peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/interpolate
/tests
/test_fitpack2.py
# Created by Pearu Peterson, June 2003 | |
import itertools | |
import numpy as np | |
from numpy.testing import (assert_equal, assert_almost_equal, assert_array_equal, | |
assert_array_almost_equal, assert_allclose, suppress_warnings) | |
from pytest import raises as assert_raises | |
from numpy import array, diff, linspace, meshgrid, ones, pi, shape | |
from scipy.interpolate._fitpack_py import bisplrep, bisplev, splrep, spalde | |
from scipy.interpolate._fitpack2 import (UnivariateSpline, | |
LSQUnivariateSpline, InterpolatedUnivariateSpline, | |
LSQBivariateSpline, SmoothBivariateSpline, RectBivariateSpline, | |
LSQSphereBivariateSpline, SmoothSphereBivariateSpline, | |
RectSphereBivariateSpline) | |
class TestUnivariateSpline: | |
def test_linear_constant(self): | |
x = [1,2,3] | |
y = [3,3,3] | |
lut = UnivariateSpline(x,y,k=1) | |
assert_array_almost_equal(lut.get_knots(),[1,3]) | |
assert_array_almost_equal(lut.get_coeffs(),[3,3]) | |
assert_almost_equal(lut.get_residual(),0.0) | |
assert_array_almost_equal(lut([1,1.5,2]),[3,3,3]) | |
def test_preserve_shape(self): | |
x = [1, 2, 3] | |
y = [0, 2, 4] | |
lut = UnivariateSpline(x, y, k=1) | |
arg = 2 | |
assert_equal(shape(arg), shape(lut(arg))) | |
assert_equal(shape(arg), shape(lut(arg, nu=1))) | |
arg = [1.5, 2, 2.5] | |
assert_equal(shape(arg), shape(lut(arg))) | |
assert_equal(shape(arg), shape(lut(arg, nu=1))) | |
def test_linear_1d(self): | |
x = [1,2,3] | |
y = [0,2,4] | |
lut = UnivariateSpline(x,y,k=1) | |
assert_array_almost_equal(lut.get_knots(),[1,3]) | |
assert_array_almost_equal(lut.get_coeffs(),[0,4]) | |
assert_almost_equal(lut.get_residual(),0.0) | |
assert_array_almost_equal(lut([1,1.5,2]),[0,1,2]) | |
def test_subclassing(self): | |
# See #731 | |
class ZeroSpline(UnivariateSpline): | |
def __call__(self, x): | |
return 0*array(x) | |
sp = ZeroSpline([1,2,3,4,5], [3,2,3,2,3], k=2) | |
assert_array_equal(sp([1.5, 2.5]), [0., 0.]) | |
def test_empty_input(self): | |
# Test whether empty input returns an empty output. Ticket 1014 | |
x = [1,3,5,7,9] | |
y = [0,4,9,12,21] | |
spl = UnivariateSpline(x, y, k=3) | |
assert_array_equal(spl([]), array([])) | |
def test_roots(self): | |
x = [1, 3, 5, 7, 9] | |
y = [0, 4, 9, 12, 21] | |
spl = UnivariateSpline(x, y, k=3) | |
assert_almost_equal(spl.roots()[0], 1.050290639101332) | |
def test_roots_length(self): # for gh18335 | |
x = np.linspace(0, 50 * np.pi, 1000) | |
y = np.cos(x) | |
spl = UnivariateSpline(x, y, s=0) | |
assert_equal(len(spl.roots()), 50) | |
def test_derivatives(self): | |
x = [1, 3, 5, 7, 9] | |
y = [0, 4, 9, 12, 21] | |
spl = UnivariateSpline(x, y, k=3) | |
assert_almost_equal(spl.derivatives(3.5), | |
[5.5152902, 1.7146577, -0.1830357, 0.3125]) | |
def test_derivatives_2(self): | |
x = np.arange(8) | |
y = x**3 + 2.*x**2 | |
tck = splrep(x, y, s=0) | |
ders = spalde(3, tck) | |
assert_allclose(ders, [45., # 3**3 + 2*(3)**2 | |
39., # 3*(3)**2 + 4*(3) | |
22., # 6*(3) + 4 | |
6.], # 6*3**0 | |
atol=1e-15) | |
spl = UnivariateSpline(x, y, s=0, k=3) | |
assert_allclose(spl.derivatives(3), | |
ders, | |
atol=1e-15) | |
def test_resize_regression(self): | |
"""Regression test for #1375.""" | |
x = [-1., -0.65016502, -0.58856235, -0.26903553, -0.17370892, | |
-0.10011001, 0., 0.10011001, 0.17370892, 0.26903553, 0.58856235, | |
0.65016502, 1.] | |
y = [1.,0.62928599, 0.5797223, 0.39965815, 0.36322694, 0.3508061, | |
0.35214793, 0.3508061, 0.36322694, 0.39965815, 0.5797223, | |
0.62928599, 1.] | |
w = [1.00000000e+12, 6.88875973e+02, 4.89314737e+02, 4.26864807e+02, | |
6.07746770e+02, 4.51341444e+02, 3.17480210e+02, 4.51341444e+02, | |
6.07746770e+02, 4.26864807e+02, 4.89314737e+02, 6.88875973e+02, | |
1.00000000e+12] | |
spl = UnivariateSpline(x=x, y=y, w=w, s=None) | |
desired = array([0.35100374, 0.51715855, 0.87789547, 0.98719344]) | |
assert_allclose(spl([0.1, 0.5, 0.9, 0.99]), desired, atol=5e-4) | |
def test_out_of_range_regression(self): | |
# Test different extrapolation modes. See ticket 3557 | |
x = np.arange(5, dtype=float) | |
y = x**3 | |
xp = linspace(-8, 13, 100) | |
xp_zeros = xp.copy() | |
xp_zeros[np.logical_or(xp_zeros < 0., xp_zeros > 4.)] = 0 | |
xp_clip = xp.copy() | |
xp_clip[xp_clip < x[0]] = x[0] | |
xp_clip[xp_clip > x[-1]] = x[-1] | |
for cls in [UnivariateSpline, InterpolatedUnivariateSpline]: | |
spl = cls(x=x, y=y) | |
for ext in [0, 'extrapolate']: | |
assert_allclose(spl(xp, ext=ext), xp**3, atol=1e-16) | |
assert_allclose(cls(x, y, ext=ext)(xp), xp**3, atol=1e-16) | |
for ext in [1, 'zeros']: | |
assert_allclose(spl(xp, ext=ext), xp_zeros**3, atol=1e-16) | |
assert_allclose(cls(x, y, ext=ext)(xp), xp_zeros**3, atol=1e-16) | |
for ext in [2, 'raise']: | |
assert_raises(ValueError, spl, xp, **dict(ext=ext)) | |
for ext in [3, 'const']: | |
assert_allclose(spl(xp, ext=ext), xp_clip**3, atol=1e-16) | |
assert_allclose(cls(x, y, ext=ext)(xp), xp_clip**3, atol=1e-16) | |
# also test LSQUnivariateSpline [which needs explicit knots] | |
t = spl.get_knots()[3:4] # interior knots w/ default k=3 | |
spl = LSQUnivariateSpline(x, y, t) | |
assert_allclose(spl(xp, ext=0), xp**3, atol=1e-16) | |
assert_allclose(spl(xp, ext=1), xp_zeros**3, atol=1e-16) | |
assert_raises(ValueError, spl, xp, **dict(ext=2)) | |
assert_allclose(spl(xp, ext=3), xp_clip**3, atol=1e-16) | |
# also make sure that unknown values for `ext` are caught early | |
for ext in [-1, 'unknown']: | |
spl = UnivariateSpline(x, y) | |
assert_raises(ValueError, spl, xp, **dict(ext=ext)) | |
assert_raises(ValueError, UnivariateSpline, | |
**dict(x=x, y=y, ext=ext)) | |
def test_lsq_fpchec(self): | |
xs = np.arange(100) * 1. | |
ys = np.arange(100) * 1. | |
knots = np.linspace(0, 99, 10) | |
bbox = (-1, 101) | |
assert_raises(ValueError, LSQUnivariateSpline, xs, ys, knots, | |
bbox=bbox) | |
def test_derivative_and_antiderivative(self): | |
# Thin wrappers to splder/splantider, so light smoke test only. | |
x = np.linspace(0, 1, 70)**3 | |
y = np.cos(x) | |
spl = UnivariateSpline(x, y, s=0) | |
spl2 = spl.antiderivative(2).derivative(2) | |
assert_allclose(spl(0.3), spl2(0.3)) | |
spl2 = spl.antiderivative(1) | |
assert_allclose(spl2(0.6) - spl2(0.2), | |
spl.integral(0.2, 0.6)) | |
def test_derivative_extrapolation(self): | |
# Regression test for gh-10195: for a const-extrapolation spline | |
# its derivative evaluates to zero for extrapolation | |
x_values = [1, 2, 4, 6, 8.5] | |
y_values = [0.5, 0.8, 1.3, 2.5, 5] | |
f = UnivariateSpline(x_values, y_values, ext='const', k=3) | |
x = [-1, 0, -0.5, 9, 9.5, 10] | |
assert_allclose(f.derivative()(x), 0, atol=1e-15) | |
def test_integral_out_of_bounds(self): | |
# Regression test for gh-7906: .integral(a, b) is wrong if both | |
# a and b are out-of-bounds | |
x = np.linspace(0., 1., 7) | |
for ext in range(4): | |
f = UnivariateSpline(x, x, s=0, ext=ext) | |
for (a, b) in [(1, 1), (1, 5), (2, 5), | |
(0, 0), (-2, 0), (-2, -1)]: | |
assert_allclose(f.integral(a, b), 0, atol=1e-15) | |
def test_nan(self): | |
# bail out early if the input data contains nans | |
x = np.arange(10, dtype=float) | |
y = x**3 | |
w = np.ones_like(x) | |
# also test LSQUnivariateSpline [which needs explicit knots] | |
spl = UnivariateSpline(x, y, check_finite=True) | |
t = spl.get_knots()[3:4] # interior knots w/ default k=3 | |
y_end = y[-1] | |
for z in [np.nan, np.inf, -np.inf]: | |
y[-1] = z | |
assert_raises(ValueError, UnivariateSpline, | |
**dict(x=x, y=y, check_finite=True)) | |
assert_raises(ValueError, InterpolatedUnivariateSpline, | |
**dict(x=x, y=y, check_finite=True)) | |
assert_raises(ValueError, LSQUnivariateSpline, | |
**dict(x=x, y=y, t=t, check_finite=True)) | |
y[-1] = y_end # check valid y but invalid w | |
w[-1] = z | |
assert_raises(ValueError, UnivariateSpline, | |
**dict(x=x, y=y, w=w, check_finite=True)) | |
assert_raises(ValueError, InterpolatedUnivariateSpline, | |
**dict(x=x, y=y, w=w, check_finite=True)) | |
assert_raises(ValueError, LSQUnivariateSpline, | |
**dict(x=x, y=y, t=t, w=w, check_finite=True)) | |
def test_strictly_increasing_x(self): | |
# Test the x is required to be strictly increasing for | |
# UnivariateSpline if s=0 and for InterpolatedUnivariateSpline, | |
# but merely increasing for UnivariateSpline if s>0 | |
# and for LSQUnivariateSpline; see gh-8535 | |
xx = np.arange(10, dtype=float) | |
yy = xx**3 | |
x = np.arange(10, dtype=float) | |
x[1] = x[0] | |
y = x**3 | |
w = np.ones_like(x) | |
# also test LSQUnivariateSpline [which needs explicit knots] | |
spl = UnivariateSpline(xx, yy, check_finite=True) | |
t = spl.get_knots()[3:4] # interior knots w/ default k=3 | |
UnivariateSpline(x=x, y=y, w=w, s=1, check_finite=True) | |
LSQUnivariateSpline(x=x, y=y, t=t, w=w, check_finite=True) | |
assert_raises(ValueError, UnivariateSpline, | |
**dict(x=x, y=y, s=0, check_finite=True)) | |
assert_raises(ValueError, InterpolatedUnivariateSpline, | |
**dict(x=x, y=y, check_finite=True)) | |
def test_increasing_x(self): | |
# Test that x is required to be increasing, see gh-8535 | |
xx = np.arange(10, dtype=float) | |
yy = xx**3 | |
x = np.arange(10, dtype=float) | |
x[1] = x[0] - 1.0 | |
y = x**3 | |
w = np.ones_like(x) | |
# also test LSQUnivariateSpline [which needs explicit knots] | |
spl = UnivariateSpline(xx, yy, check_finite=True) | |
t = spl.get_knots()[3:4] # interior knots w/ default k=3 | |
assert_raises(ValueError, UnivariateSpline, | |
**dict(x=x, y=y, check_finite=True)) | |
assert_raises(ValueError, InterpolatedUnivariateSpline, | |
**dict(x=x, y=y, check_finite=True)) | |
assert_raises(ValueError, LSQUnivariateSpline, | |
**dict(x=x, y=y, t=t, w=w, check_finite=True)) | |
def test_invalid_input_for_univariate_spline(self): | |
with assert_raises(ValueError) as info: | |
x_values = [1, 2, 4, 6, 8.5] | |
y_values = [0.5, 0.8, 1.3, 2.5] | |
UnivariateSpline(x_values, y_values) | |
assert "x and y should have a same length" in str(info.value) | |
with assert_raises(ValueError) as info: | |
x_values = [1, 2, 4, 6, 8.5] | |
y_values = [0.5, 0.8, 1.3, 2.5, 2.8] | |
w_values = [-1.0, 1.0, 1.0, 1.0] | |
UnivariateSpline(x_values, y_values, w=w_values) | |
assert "x, y, and w should have a same length" in str(info.value) | |
with assert_raises(ValueError) as info: | |
bbox = (-1) | |
UnivariateSpline(x_values, y_values, bbox=bbox) | |
assert "bbox shape should be (2,)" in str(info.value) | |
with assert_raises(ValueError) as info: | |
UnivariateSpline(x_values, y_values, k=6) | |
assert "k should be 1 <= k <= 5" in str(info.value) | |
with assert_raises(ValueError) as info: | |
UnivariateSpline(x_values, y_values, s=-1.0) | |
assert "s should be s >= 0.0" in str(info.value) | |
def test_invalid_input_for_interpolated_univariate_spline(self): | |
with assert_raises(ValueError) as info: | |
x_values = [1, 2, 4, 6, 8.5] | |
y_values = [0.5, 0.8, 1.3, 2.5] | |
InterpolatedUnivariateSpline(x_values, y_values) | |
assert "x and y should have a same length" in str(info.value) | |
with assert_raises(ValueError) as info: | |
x_values = [1, 2, 4, 6, 8.5] | |
y_values = [0.5, 0.8, 1.3, 2.5, 2.8] | |
w_values = [-1.0, 1.0, 1.0, 1.0] | |
InterpolatedUnivariateSpline(x_values, y_values, w=w_values) | |
assert "x, y, and w should have a same length" in str(info.value) | |
with assert_raises(ValueError) as info: | |
bbox = (-1) | |
InterpolatedUnivariateSpline(x_values, y_values, bbox=bbox) | |
assert "bbox shape should be (2,)" in str(info.value) | |
with assert_raises(ValueError) as info: | |
InterpolatedUnivariateSpline(x_values, y_values, k=6) | |
assert "k should be 1 <= k <= 5" in str(info.value) | |
def test_invalid_input_for_lsq_univariate_spline(self): | |
x_values = [1, 2, 4, 6, 8.5] | |
y_values = [0.5, 0.8, 1.3, 2.5, 2.8] | |
spl = UnivariateSpline(x_values, y_values, check_finite=True) | |
t_values = spl.get_knots()[3:4] # interior knots w/ default k=3 | |
with assert_raises(ValueError) as info: | |
x_values = [1, 2, 4, 6, 8.5] | |
y_values = [0.5, 0.8, 1.3, 2.5] | |
LSQUnivariateSpline(x_values, y_values, t_values) | |
assert "x and y should have a same length" in str(info.value) | |
with assert_raises(ValueError) as info: | |
x_values = [1, 2, 4, 6, 8.5] | |
y_values = [0.5, 0.8, 1.3, 2.5, 2.8] | |
w_values = [1.0, 1.0, 1.0, 1.0] | |
LSQUnivariateSpline(x_values, y_values, t_values, w=w_values) | |
assert "x, y, and w should have a same length" in str(info.value) | |
message = "Interior knots t must satisfy Schoenberg-Whitney conditions" | |
with assert_raises(ValueError, match=message) as info: | |
bbox = (100, -100) | |
LSQUnivariateSpline(x_values, y_values, t_values, bbox=bbox) | |
with assert_raises(ValueError) as info: | |
bbox = (-1) | |
LSQUnivariateSpline(x_values, y_values, t_values, bbox=bbox) | |
assert "bbox shape should be (2,)" in str(info.value) | |
with assert_raises(ValueError) as info: | |
LSQUnivariateSpline(x_values, y_values, t_values, k=6) | |
assert "k should be 1 <= k <= 5" in str(info.value) | |
def test_array_like_input(self): | |
x_values = np.array([1, 2, 4, 6, 8.5]) | |
y_values = np.array([0.5, 0.8, 1.3, 2.5, 2.8]) | |
w_values = np.array([1.0, 1.0, 1.0, 1.0, 1.0]) | |
bbox = np.array([-100, 100]) | |
# np.array input | |
spl1 = UnivariateSpline(x=x_values, y=y_values, w=w_values, | |
bbox=bbox) | |
# list input | |
spl2 = UnivariateSpline(x=x_values.tolist(), y=y_values.tolist(), | |
w=w_values.tolist(), bbox=bbox.tolist()) | |
assert_allclose(spl1([0.1, 0.5, 0.9, 0.99]), | |
spl2([0.1, 0.5, 0.9, 0.99])) | |
def test_fpknot_oob_crash(self): | |
# https://github.com/scipy/scipy/issues/3691 | |
x = range(109) | |
y = [0., 0., 0., 0., 0., 10.9, 0., 11., 0., | |
0., 0., 10.9, 0., 0., 0., 0., 0., 0., | |
10.9, 0., 0., 0., 11., 0., 0., 0., 10.9, | |
0., 0., 0., 10.5, 0., 0., 0., 10.7, 0., | |
0., 0., 11., 0., 0., 0., 0., 0., 0., | |
10.9, 0., 0., 10.7, 0., 0., 0., 10.6, 0., | |
0., 0., 10.5, 0., 0., 10.7, 0., 0., 10.5, | |
0., 0., 11.5, 0., 0., 0., 10.7, 0., 0., | |
10.7, 0., 0., 10.9, 0., 0., 10.8, 0., 0., | |
0., 10.7, 0., 0., 10.6, 0., 0., 0., 10.4, | |
0., 0., 10.6, 0., 0., 10.5, 0., 0., 0., | |
10.7, 0., 0., 0., 10.4, 0., 0., 0., 10.8, 0.] | |
with suppress_warnings() as sup: | |
r = sup.record( | |
UserWarning, | |
r""" | |
The maximal number of iterations maxit \(set to 20 by the program\) | |
allowed for finding a smoothing spline with fp=s has been reached: s | |
too small. | |
There is an approximation returned but the corresponding weighted sum | |
of squared residuals does not satisfy the condition abs\(fp-s\)/s < tol.""") | |
UnivariateSpline(x, y, k=1) | |
assert_equal(len(r), 1) | |
class TestLSQBivariateSpline: | |
# NOTE: The systems in this test class are rank-deficient | |
def test_linear_constant(self): | |
x = [1,1,1,2,2,2,3,3,3] | |
y = [1,2,3,1,2,3,1,2,3] | |
z = [3,3,3,3,3,3,3,3,3] | |
s = 0.1 | |
tx = [1+s,3-s] | |
ty = [1+s,3-s] | |
with suppress_warnings() as sup: | |
r = sup.record(UserWarning, "\nThe coefficients of the spline") | |
lut = LSQBivariateSpline(x,y,z,tx,ty,kx=1,ky=1) | |
assert_equal(len(r), 1) | |
assert_almost_equal(lut(2,2), 3.) | |
def test_bilinearity(self): | |
x = [1,1,1,2,2,2,3,3,3] | |
y = [1,2,3,1,2,3,1,2,3] | |
z = [0,7,8,3,4,7,1,3,4] | |
s = 0.1 | |
tx = [1+s,3-s] | |
ty = [1+s,3-s] | |
with suppress_warnings() as sup: | |
# This seems to fail (ier=1, see ticket 1642). | |
sup.filter(UserWarning, "\nThe coefficients of the spline") | |
lut = LSQBivariateSpline(x,y,z,tx,ty,kx=1,ky=1) | |
tx, ty = lut.get_knots() | |
for xa, xb in zip(tx[:-1], tx[1:]): | |
for ya, yb in zip(ty[:-1], ty[1:]): | |
for t in [0.1, 0.5, 0.9]: | |
for s in [0.3, 0.4, 0.7]: | |
xp = xa*(1-t) + xb*t | |
yp = ya*(1-s) + yb*s | |
zp = (+ lut(xa, ya)*(1-t)*(1-s) | |
+ lut(xb, ya)*t*(1-s) | |
+ lut(xa, yb)*(1-t)*s | |
+ lut(xb, yb)*t*s) | |
assert_almost_equal(lut(xp,yp), zp) | |
def test_integral(self): | |
x = [1,1,1,2,2,2,8,8,8] | |
y = [1,2,3,1,2,3,1,2,3] | |
z = array([0,7,8,3,4,7,1,3,4]) | |
s = 0.1 | |
tx = [1+s,3-s] | |
ty = [1+s,3-s] | |
with suppress_warnings() as sup: | |
r = sup.record(UserWarning, "\nThe coefficients of the spline") | |
lut = LSQBivariateSpline(x, y, z, tx, ty, kx=1, ky=1) | |
assert_equal(len(r), 1) | |
tx, ty = lut.get_knots() | |
tz = lut(tx, ty) | |
trpz = .25*(diff(tx)[:,None]*diff(ty)[None,:] | |
* (tz[:-1,:-1]+tz[1:,:-1]+tz[:-1,1:]+tz[1:,1:])).sum() | |
assert_almost_equal(lut.integral(tx[0], tx[-1], ty[0], ty[-1]), | |
trpz) | |
def test_empty_input(self): | |
# Test whether empty inputs returns an empty output. Ticket 1014 | |
x = [1,1,1,2,2,2,3,3,3] | |
y = [1,2,3,1,2,3,1,2,3] | |
z = [3,3,3,3,3,3,3,3,3] | |
s = 0.1 | |
tx = [1+s,3-s] | |
ty = [1+s,3-s] | |
with suppress_warnings() as sup: | |
r = sup.record(UserWarning, "\nThe coefficients of the spline") | |
lut = LSQBivariateSpline(x, y, z, tx, ty, kx=1, ky=1) | |
assert_equal(len(r), 1) | |
assert_array_equal(lut([], []), np.zeros((0,0))) | |
assert_array_equal(lut([], [], grid=False), np.zeros((0,))) | |
def test_invalid_input(self): | |
s = 0.1 | |
tx = [1 + s, 3 - s] | |
ty = [1 + s, 3 - s] | |
with assert_raises(ValueError) as info: | |
x = np.linspace(1.0, 10.0) | |
y = np.linspace(1.0, 10.0) | |
z = np.linspace(1.0, 10.0, num=10) | |
LSQBivariateSpline(x, y, z, tx, ty) | |
assert "x, y, and z should have a same length" in str(info.value) | |
with assert_raises(ValueError) as info: | |
x = np.linspace(1.0, 10.0) | |
y = np.linspace(1.0, 10.0) | |
z = np.linspace(1.0, 10.0) | |
w = np.linspace(1.0, 10.0, num=20) | |
LSQBivariateSpline(x, y, z, tx, ty, w=w) | |
assert "x, y, z, and w should have a same length" in str(info.value) | |
with assert_raises(ValueError) as info: | |
w = np.linspace(-1.0, 10.0) | |
LSQBivariateSpline(x, y, z, tx, ty, w=w) | |
assert "w should be positive" in str(info.value) | |
with assert_raises(ValueError) as info: | |
bbox = (-100, 100, -100) | |
LSQBivariateSpline(x, y, z, tx, ty, bbox=bbox) | |
assert "bbox shape should be (4,)" in str(info.value) | |
with assert_raises(ValueError) as info: | |
LSQBivariateSpline(x, y, z, tx, ty, kx=10, ky=10) | |
assert "The length of x, y and z should be at least (kx+1) * (ky+1)" in \ | |
str(info.value) | |
with assert_raises(ValueError) as exc_info: | |
LSQBivariateSpline(x, y, z, tx, ty, eps=0.0) | |
assert "eps should be between (0, 1)" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
LSQBivariateSpline(x, y, z, tx, ty, eps=1.0) | |
assert "eps should be between (0, 1)" in str(exc_info.value) | |
def test_array_like_input(self): | |
s = 0.1 | |
tx = np.array([1 + s, 3 - s]) | |
ty = np.array([1 + s, 3 - s]) | |
x = np.linspace(1.0, 10.0) | |
y = np.linspace(1.0, 10.0) | |
z = np.linspace(1.0, 10.0) | |
w = np.linspace(1.0, 10.0) | |
bbox = np.array([1.0, 10.0, 1.0, 10.0]) | |
with suppress_warnings() as sup: | |
r = sup.record(UserWarning, "\nThe coefficients of the spline") | |
# np.array input | |
spl1 = LSQBivariateSpline(x, y, z, tx, ty, w=w, bbox=bbox) | |
# list input | |
spl2 = LSQBivariateSpline(x.tolist(), y.tolist(), z.tolist(), | |
tx.tolist(), ty.tolist(), w=w.tolist(), | |
bbox=bbox) | |
assert_allclose(spl1(2.0, 2.0), spl2(2.0, 2.0)) | |
assert_equal(len(r), 2) | |
def test_unequal_length_of_knots(self): | |
"""Test for the case when the input knot-location arrays in x and y are | |
of different lengths. | |
""" | |
x, y = np.mgrid[0:100, 0:100] | |
x = x.ravel() | |
y = y.ravel() | |
z = 3.0 * np.ones_like(x) | |
tx = np.linspace(0.1, 98.0, 29) | |
ty = np.linspace(0.1, 98.0, 33) | |
with suppress_warnings() as sup: | |
r = sup.record(UserWarning, "\nThe coefficients of the spline") | |
lut = LSQBivariateSpline(x,y,z,tx,ty) | |
assert_equal(len(r), 1) | |
assert_almost_equal(lut(x, y, grid=False), z) | |
class TestSmoothBivariateSpline: | |
def test_linear_constant(self): | |
x = [1,1,1,2,2,2,3,3,3] | |
y = [1,2,3,1,2,3,1,2,3] | |
z = [3,3,3,3,3,3,3,3,3] | |
lut = SmoothBivariateSpline(x,y,z,kx=1,ky=1) | |
assert_array_almost_equal(lut.get_knots(),([1,1,3,3],[1,1,3,3])) | |
assert_array_almost_equal(lut.get_coeffs(),[3,3,3,3]) | |
assert_almost_equal(lut.get_residual(),0.0) | |
assert_array_almost_equal(lut([1,1.5,2],[1,1.5]),[[3,3],[3,3],[3,3]]) | |
def test_linear_1d(self): | |
x = [1,1,1,2,2,2,3,3,3] | |
y = [1,2,3,1,2,3,1,2,3] | |
z = [0,0,0,2,2,2,4,4,4] | |
lut = SmoothBivariateSpline(x,y,z,kx=1,ky=1) | |
assert_array_almost_equal(lut.get_knots(),([1,1,3,3],[1,1,3,3])) | |
assert_array_almost_equal(lut.get_coeffs(),[0,0,4,4]) | |
assert_almost_equal(lut.get_residual(),0.0) | |
assert_array_almost_equal(lut([1,1.5,2],[1,1.5]),[[0,0],[1,1],[2,2]]) | |
def test_integral(self): | |
x = [1,1,1,2,2,2,4,4,4] | |
y = [1,2,3,1,2,3,1,2,3] | |
z = array([0,7,8,3,4,7,1,3,4]) | |
with suppress_warnings() as sup: | |
# This seems to fail (ier=1, see ticket 1642). | |
sup.filter(UserWarning, "\nThe required storage space") | |
lut = SmoothBivariateSpline(x, y, z, kx=1, ky=1, s=0) | |
tx = [1,2,4] | |
ty = [1,2,3] | |
tz = lut(tx, ty) | |
trpz = .25*(diff(tx)[:,None]*diff(ty)[None,:] | |
* (tz[:-1,:-1]+tz[1:,:-1]+tz[:-1,1:]+tz[1:,1:])).sum() | |
assert_almost_equal(lut.integral(tx[0], tx[-1], ty[0], ty[-1]), trpz) | |
lut2 = SmoothBivariateSpline(x, y, z, kx=2, ky=2, s=0) | |
assert_almost_equal(lut2.integral(tx[0], tx[-1], ty[0], ty[-1]), trpz, | |
decimal=0) # the quadratures give 23.75 and 23.85 | |
tz = lut(tx[:-1], ty[:-1]) | |
trpz = .25*(diff(tx[:-1])[:,None]*diff(ty[:-1])[None,:] | |
* (tz[:-1,:-1]+tz[1:,:-1]+tz[:-1,1:]+tz[1:,1:])).sum() | |
assert_almost_equal(lut.integral(tx[0], tx[-2], ty[0], ty[-2]), trpz) | |
def test_rerun_lwrk2_too_small(self): | |
# in this setting, lwrk2 is too small in the default run. Here we | |
# check for equality with the bisplrep/bisplev output because there, | |
# an automatic re-run of the spline representation is done if ier>10. | |
x = np.linspace(-2, 2, 80) | |
y = np.linspace(-2, 2, 80) | |
z = x + y | |
xi = np.linspace(-1, 1, 100) | |
yi = np.linspace(-2, 2, 100) | |
tck = bisplrep(x, y, z) | |
res1 = bisplev(xi, yi, tck) | |
interp_ = SmoothBivariateSpline(x, y, z) | |
res2 = interp_(xi, yi) | |
assert_almost_equal(res1, res2) | |
def test_invalid_input(self): | |
with assert_raises(ValueError) as info: | |
x = np.linspace(1.0, 10.0) | |
y = np.linspace(1.0, 10.0) | |
z = np.linspace(1.0, 10.0, num=10) | |
SmoothBivariateSpline(x, y, z) | |
assert "x, y, and z should have a same length" in str(info.value) | |
with assert_raises(ValueError) as info: | |
x = np.linspace(1.0, 10.0) | |
y = np.linspace(1.0, 10.0) | |
z = np.linspace(1.0, 10.0) | |
w = np.linspace(1.0, 10.0, num=20) | |
SmoothBivariateSpline(x, y, z, w=w) | |
assert "x, y, z, and w should have a same length" in str(info.value) | |
with assert_raises(ValueError) as info: | |
w = np.linspace(-1.0, 10.0) | |
SmoothBivariateSpline(x, y, z, w=w) | |
assert "w should be positive" in str(info.value) | |
with assert_raises(ValueError) as info: | |
bbox = (-100, 100, -100) | |
SmoothBivariateSpline(x, y, z, bbox=bbox) | |
assert "bbox shape should be (4,)" in str(info.value) | |
with assert_raises(ValueError) as info: | |
SmoothBivariateSpline(x, y, z, kx=10, ky=10) | |
assert "The length of x, y and z should be at least (kx+1) * (ky+1)" in\ | |
str(info.value) | |
with assert_raises(ValueError) as info: | |
SmoothBivariateSpline(x, y, z, s=-1.0) | |
assert "s should be s >= 0.0" in str(info.value) | |
with assert_raises(ValueError) as exc_info: | |
SmoothBivariateSpline(x, y, z, eps=0.0) | |
assert "eps should be between (0, 1)" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
SmoothBivariateSpline(x, y, z, eps=1.0) | |
assert "eps should be between (0, 1)" in str(exc_info.value) | |
def test_array_like_input(self): | |
x = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]) | |
y = np.array([1, 2, 3, 1, 2, 3, 1, 2, 3]) | |
z = np.array([3, 3, 3, 3, 3, 3, 3, 3, 3]) | |
w = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1]) | |
bbox = np.array([1.0, 3.0, 1.0, 3.0]) | |
# np.array input | |
spl1 = SmoothBivariateSpline(x, y, z, w=w, bbox=bbox, kx=1, ky=1) | |
# list input | |
spl2 = SmoothBivariateSpline(x.tolist(), y.tolist(), z.tolist(), | |
bbox=bbox.tolist(), w=w.tolist(), | |
kx=1, ky=1) | |
assert_allclose(spl1(0.1, 0.5), spl2(0.1, 0.5)) | |
class TestLSQSphereBivariateSpline: | |
def setup_method(self): | |
# define the input data and coordinates | |
ntheta, nphi = 70, 90 | |
theta = linspace(0.5/(ntheta - 1), 1 - 0.5/(ntheta - 1), ntheta) * pi | |
phi = linspace(0.5/(nphi - 1), 1 - 0.5/(nphi - 1), nphi) * 2. * pi | |
data = ones((theta.shape[0], phi.shape[0])) | |
# define knots and extract data values at the knots | |
knotst = theta[::5] | |
knotsp = phi[::5] | |
knotdata = data[::5, ::5] | |
# calculate spline coefficients | |
lats, lons = meshgrid(theta, phi) | |
lut_lsq = LSQSphereBivariateSpline(lats.ravel(), lons.ravel(), | |
data.T.ravel(), knotst, knotsp) | |
self.lut_lsq = lut_lsq | |
self.data = knotdata | |
self.new_lons, self.new_lats = knotsp, knotst | |
def test_linear_constant(self): | |
assert_almost_equal(self.lut_lsq.get_residual(), 0.0) | |
assert_array_almost_equal(self.lut_lsq(self.new_lats, self.new_lons), | |
self.data) | |
def test_empty_input(self): | |
assert_array_almost_equal(self.lut_lsq([], []), np.zeros((0,0))) | |
assert_array_almost_equal(self.lut_lsq([], [], grid=False), np.zeros((0,))) | |
def test_invalid_input(self): | |
ntheta, nphi = 70, 90 | |
theta = linspace(0.5 / (ntheta - 1), 1 - 0.5 / (ntheta - 1), | |
ntheta) * pi | |
phi = linspace(0.5 / (nphi - 1), 1 - 0.5 / (nphi - 1), nphi) * 2. * pi | |
data = ones((theta.shape[0], phi.shape[0])) | |
# define knots and extract data values at the knots | |
knotst = theta[::5] | |
knotsp = phi[::5] | |
with assert_raises(ValueError) as exc_info: | |
invalid_theta = linspace(-0.1, 1.0, num=ntheta) * pi | |
invalid_lats, lons = meshgrid(invalid_theta, phi) | |
LSQSphereBivariateSpline(invalid_lats.ravel(), lons.ravel(), | |
data.T.ravel(), knotst, knotsp) | |
assert "theta should be between [0, pi]" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
invalid_theta = linspace(0.1, 1.1, num=ntheta) * pi | |
invalid_lats, lons = meshgrid(invalid_theta, phi) | |
LSQSphereBivariateSpline(invalid_lats.ravel(), lons.ravel(), | |
data.T.ravel(), knotst, knotsp) | |
assert "theta should be between [0, pi]" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
invalid_phi = linspace(-0.1, 1.0, num=ntheta) * 2.0 * pi | |
lats, invalid_lons = meshgrid(theta, invalid_phi) | |
LSQSphereBivariateSpline(lats.ravel(), invalid_lons.ravel(), | |
data.T.ravel(), knotst, knotsp) | |
assert "phi should be between [0, 2pi]" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
invalid_phi = linspace(0.0, 1.1, num=ntheta) * 2.0 * pi | |
lats, invalid_lons = meshgrid(theta, invalid_phi) | |
LSQSphereBivariateSpline(lats.ravel(), invalid_lons.ravel(), | |
data.T.ravel(), knotst, knotsp) | |
assert "phi should be between [0, 2pi]" in str(exc_info.value) | |
lats, lons = meshgrid(theta, phi) | |
with assert_raises(ValueError) as exc_info: | |
invalid_knotst = np.copy(knotst) | |
invalid_knotst[0] = -0.1 | |
LSQSphereBivariateSpline(lats.ravel(), lons.ravel(), | |
data.T.ravel(), invalid_knotst, knotsp) | |
assert "tt should be between (0, pi)" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
invalid_knotst = np.copy(knotst) | |
invalid_knotst[0] = pi | |
LSQSphereBivariateSpline(lats.ravel(), lons.ravel(), | |
data.T.ravel(), invalid_knotst, knotsp) | |
assert "tt should be between (0, pi)" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
invalid_knotsp = np.copy(knotsp) | |
invalid_knotsp[0] = -0.1 | |
LSQSphereBivariateSpline(lats.ravel(), lons.ravel(), | |
data.T.ravel(), knotst, invalid_knotsp) | |
assert "tp should be between (0, 2pi)" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
invalid_knotsp = np.copy(knotsp) | |
invalid_knotsp[0] = 2 * pi | |
LSQSphereBivariateSpline(lats.ravel(), lons.ravel(), | |
data.T.ravel(), knotst, invalid_knotsp) | |
assert "tp should be between (0, 2pi)" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
invalid_w = array([-1.0, 1.0, 1.5, 0.5, 1.0, 1.5, 0.5, 1.0, 1.0]) | |
LSQSphereBivariateSpline(lats.ravel(), lons.ravel(), data.T.ravel(), | |
knotst, knotsp, w=invalid_w) | |
assert "w should be positive" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
LSQSphereBivariateSpline(lats.ravel(), lons.ravel(), data.T.ravel(), | |
knotst, knotsp, eps=0.0) | |
assert "eps should be between (0, 1)" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
LSQSphereBivariateSpline(lats.ravel(), lons.ravel(), data.T.ravel(), | |
knotst, knotsp, eps=1.0) | |
assert "eps should be between (0, 1)" in str(exc_info.value) | |
def test_array_like_input(self): | |
ntheta, nphi = 70, 90 | |
theta = linspace(0.5 / (ntheta - 1), 1 - 0.5 / (ntheta - 1), | |
ntheta) * pi | |
phi = linspace(0.5 / (nphi - 1), 1 - 0.5 / (nphi - 1), | |
nphi) * 2. * pi | |
lats, lons = meshgrid(theta, phi) | |
data = ones((theta.shape[0], phi.shape[0])) | |
# define knots and extract data values at the knots | |
knotst = theta[::5] | |
knotsp = phi[::5] | |
w = ones(lats.ravel().shape[0]) | |
# np.array input | |
spl1 = LSQSphereBivariateSpline(lats.ravel(), lons.ravel(), | |
data.T.ravel(), knotst, knotsp, w=w) | |
# list input | |
spl2 = LSQSphereBivariateSpline(lats.ravel().tolist(), | |
lons.ravel().tolist(), | |
data.T.ravel().tolist(), | |
knotst.tolist(), | |
knotsp.tolist(), w=w.tolist()) | |
assert_array_almost_equal(spl1(1.0, 1.0), spl2(1.0, 1.0)) | |
class TestSmoothSphereBivariateSpline: | |
def setup_method(self): | |
theta = array([.25*pi, .25*pi, .25*pi, .5*pi, .5*pi, .5*pi, .75*pi, | |
.75*pi, .75*pi]) | |
phi = array([.5 * pi, pi, 1.5 * pi, .5 * pi, pi, 1.5 * pi, .5 * pi, pi, | |
1.5 * pi]) | |
r = array([3, 3, 3, 3, 3, 3, 3, 3, 3]) | |
self.lut = SmoothSphereBivariateSpline(theta, phi, r, s=1E10) | |
def test_linear_constant(self): | |
assert_almost_equal(self.lut.get_residual(), 0.) | |
assert_array_almost_equal(self.lut([1, 1.5, 2],[1, 1.5]), | |
[[3, 3], [3, 3], [3, 3]]) | |
def test_empty_input(self): | |
assert_array_almost_equal(self.lut([], []), np.zeros((0,0))) | |
assert_array_almost_equal(self.lut([], [], grid=False), np.zeros((0,))) | |
def test_invalid_input(self): | |
theta = array([.25 * pi, .25 * pi, .25 * pi, .5 * pi, .5 * pi, .5 * pi, | |
.75 * pi, .75 * pi, .75 * pi]) | |
phi = array([.5 * pi, pi, 1.5 * pi, .5 * pi, pi, 1.5 * pi, .5 * pi, pi, | |
1.5 * pi]) | |
r = array([3, 3, 3, 3, 3, 3, 3, 3, 3]) | |
with assert_raises(ValueError) as exc_info: | |
invalid_theta = array([-0.1 * pi, .25 * pi, .25 * pi, .5 * pi, | |
.5 * pi, .5 * pi, .75 * pi, .75 * pi, | |
.75 * pi]) | |
SmoothSphereBivariateSpline(invalid_theta, phi, r, s=1E10) | |
assert "theta should be between [0, pi]" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
invalid_theta = array([.25 * pi, .25 * pi, .25 * pi, .5 * pi, | |
.5 * pi, .5 * pi, .75 * pi, .75 * pi, | |
1.1 * pi]) | |
SmoothSphereBivariateSpline(invalid_theta, phi, r, s=1E10) | |
assert "theta should be between [0, pi]" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
invalid_phi = array([-.1 * pi, pi, 1.5 * pi, .5 * pi, pi, 1.5 * pi, | |
.5 * pi, pi, 1.5 * pi]) | |
SmoothSphereBivariateSpline(theta, invalid_phi, r, s=1E10) | |
assert "phi should be between [0, 2pi]" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
invalid_phi = array([1.0 * pi, pi, 1.5 * pi, .5 * pi, pi, 1.5 * pi, | |
.5 * pi, pi, 2.1 * pi]) | |
SmoothSphereBivariateSpline(theta, invalid_phi, r, s=1E10) | |
assert "phi should be between [0, 2pi]" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
invalid_w = array([-1.0, 1.0, 1.5, 0.5, 1.0, 1.5, 0.5, 1.0, 1.0]) | |
SmoothSphereBivariateSpline(theta, phi, r, w=invalid_w, s=1E10) | |
assert "w should be positive" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
SmoothSphereBivariateSpline(theta, phi, r, s=-1.0) | |
assert "s should be positive" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
SmoothSphereBivariateSpline(theta, phi, r, eps=-1.0) | |
assert "eps should be between (0, 1)" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
SmoothSphereBivariateSpline(theta, phi, r, eps=1.0) | |
assert "eps should be between (0, 1)" in str(exc_info.value) | |
def test_array_like_input(self): | |
theta = np.array([.25 * pi, .25 * pi, .25 * pi, .5 * pi, .5 * pi, | |
.5 * pi, .75 * pi, .75 * pi, .75 * pi]) | |
phi = np.array([.5 * pi, pi, 1.5 * pi, .5 * pi, pi, 1.5 * pi, .5 * pi, | |
pi, 1.5 * pi]) | |
r = np.array([3, 3, 3, 3, 3, 3, 3, 3, 3]) | |
w = np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]) | |
# np.array input | |
spl1 = SmoothSphereBivariateSpline(theta, phi, r, w=w, s=1E10) | |
# list input | |
spl2 = SmoothSphereBivariateSpline(theta.tolist(), phi.tolist(), | |
r.tolist(), w=w.tolist(), s=1E10) | |
assert_array_almost_equal(spl1(1.0, 1.0), spl2(1.0, 1.0)) | |
class TestRectBivariateSpline: | |
def test_defaults(self): | |
x = array([1,2,3,4,5]) | |
y = array([1,2,3,4,5]) | |
z = array([[1,2,1,2,1],[1,2,1,2,1],[1,2,3,2,1],[1,2,2,2,1],[1,2,1,2,1]]) | |
lut = RectBivariateSpline(x,y,z) | |
assert_array_almost_equal(lut(x,y),z) | |
def test_evaluate(self): | |
x = array([1,2,3,4,5]) | |
y = array([1,2,3,4,5]) | |
z = array([[1,2,1,2,1],[1,2,1,2,1],[1,2,3,2,1],[1,2,2,2,1],[1,2,1,2,1]]) | |
lut = RectBivariateSpline(x,y,z) | |
xi = [1, 2.3, 5.3, 0.5, 3.3, 1.2, 3] | |
yi = [1, 3.3, 1.2, 4.0, 5.0, 1.0, 3] | |
zi = lut.ev(xi, yi) | |
zi2 = array([lut(xp, yp)[0,0] for xp, yp in zip(xi, yi)]) | |
assert_almost_equal(zi, zi2) | |
def test_derivatives_grid(self): | |
x = array([1,2,3,4,5]) | |
y = array([1,2,3,4,5]) | |
z = array([[1,2,1,2,1],[1,2,1,2,1],[1,2,3,2,1],[1,2,2,2,1],[1,2,1,2,1]]) | |
dx = array([[0,0,-20,0,0],[0,0,13,0,0],[0,0,4,0,0], | |
[0,0,-11,0,0],[0,0,4,0,0]])/6. | |
dy = array([[4,-1,0,1,-4],[4,-1,0,1,-4],[0,1.5,0,-1.5,0], | |
[2,.25,0,-.25,-2],[4,-1,0,1,-4]]) | |
dxdy = array([[40,-25,0,25,-40],[-26,16.25,0,-16.25,26], | |
[-8,5,0,-5,8],[22,-13.75,0,13.75,-22],[-8,5,0,-5,8]])/6. | |
lut = RectBivariateSpline(x,y,z) | |
assert_array_almost_equal(lut(x,y,dx=1),dx) | |
assert_array_almost_equal(lut(x,y,dy=1),dy) | |
assert_array_almost_equal(lut(x,y,dx=1,dy=1),dxdy) | |
def test_derivatives(self): | |
x = array([1,2,3,4,5]) | |
y = array([1,2,3,4,5]) | |
z = array([[1,2,1,2,1],[1,2,1,2,1],[1,2,3,2,1],[1,2,2,2,1],[1,2,1,2,1]]) | |
dx = array([0,0,2./3,0,0]) | |
dy = array([4,-1,0,-.25,-4]) | |
dxdy = array([160,65,0,55,32])/24. | |
lut = RectBivariateSpline(x,y,z) | |
assert_array_almost_equal(lut(x,y,dx=1,grid=False),dx) | |
assert_array_almost_equal(lut(x,y,dy=1,grid=False),dy) | |
assert_array_almost_equal(lut(x,y,dx=1,dy=1,grid=False),dxdy) | |
def test_partial_derivative_method_grid(self): | |
x = array([1, 2, 3, 4, 5]) | |
y = array([1, 2, 3, 4, 5]) | |
z = array([[1, 2, 1, 2, 1], | |
[1, 2, 1, 2, 1], | |
[1, 2, 3, 2, 1], | |
[1, 2, 2, 2, 1], | |
[1, 2, 1, 2, 1]]) | |
dx = array([[0, 0, -20, 0, 0], | |
[0, 0, 13, 0, 0], | |
[0, 0, 4, 0, 0], | |
[0, 0, -11, 0, 0], | |
[0, 0, 4, 0, 0]]) / 6. | |
dy = array([[4, -1, 0, 1, -4], | |
[4, -1, 0, 1, -4], | |
[0, 1.5, 0, -1.5, 0], | |
[2, .25, 0, -.25, -2], | |
[4, -1, 0, 1, -4]]) | |
dxdy = array([[40, -25, 0, 25, -40], | |
[-26, 16.25, 0, -16.25, 26], | |
[-8, 5, 0, -5, 8], | |
[22, -13.75, 0, 13.75, -22], | |
[-8, 5, 0, -5, 8]]) / 6. | |
lut = RectBivariateSpline(x, y, z) | |
assert_array_almost_equal(lut.partial_derivative(1, 0)(x, y), dx) | |
assert_array_almost_equal(lut.partial_derivative(0, 1)(x, y), dy) | |
assert_array_almost_equal(lut.partial_derivative(1, 1)(x, y), dxdy) | |
def test_partial_derivative_method(self): | |
x = array([1, 2, 3, 4, 5]) | |
y = array([1, 2, 3, 4, 5]) | |
z = array([[1, 2, 1, 2, 1], | |
[1, 2, 1, 2, 1], | |
[1, 2, 3, 2, 1], | |
[1, 2, 2, 2, 1], | |
[1, 2, 1, 2, 1]]) | |
dx = array([0, 0, 2./3, 0, 0]) | |
dy = array([4, -1, 0, -.25, -4]) | |
dxdy = array([160, 65, 0, 55, 32]) / 24. | |
lut = RectBivariateSpline(x, y, z) | |
assert_array_almost_equal(lut.partial_derivative(1, 0)(x, y, | |
grid=False), | |
dx) | |
assert_array_almost_equal(lut.partial_derivative(0, 1)(x, y, | |
grid=False), | |
dy) | |
assert_array_almost_equal(lut.partial_derivative(1, 1)(x, y, | |
grid=False), | |
dxdy) | |
def test_partial_derivative_order_too_large(self): | |
x = array([0, 1, 2, 3, 4], dtype=float) | |
y = x.copy() | |
z = ones((x.size, y.size)) | |
lut = RectBivariateSpline(x, y, z) | |
with assert_raises(ValueError): | |
lut.partial_derivative(4, 1) | |
def test_broadcast(self): | |
x = array([1,2,3,4,5]) | |
y = array([1,2,3,4,5]) | |
z = array([[1,2,1,2,1],[1,2,1,2,1],[1,2,3,2,1],[1,2,2,2,1],[1,2,1,2,1]]) | |
lut = RectBivariateSpline(x,y,z) | |
assert_allclose(lut(x, y), lut(x[:,None], y[None,:], grid=False)) | |
def test_invalid_input(self): | |
with assert_raises(ValueError) as info: | |
x = array([6, 2, 3, 4, 5]) | |
y = array([1, 2, 3, 4, 5]) | |
z = array([[1, 2, 1, 2, 1], [1, 2, 1, 2, 1], [1, 2, 3, 2, 1], | |
[1, 2, 2, 2, 1], [1, 2, 1, 2, 1]]) | |
RectBivariateSpline(x, y, z) | |
assert "x must be strictly increasing" in str(info.value) | |
with assert_raises(ValueError) as info: | |
x = array([1, 2, 3, 4, 5]) | |
y = array([2, 2, 3, 4, 5]) | |
z = array([[1, 2, 1, 2, 1], [1, 2, 1, 2, 1], [1, 2, 3, 2, 1], | |
[1, 2, 2, 2, 1], [1, 2, 1, 2, 1]]) | |
RectBivariateSpline(x, y, z) | |
assert "y must be strictly increasing" in str(info.value) | |
with assert_raises(ValueError) as info: | |
x = array([1, 2, 3, 4, 5]) | |
y = array([1, 2, 3, 4, 5]) | |
z = array([[1, 2, 1, 2, 1], [1, 2, 1, 2, 1], [1, 2, 3, 2, 1], | |
[1, 2, 2, 2, 1]]) | |
RectBivariateSpline(x, y, z) | |
assert "x dimension of z must have same number of elements as x"\ | |
in str(info.value) | |
with assert_raises(ValueError) as info: | |
x = array([1, 2, 3, 4, 5]) | |
y = array([1, 2, 3, 4, 5]) | |
z = array([[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 3, 2], | |
[1, 2, 2, 2], [1, 2, 1, 2]]) | |
RectBivariateSpline(x, y, z) | |
assert "y dimension of z must have same number of elements as y"\ | |
in str(info.value) | |
with assert_raises(ValueError) as info: | |
x = array([1, 2, 3, 4, 5]) | |
y = array([1, 2, 3, 4, 5]) | |
z = array([[1, 2, 1, 2, 1], [1, 2, 1, 2, 1], [1, 2, 3, 2, 1], | |
[1, 2, 2, 2, 1], [1, 2, 1, 2, 1]]) | |
bbox = (-100, 100, -100) | |
RectBivariateSpline(x, y, z, bbox=bbox) | |
assert "bbox shape should be (4,)" in str(info.value) | |
with assert_raises(ValueError) as info: | |
RectBivariateSpline(x, y, z, s=-1.0) | |
assert "s should be s >= 0.0" in str(info.value) | |
def test_array_like_input(self): | |
x = array([1, 2, 3, 4, 5]) | |
y = array([1, 2, 3, 4, 5]) | |
z = array([[1, 2, 1, 2, 1], [1, 2, 1, 2, 1], [1, 2, 3, 2, 1], | |
[1, 2, 2, 2, 1], [1, 2, 1, 2, 1]]) | |
bbox = array([1, 5, 1, 5]) | |
spl1 = RectBivariateSpline(x, y, z, bbox=bbox) | |
spl2 = RectBivariateSpline(x.tolist(), y.tolist(), z.tolist(), | |
bbox=bbox.tolist()) | |
assert_array_almost_equal(spl1(1.0, 1.0), spl2(1.0, 1.0)) | |
def test_not_increasing_input(self): | |
# gh-8565 | |
NSamp = 20 | |
Theta = np.random.uniform(0, np.pi, NSamp) | |
Phi = np.random.uniform(0, 2 * np.pi, NSamp) | |
Data = np.ones(NSamp) | |
Interpolator = SmoothSphereBivariateSpline(Theta, Phi, Data, s=3.5) | |
NLon = 6 | |
NLat = 3 | |
GridPosLats = np.arange(NLat) / NLat * np.pi | |
GridPosLons = np.arange(NLon) / NLon * 2 * np.pi | |
# No error | |
Interpolator(GridPosLats, GridPosLons) | |
nonGridPosLats = GridPosLats.copy() | |
nonGridPosLats[2] = 0.001 | |
with assert_raises(ValueError) as exc_info: | |
Interpolator(nonGridPosLats, GridPosLons) | |
assert "x must be strictly increasing" in str(exc_info.value) | |
nonGridPosLons = GridPosLons.copy() | |
nonGridPosLons[2] = 0.001 | |
with assert_raises(ValueError) as exc_info: | |
Interpolator(GridPosLats, nonGridPosLons) | |
assert "y must be strictly increasing" in str(exc_info.value) | |
class TestRectSphereBivariateSpline: | |
def test_defaults(self): | |
y = linspace(0.01, 2*pi-0.01, 7) | |
x = linspace(0.01, pi-0.01, 7) | |
z = array([[1,2,1,2,1,2,1],[1,2,1,2,1,2,1],[1,2,3,2,1,2,1], | |
[1,2,2,2,1,2,1],[1,2,1,2,1,2,1],[1,2,2,2,1,2,1], | |
[1,2,1,2,1,2,1]]) | |
lut = RectSphereBivariateSpline(x,y,z) | |
assert_array_almost_equal(lut(x,y),z) | |
def test_evaluate(self): | |
y = linspace(0.01, 2*pi-0.01, 7) | |
x = linspace(0.01, pi-0.01, 7) | |
z = array([[1,2,1,2,1,2,1],[1,2,1,2,1,2,1],[1,2,3,2,1,2,1], | |
[1,2,2,2,1,2,1],[1,2,1,2,1,2,1],[1,2,2,2,1,2,1], | |
[1,2,1,2,1,2,1]]) | |
lut = RectSphereBivariateSpline(x,y,z) | |
yi = [0.2, 1, 2.3, 2.35, 3.0, 3.99, 5.25] | |
xi = [1.5, 0.4, 1.1, 0.45, 0.2345, 1., 0.0001] | |
zi = lut.ev(xi, yi) | |
zi2 = array([lut(xp, yp)[0,0] for xp, yp in zip(xi, yi)]) | |
assert_almost_equal(zi, zi2) | |
def test_invalid_input(self): | |
data = np.dot(np.atleast_2d(90. - np.linspace(-80., 80., 18)).T, | |
np.atleast_2d(180. - np.abs(np.linspace(0., 350., 9)))).T | |
with assert_raises(ValueError) as exc_info: | |
lats = np.linspace(-1, 170, 9) * np.pi / 180. | |
lons = np.linspace(0, 350, 18) * np.pi / 180. | |
RectSphereBivariateSpline(lats, lons, data) | |
assert "u should be between (0, pi)" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
lats = np.linspace(10, 181, 9) * np.pi / 180. | |
lons = np.linspace(0, 350, 18) * np.pi / 180. | |
RectSphereBivariateSpline(lats, lons, data) | |
assert "u should be between (0, pi)" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
lats = np.linspace(10, 170, 9) * np.pi / 180. | |
lons = np.linspace(-181, 10, 18) * np.pi / 180. | |
RectSphereBivariateSpline(lats, lons, data) | |
assert "v[0] should be between [-pi, pi)" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
lats = np.linspace(10, 170, 9) * np.pi / 180. | |
lons = np.linspace(-10, 360, 18) * np.pi / 180. | |
RectSphereBivariateSpline(lats, lons, data) | |
assert "v[-1] should be v[0] + 2pi or less" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
lats = np.linspace(10, 170, 9) * np.pi / 180. | |
lons = np.linspace(10, 350, 18) * np.pi / 180. | |
RectSphereBivariateSpline(lats, lons, data, s=-1) | |
assert "s should be positive" in str(exc_info.value) | |
def test_derivatives_grid(self): | |
y = linspace(0.01, 2*pi-0.01, 7) | |
x = linspace(0.01, pi-0.01, 7) | |
z = array([[1,2,1,2,1,2,1],[1,2,1,2,1,2,1],[1,2,3,2,1,2,1], | |
[1,2,2,2,1,2,1],[1,2,1,2,1,2,1],[1,2,2,2,1,2,1], | |
[1,2,1,2,1,2,1]]) | |
lut = RectSphereBivariateSpline(x,y,z) | |
y = linspace(0.02, 2*pi-0.02, 7) | |
x = linspace(0.02, pi-0.02, 7) | |
assert_allclose(lut(x, y, dtheta=1), _numdiff_2d(lut, x, y, dx=1), | |
rtol=1e-4, atol=1e-4) | |
assert_allclose(lut(x, y, dphi=1), _numdiff_2d(lut, x, y, dy=1), | |
rtol=1e-4, atol=1e-4) | |
assert_allclose(lut(x, y, dtheta=1, dphi=1), | |
_numdiff_2d(lut, x, y, dx=1, dy=1, eps=1e-6), | |
rtol=1e-3, atol=1e-3) | |
assert_array_equal(lut(x, y, dtheta=1), | |
lut.partial_derivative(1, 0)(x, y)) | |
assert_array_equal(lut(x, y, dphi=1), | |
lut.partial_derivative(0, 1)(x, y)) | |
assert_array_equal(lut(x, y, dtheta=1, dphi=1), | |
lut.partial_derivative(1, 1)(x, y)) | |
assert_array_equal(lut(x, y, dtheta=1, grid=False), | |
lut.partial_derivative(1, 0)(x, y, grid=False)) | |
assert_array_equal(lut(x, y, dphi=1, grid=False), | |
lut.partial_derivative(0, 1)(x, y, grid=False)) | |
assert_array_equal(lut(x, y, dtheta=1, dphi=1, grid=False), | |
lut.partial_derivative(1, 1)(x, y, grid=False)) | |
def test_derivatives(self): | |
y = linspace(0.01, 2*pi-0.01, 7) | |
x = linspace(0.01, pi-0.01, 7) | |
z = array([[1,2,1,2,1,2,1],[1,2,1,2,1,2,1],[1,2,3,2,1,2,1], | |
[1,2,2,2,1,2,1],[1,2,1,2,1,2,1],[1,2,2,2,1,2,1], | |
[1,2,1,2,1,2,1]]) | |
lut = RectSphereBivariateSpline(x,y,z) | |
y = linspace(0.02, 2*pi-0.02, 7) | |
x = linspace(0.02, pi-0.02, 7) | |
assert_equal(lut(x, y, dtheta=1, grid=False).shape, x.shape) | |
assert_allclose(lut(x, y, dtheta=1, grid=False), | |
_numdiff_2d(lambda x,y: lut(x,y,grid=False), x, y, dx=1), | |
rtol=1e-4, atol=1e-4) | |
assert_allclose(lut(x, y, dphi=1, grid=False), | |
_numdiff_2d(lambda x,y: lut(x,y,grid=False), x, y, dy=1), | |
rtol=1e-4, atol=1e-4) | |
assert_allclose(lut(x, y, dtheta=1, dphi=1, grid=False), | |
_numdiff_2d(lambda x,y: lut(x,y,grid=False), | |
x, y, dx=1, dy=1, eps=1e-6), | |
rtol=1e-3, atol=1e-3) | |
def test_invalid_input_2(self): | |
data = np.dot(np.atleast_2d(90. - np.linspace(-80., 80., 18)).T, | |
np.atleast_2d(180. - np.abs(np.linspace(0., 350., 9)))).T | |
with assert_raises(ValueError) as exc_info: | |
lats = np.linspace(0, 170, 9) * np.pi / 180. | |
lons = np.linspace(0, 350, 18) * np.pi / 180. | |
RectSphereBivariateSpline(lats, lons, data) | |
assert "u should be between (0, pi)" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
lats = np.linspace(10, 180, 9) * np.pi / 180. | |
lons = np.linspace(0, 350, 18) * np.pi / 180. | |
RectSphereBivariateSpline(lats, lons, data) | |
assert "u should be between (0, pi)" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
lats = np.linspace(10, 170, 9) * np.pi / 180. | |
lons = np.linspace(-181, 10, 18) * np.pi / 180. | |
RectSphereBivariateSpline(lats, lons, data) | |
assert "v[0] should be between [-pi, pi)" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
lats = np.linspace(10, 170, 9) * np.pi / 180. | |
lons = np.linspace(-10, 360, 18) * np.pi / 180. | |
RectSphereBivariateSpline(lats, lons, data) | |
assert "v[-1] should be v[0] + 2pi or less" in str(exc_info.value) | |
with assert_raises(ValueError) as exc_info: | |
lats = np.linspace(10, 170, 9) * np.pi / 180. | |
lons = np.linspace(10, 350, 18) * np.pi / 180. | |
RectSphereBivariateSpline(lats, lons, data, s=-1) | |
assert "s should be positive" in str(exc_info.value) | |
def test_array_like_input(self): | |
y = linspace(0.01, 2 * pi - 0.01, 7) | |
x = linspace(0.01, pi - 0.01, 7) | |
z = array([[1, 2, 1, 2, 1, 2, 1], [1, 2, 1, 2, 1, 2, 1], | |
[1, 2, 3, 2, 1, 2, 1], | |
[1, 2, 2, 2, 1, 2, 1], [1, 2, 1, 2, 1, 2, 1], | |
[1, 2, 2, 2, 1, 2, 1], | |
[1, 2, 1, 2, 1, 2, 1]]) | |
# np.array input | |
spl1 = RectSphereBivariateSpline(x, y, z) | |
# list input | |
spl2 = RectSphereBivariateSpline(x.tolist(), y.tolist(), z.tolist()) | |
assert_array_almost_equal(spl1(x, y), spl2(x, y)) | |
def test_negative_evaluation(self): | |
lats = np.array([25, 30, 35, 40, 45]) | |
lons = np.array([-90, -85, -80, -75, 70]) | |
mesh = np.meshgrid(lats, lons) | |
data = mesh[0] + mesh[1] # lon + lat value | |
lat_r = np.radians(lats) | |
lon_r = np.radians(lons) | |
interpolator = RectSphereBivariateSpline(lat_r, lon_r, data) | |
query_lat = np.radians(np.array([35, 37.5])) | |
query_lon = np.radians(np.array([-80, -77.5])) | |
data_interp = interpolator(query_lat, query_lon) | |
ans = np.array([[-45.0, -42.480862], | |
[-49.0625, -46.54315]]) | |
assert_array_almost_equal(data_interp, ans) | |
def test_pole_continuity_gh_14591(self): | |
# regression test for https://github.com/scipy/scipy/issues/14591 | |
# with pole_continuty=(True, True), the internal work array size | |
# was too small, leading to a FITPACK data validation error. | |
# The reproducer in gh-14591 was using a NetCDF4 file with | |
# 361x507 arrays, so here we trivialize array sizes to a minimum | |
# which still demonstrates the issue. | |
u = np.arange(1, 10) * np.pi / 10 | |
v = np.arange(1, 10) * np.pi / 10 | |
r = np.zeros((9, 9)) | |
for p in [(True, True), (True, False), (False, False)]: | |
RectSphereBivariateSpline(u, v, r, s=0, pole_continuity=p) | |
def _numdiff_2d(func, x, y, dx=0, dy=0, eps=1e-8): | |
if dx == 0 and dy == 0: | |
return func(x, y) | |
elif dx == 1 and dy == 0: | |
return (func(x + eps, y) - func(x - eps, y)) / (2*eps) | |
elif dx == 0 and dy == 1: | |
return (func(x, y + eps) - func(x, y - eps)) / (2*eps) | |
elif dx == 1 and dy == 1: | |
return (func(x + eps, y + eps) - func(x - eps, y + eps) | |
- func(x + eps, y - eps) + func(x - eps, y - eps)) / (2*eps)**2 | |
else: | |
raise ValueError("invalid derivative order") | |
class Test_DerivedBivariateSpline: | |
"""Test the creation, usage, and attribute access of the (private) | |
_DerivedBivariateSpline class. | |
""" | |
def setup_method(self): | |
x = np.concatenate(list(zip(range(10), range(10)))) | |
y = np.concatenate(list(zip(range(10), range(1, 11)))) | |
z = np.concatenate((np.linspace(3, 1, 10), np.linspace(1, 3, 10))) | |
with suppress_warnings() as sup: | |
sup.record(UserWarning, "\nThe coefficients of the spline") | |
self.lut_lsq = LSQBivariateSpline(x, y, z, | |
linspace(0.5, 19.5, 4), | |
linspace(1.5, 20.5, 4), | |
eps=1e-2) | |
self.lut_smooth = SmoothBivariateSpline(x, y, z) | |
xx = linspace(0, 1, 20) | |
yy = xx + 1.0 | |
zz = array([np.roll(z, i) for i in range(z.size)]) | |
self.lut_rect = RectBivariateSpline(xx, yy, zz) | |
self.orders = list(itertools.product(range(3), range(3))) | |
def test_creation_from_LSQ(self): | |
for nux, nuy in self.orders: | |
lut_der = self.lut_lsq.partial_derivative(nux, nuy) | |
a = lut_der(3.5, 3.5, grid=False) | |
b = self.lut_lsq(3.5, 3.5, dx=nux, dy=nuy, grid=False) | |
assert_equal(a, b) | |
def test_creation_from_Smooth(self): | |
for nux, nuy in self.orders: | |
lut_der = self.lut_smooth.partial_derivative(nux, nuy) | |
a = lut_der(5.5, 5.5, grid=False) | |
b = self.lut_smooth(5.5, 5.5, dx=nux, dy=nuy, grid=False) | |
assert_equal(a, b) | |
def test_creation_from_Rect(self): | |
for nux, nuy in self.orders: | |
lut_der = self.lut_rect.partial_derivative(nux, nuy) | |
a = lut_der(0.5, 1.5, grid=False) | |
b = self.lut_rect(0.5, 1.5, dx=nux, dy=nuy, grid=False) | |
assert_equal(a, b) | |
def test_invalid_attribute_fp(self): | |
der = self.lut_rect.partial_derivative(1, 1) | |
with assert_raises(AttributeError): | |
der.fp | |
def test_invalid_attribute_get_residual(self): | |
der = self.lut_smooth.partial_derivative(1, 1) | |
with assert_raises(AttributeError): | |
der.get_residual() | |