | |
x = np.sin(2*np.pi*t) | |
y = np.cos(2*np.pi*t) | |
tck, u = splprep([x, y], s=0) | |
np.arange(0, 1.01, 0.01) | |
uknots = tck[0] # using the knots from the previous fitting | |
tck, u = splprep([x, y], task=-1, t=uknots) # here is the crash | |
def test_bisplev_integer_overflow(): | |
np.random.seed(1) | |
x = np.linspace(0, 1, 11) | |
y = x | |
z = np.random.randn(11, 11).ravel() | |
kx = 1 | |
ky = 1 | |
nx, tx, ny, ty, c, fp, ier = regrid_smth( | |
x, y, z, None, None, None, None, kx=kx, ky=ky, s=0.0) | |
tck = (tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)], kx, ky) | |
xp = np.zeros([2621440]) | |
yp = np.zeros([2621440]) | |
assert_raises((RuntimeError, MemoryError), bisplev, xp, yp, tck) | |
def test_gh_1766(): | |
# this should fail gracefully instead of segfaulting (int overflow) | |
size = 22 | |
kx, ky = 3, 3 | |
def f2(x, y): | |
return np.sin(x+y) | |
x = np.linspace(0, 10, size) | |
y = np.linspace(50, 700, size) | |
xy = makepairs(x, y) | |
tck = bisplrep(xy[0], xy[1], f2(xy[0], xy[1]), s=0, kx=kx, ky=ky) | |
# the size value here can either segfault | |
# or produce a MemoryError on main | |
tx_ty_size = 500000 | |
tck[0] = np.arange(tx_ty_size) | |
tck[1] = np.arange(tx_ty_size) * 4 | |
tt_0 = np.arange(50) | |
tt_1 = np.arange(50) * 3 | |
with pytest.raises(MemoryError): | |
bisplev(tt_0, tt_1, tck, 1, 1) | |
def test_spalde_scalar_input(): | |
# Ticket #629 | |
x = np.linspace(0, 10) | |
y = x**3 | |
tck = splrep(x, y, k=3, t=[5]) | |
res = spalde(np.float64(1), tck) | |
des = np.array([1., 3., 6., 6.]) | |
assert_almost_equal(res, des) | |
def test_spalde_nc(): | |
# regression test for https://github.com/scipy/scipy/issues/19002 | |
# here len(t) = 29 and len(c) = 25 (== len(t) - k - 1) | |
x = np.asarray([-10., -9., -8., -7., -6., -5., -4., -3., -2.5, -2., -1.5, | |
-1., -0.5, 0., 0.5, 1., 1.5, 2., 2.5, 3., 4., 5., 6.], | |
dtype="float") | |
t = [-10.0, -10.0, -10.0, -10.0, -9.0, -8.0, -7.0, -6.0, -5.0, -4.0, -3.0, | |
-2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, | |
5.0, 6.0, 6.0, 6.0, 6.0] | |
c = np.asarray([1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., | |
0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) | |
k = 3 | |
res = spalde(x, (t, c, k)) | |
res_splev = np.asarray([splev(x, (t, c, k), nu) for nu in range(4)]) | |
assert_allclose(res, res_splev.T, atol=1e-15) | |