peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/interpolate
/tests
/test_pade.py
from numpy.testing import (assert_array_equal, assert_array_almost_equal) | |
from scipy.interpolate import pade | |
def test_pade_trivial(): | |
nump, denomp = pade([1.0], 0) | |
assert_array_equal(nump.c, [1.0]) | |
assert_array_equal(denomp.c, [1.0]) | |
nump, denomp = pade([1.0], 0, 0) | |
assert_array_equal(nump.c, [1.0]) | |
assert_array_equal(denomp.c, [1.0]) | |
def test_pade_4term_exp(): | |
# First four Taylor coefficients of exp(x). | |
# Unlike poly1d, the first array element is the zero-order term. | |
an = [1.0, 1.0, 0.5, 1.0/6] | |
nump, denomp = pade(an, 0) | |
assert_array_almost_equal(nump.c, [1.0/6, 0.5, 1.0, 1.0]) | |
assert_array_almost_equal(denomp.c, [1.0]) | |
nump, denomp = pade(an, 1) | |
assert_array_almost_equal(nump.c, [1.0/6, 2.0/3, 1.0]) | |
assert_array_almost_equal(denomp.c, [-1.0/3, 1.0]) | |
nump, denomp = pade(an, 2) | |
assert_array_almost_equal(nump.c, [1.0/3, 1.0]) | |
assert_array_almost_equal(denomp.c, [1.0/6, -2.0/3, 1.0]) | |
nump, denomp = pade(an, 3) | |
assert_array_almost_equal(nump.c, [1.0]) | |
assert_array_almost_equal(denomp.c, [-1.0/6, 0.5, -1.0, 1.0]) | |
# Testing inclusion of optional parameter | |
nump, denomp = pade(an, 0, 3) | |
assert_array_almost_equal(nump.c, [1.0/6, 0.5, 1.0, 1.0]) | |
assert_array_almost_equal(denomp.c, [1.0]) | |
nump, denomp = pade(an, 1, 2) | |
assert_array_almost_equal(nump.c, [1.0/6, 2.0/3, 1.0]) | |
assert_array_almost_equal(denomp.c, [-1.0/3, 1.0]) | |
nump, denomp = pade(an, 2, 1) | |
assert_array_almost_equal(nump.c, [1.0/3, 1.0]) | |
assert_array_almost_equal(denomp.c, [1.0/6, -2.0/3, 1.0]) | |
nump, denomp = pade(an, 3, 0) | |
assert_array_almost_equal(nump.c, [1.0]) | |
assert_array_almost_equal(denomp.c, [-1.0/6, 0.5, -1.0, 1.0]) | |
# Testing reducing array. | |
nump, denomp = pade(an, 0, 2) | |
assert_array_almost_equal(nump.c, [0.5, 1.0, 1.0]) | |
assert_array_almost_equal(denomp.c, [1.0]) | |
nump, denomp = pade(an, 1, 1) | |
assert_array_almost_equal(nump.c, [1.0/2, 1.0]) | |
assert_array_almost_equal(denomp.c, [-1.0/2, 1.0]) | |
nump, denomp = pade(an, 2, 0) | |
assert_array_almost_equal(nump.c, [1.0]) | |
assert_array_almost_equal(denomp.c, [1.0/2, -1.0, 1.0]) | |
def test_pade_ints(): | |
# Simple test sequences (one of ints, one of floats). | |
an_int = [1, 2, 3, 4] | |
an_flt = [1.0, 2.0, 3.0, 4.0] | |
# Make sure integer arrays give the same result as float arrays with same values. | |
for i in range(0, len(an_int)): | |
for j in range(0, len(an_int) - i): | |
# Create float and int pade approximation for given order. | |
nump_int, denomp_int = pade(an_int, i, j) | |
nump_flt, denomp_flt = pade(an_flt, i, j) | |
# Check that they are the same. | |
assert_array_equal(nump_int.c, nump_flt.c) | |
assert_array_equal(denomp_int.c, denomp_flt.c) | |
def test_pade_complex(): | |
# Test sequence with known solutions - see page 6 of 10.1109/PESGM.2012.6344759. | |
# Variable x is parameter - these tests will work with any complex number. | |
x = 0.2 + 0.6j | |
an = [1.0, x, -x*x.conjugate(), x.conjugate()*(x**2) + x*(x.conjugate()**2), | |
-(x**3)*x.conjugate() - 3*(x*x.conjugate())**2 - x*(x.conjugate()**3)] | |
nump, denomp = pade(an, 1, 1) | |
assert_array_almost_equal(nump.c, [x + x.conjugate(), 1.0]) | |
assert_array_almost_equal(denomp.c, [x.conjugate(), 1.0]) | |
nump, denomp = pade(an, 1, 2) | |
assert_array_almost_equal(nump.c, [x**2, 2*x + x.conjugate(), 1.0]) | |
assert_array_almost_equal(denomp.c, [x + x.conjugate(), 1.0]) | |
nump, denomp = pade(an, 2, 2) | |
assert_array_almost_equal( | |
nump.c, | |
[x**2 + x*x.conjugate() + x.conjugate()**2, 2*(x + x.conjugate()), 1.0] | |
) | |
assert_array_almost_equal(denomp.c, [x.conjugate()**2, x + 2*x.conjugate(), 1.0]) | |