peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/interpolate
/tests
/test_interpnd.py
import os | |
import numpy as np | |
from numpy.testing import (assert_equal, assert_allclose, assert_almost_equal, | |
suppress_warnings) | |
from pytest import raises as assert_raises | |
import pytest | |
import scipy.interpolate.interpnd as interpnd | |
import scipy.spatial._qhull as qhull | |
import pickle | |
def data_file(basename): | |
return os.path.join(os.path.abspath(os.path.dirname(__file__)), | |
'data', basename) | |
class TestLinearNDInterpolation: | |
def test_smoketest(self): | |
# Test at single points | |
x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)], | |
dtype=np.float64) | |
y = np.arange(x.shape[0], dtype=np.float64) | |
yi = interpnd.LinearNDInterpolator(x, y)(x) | |
assert_almost_equal(y, yi) | |
def test_smoketest_alternate(self): | |
# Test at single points, alternate calling convention | |
x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)], | |
dtype=np.float64) | |
y = np.arange(x.shape[0], dtype=np.float64) | |
yi = interpnd.LinearNDInterpolator((x[:,0], x[:,1]), y)(x[:,0], x[:,1]) | |
assert_almost_equal(y, yi) | |
def test_complex_smoketest(self): | |
# Test at single points | |
x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)], | |
dtype=np.float64) | |
y = np.arange(x.shape[0], dtype=np.float64) | |
y = y - 3j*y | |
yi = interpnd.LinearNDInterpolator(x, y)(x) | |
assert_almost_equal(y, yi) | |
def test_tri_input(self): | |
# Test at single points | |
x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)], | |
dtype=np.float64) | |
y = np.arange(x.shape[0], dtype=np.float64) | |
y = y - 3j*y | |
tri = qhull.Delaunay(x) | |
yi = interpnd.LinearNDInterpolator(tri, y)(x) | |
assert_almost_equal(y, yi) | |
def test_square(self): | |
# Test barycentric interpolation on a square against a manual | |
# implementation | |
points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.float64) | |
values = np.array([1., 2., -3., 5.], dtype=np.float64) | |
# NB: assume triangles (0, 1, 3) and (1, 2, 3) | |
# | |
# 1----2 | |
# | \ | | |
# | \ | | |
# 0----3 | |
def ip(x, y): | |
t1 = (x + y <= 1) | |
t2 = ~t1 | |
x1 = x[t1] | |
y1 = y[t1] | |
x2 = x[t2] | |
y2 = y[t2] | |
z = 0*x | |
z[t1] = (values[0]*(1 - x1 - y1) | |
+ values[1]*y1 | |
+ values[3]*x1) | |
z[t2] = (values[2]*(x2 + y2 - 1) | |
+ values[1]*(1 - x2) | |
+ values[3]*(1 - y2)) | |
return z | |
xx, yy = np.broadcast_arrays(np.linspace(0, 1, 14)[:,None], | |
np.linspace(0, 1, 14)[None,:]) | |
xx = xx.ravel() | |
yy = yy.ravel() | |
xi = np.array([xx, yy]).T.copy() | |
zi = interpnd.LinearNDInterpolator(points, values)(xi) | |
assert_almost_equal(zi, ip(xx, yy)) | |
def test_smoketest_rescale(self): | |
# Test at single points | |
x = np.array([(0, 0), (-5, -5), (-5, 5), (5, 5), (2.5, 3)], | |
dtype=np.float64) | |
y = np.arange(x.shape[0], dtype=np.float64) | |
yi = interpnd.LinearNDInterpolator(x, y, rescale=True)(x) | |
assert_almost_equal(y, yi) | |
def test_square_rescale(self): | |
# Test barycentric interpolation on a rectangle with rescaling | |
# agaings the same implementation without rescaling | |
points = np.array([(0,0), (0,100), (10,100), (10,0)], dtype=np.float64) | |
values = np.array([1., 2., -3., 5.], dtype=np.float64) | |
xx, yy = np.broadcast_arrays(np.linspace(0, 10, 14)[:,None], | |
np.linspace(0, 100, 14)[None,:]) | |
xx = xx.ravel() | |
yy = yy.ravel() | |
xi = np.array([xx, yy]).T.copy() | |
zi = interpnd.LinearNDInterpolator(points, values)(xi) | |
zi_rescaled = interpnd.LinearNDInterpolator(points, values, | |
rescale=True)(xi) | |
assert_almost_equal(zi, zi_rescaled) | |
def test_tripoints_input_rescale(self): | |
# Test at single points | |
x = np.array([(0,0), (-5,-5), (-5,5), (5, 5), (2.5, 3)], | |
dtype=np.float64) | |
y = np.arange(x.shape[0], dtype=np.float64) | |
y = y - 3j*y | |
tri = qhull.Delaunay(x) | |
yi = interpnd.LinearNDInterpolator(tri.points, y)(x) | |
yi_rescale = interpnd.LinearNDInterpolator(tri.points, y, | |
rescale=True)(x) | |
assert_almost_equal(yi, yi_rescale) | |
def test_tri_input_rescale(self): | |
# Test at single points | |
x = np.array([(0,0), (-5,-5), (-5,5), (5, 5), (2.5, 3)], | |
dtype=np.float64) | |
y = np.arange(x.shape[0], dtype=np.float64) | |
y = y - 3j*y | |
tri = qhull.Delaunay(x) | |
match = ("Rescaling is not supported when passing a " | |
"Delaunay triangulation as ``points``.") | |
with pytest.raises(ValueError, match=match): | |
interpnd.LinearNDInterpolator(tri, y, rescale=True)(x) | |
def test_pickle(self): | |
# Test at single points | |
np.random.seed(1234) | |
x = np.random.rand(30, 2) | |
y = np.random.rand(30) + 1j*np.random.rand(30) | |
ip = interpnd.LinearNDInterpolator(x, y) | |
ip2 = pickle.loads(pickle.dumps(ip)) | |
assert_almost_equal(ip(0.5, 0.5), ip2(0.5, 0.5)) | |
class TestEstimateGradients2DGlobal: | |
def test_smoketest(self): | |
x = np.array([(0, 0), (0, 2), | |
(1, 0), (1, 2), (0.25, 0.75), (0.6, 0.8)], dtype=float) | |
tri = qhull.Delaunay(x) | |
# Should be exact for linear functions, independent of triangulation | |
funcs = [ | |
(lambda x, y: 0*x + 1, (0, 0)), | |
(lambda x, y: 0 + x, (1, 0)), | |
(lambda x, y: -2 + y, (0, 1)), | |
(lambda x, y: 3 + 3*x + 14.15*y, (3, 14.15)) | |
] | |
for j, (func, grad) in enumerate(funcs): | |
z = func(x[:,0], x[:,1]) | |
dz = interpnd.estimate_gradients_2d_global(tri, z, tol=1e-6) | |
assert_equal(dz.shape, (6, 2)) | |
assert_allclose(dz, np.array(grad)[None,:] + 0*dz, | |
rtol=1e-5, atol=1e-5, err_msg="item %d" % j) | |
def test_regression_2359(self): | |
# Check regression --- for certain point sets, gradient | |
# estimation could end up in an infinite loop | |
points = np.load(data_file('estimate_gradients_hang.npy')) | |
values = np.random.rand(points.shape[0]) | |
tri = qhull.Delaunay(points) | |
# This should not hang | |
with suppress_warnings() as sup: | |
sup.filter(interpnd.GradientEstimationWarning, | |
"Gradient estimation did not converge") | |
interpnd.estimate_gradients_2d_global(tri, values, maxiter=1) | |
class TestCloughTocher2DInterpolator: | |
def _check_accuracy(self, func, x=None, tol=1e-6, alternate=False, | |
rescale=False, **kw): | |
np.random.seed(1234) | |
if x is None: | |
x = np.array([(0, 0), (0, 1), | |
(1, 0), (1, 1), (0.25, 0.75), (0.6, 0.8), | |
(0.5, 0.2)], | |
dtype=float) | |
if not alternate: | |
ip = interpnd.CloughTocher2DInterpolator(x, func(x[:,0], x[:,1]), | |
tol=1e-6, rescale=rescale) | |
else: | |
ip = interpnd.CloughTocher2DInterpolator((x[:,0], x[:,1]), | |
func(x[:,0], x[:,1]), | |
tol=1e-6, rescale=rescale) | |
p = np.random.rand(50, 2) | |
if not alternate: | |
a = ip(p) | |
else: | |
a = ip(p[:,0], p[:,1]) | |
b = func(p[:,0], p[:,1]) | |
try: | |
assert_allclose(a, b, **kw) | |
except AssertionError: | |
print("_check_accuracy: abs(a-b):", abs(a - b)) | |
print("ip.grad:", ip.grad) | |
raise | |
def test_linear_smoketest(self): | |
# Should be exact for linear functions, independent of triangulation | |
funcs = [ | |
lambda x, y: 0*x + 1, | |
lambda x, y: 0 + x, | |
lambda x, y: -2 + y, | |
lambda x, y: 3 + 3*x + 14.15*y, | |
] | |
for j, func in enumerate(funcs): | |
self._check_accuracy(func, tol=1e-13, atol=1e-7, rtol=1e-7, | |
err_msg="Function %d" % j) | |
self._check_accuracy(func, tol=1e-13, atol=1e-7, rtol=1e-7, | |
alternate=True, | |
err_msg="Function (alternate) %d" % j) | |
# check rescaling | |
self._check_accuracy(func, tol=1e-13, atol=1e-7, rtol=1e-7, | |
err_msg="Function (rescaled) %d" % j, rescale=True) | |
self._check_accuracy(func, tol=1e-13, atol=1e-7, rtol=1e-7, | |
alternate=True, rescale=True, | |
err_msg="Function (alternate, rescaled) %d" % j) | |
def test_quadratic_smoketest(self): | |
# Should be reasonably accurate for quadratic functions | |
funcs = [ | |
lambda x, y: x**2, | |
lambda x, y: y**2, | |
lambda x, y: x**2 - y**2, | |
lambda x, y: x*y, | |
] | |
for j, func in enumerate(funcs): | |
self._check_accuracy(func, tol=1e-9, atol=0.22, rtol=0, | |
err_msg="Function %d" % j) | |
self._check_accuracy(func, tol=1e-9, atol=0.22, rtol=0, | |
err_msg="Function %d" % j, rescale=True) | |
def test_tri_input(self): | |
# Test at single points | |
x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)], | |
dtype=np.float64) | |
y = np.arange(x.shape[0], dtype=np.float64) | |
y = y - 3j*y | |
tri = qhull.Delaunay(x) | |
yi = interpnd.CloughTocher2DInterpolator(tri, y)(x) | |
assert_almost_equal(y, yi) | |
def test_tri_input_rescale(self): | |
# Test at single points | |
x = np.array([(0,0), (-5,-5), (-5,5), (5, 5), (2.5, 3)], | |
dtype=np.float64) | |
y = np.arange(x.shape[0], dtype=np.float64) | |
y = y - 3j*y | |
tri = qhull.Delaunay(x) | |
match = ("Rescaling is not supported when passing a " | |
"Delaunay triangulation as ``points``.") | |
with pytest.raises(ValueError, match=match): | |
interpnd.CloughTocher2DInterpolator(tri, y, rescale=True)(x) | |
def test_tripoints_input_rescale(self): | |
# Test at single points | |
x = np.array([(0,0), (-5,-5), (-5,5), (5, 5), (2.5, 3)], | |
dtype=np.float64) | |
y = np.arange(x.shape[0], dtype=np.float64) | |
y = y - 3j*y | |
tri = qhull.Delaunay(x) | |
yi = interpnd.CloughTocher2DInterpolator(tri.points, y)(x) | |
yi_rescale = interpnd.CloughTocher2DInterpolator(tri.points, y, rescale=True)(x) | |
assert_almost_equal(yi, yi_rescale) | |
def test_dense(self): | |
# Should be more accurate for dense meshes | |
funcs = [ | |
lambda x, y: x**2, | |
lambda x, y: y**2, | |
lambda x, y: x**2 - y**2, | |
lambda x, y: x*y, | |
lambda x, y: np.cos(2*np.pi*x)*np.sin(2*np.pi*y) | |
] | |
np.random.seed(4321) # use a different seed than the check! | |
grid = np.r_[np.array([(0,0), (0,1), (1,0), (1,1)], dtype=float), | |
np.random.rand(30*30, 2)] | |
for j, func in enumerate(funcs): | |
self._check_accuracy(func, x=grid, tol=1e-9, atol=5e-3, rtol=1e-2, | |
err_msg="Function %d" % j) | |
self._check_accuracy(func, x=grid, tol=1e-9, atol=5e-3, rtol=1e-2, | |
err_msg="Function %d" % j, rescale=True) | |
def test_wrong_ndim(self): | |
x = np.random.randn(30, 3) | |
y = np.random.randn(30) | |
assert_raises(ValueError, interpnd.CloughTocher2DInterpolator, x, y) | |
def test_pickle(self): | |
# Test at single points | |
np.random.seed(1234) | |
x = np.random.rand(30, 2) | |
y = np.random.rand(30) + 1j*np.random.rand(30) | |
ip = interpnd.CloughTocher2DInterpolator(x, y) | |
ip2 = pickle.loads(pickle.dumps(ip)) | |
assert_almost_equal(ip(0.5, 0.5), ip2(0.5, 0.5)) | |
def test_boundary_tri_symmetry(self): | |
# Interpolation at neighbourless triangles should retain | |
# symmetry with mirroring the triangle. | |
# Equilateral triangle | |
points = np.array([(0, 0), (1, 0), (0.5, np.sqrt(3)/2)]) | |
values = np.array([1, 0, 0]) | |
ip = interpnd.CloughTocher2DInterpolator(points, values) | |
# Set gradient to zero at vertices | |
ip.grad[...] = 0 | |
# Interpolation should be symmetric vs. bisector | |
alpha = 0.3 | |
p1 = np.array([0.5 * np.cos(alpha), 0.5 * np.sin(alpha)]) | |
p2 = np.array([0.5 * np.cos(np.pi/3 - alpha), 0.5 * np.sin(np.pi/3 - alpha)]) | |
v1 = ip(p1) | |
v2 = ip(p2) | |
assert_allclose(v1, v2) | |
# ... and affine invariant | |
np.random.seed(1) | |
A = np.random.randn(2, 2) | |
b = np.random.randn(2) | |
points = A.dot(points.T).T + b[None,:] | |
p1 = A.dot(p1) + b | |
p2 = A.dot(p2) + b | |
ip = interpnd.CloughTocher2DInterpolator(points, values) | |
ip.grad[...] = 0 | |
w1 = ip(p1) | |
w2 = ip(p2) | |
assert_allclose(w1, v1) | |
assert_allclose(w2, v2) | |