peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/interpolate
/tests
/test_rbf.py
# Created by John Travers, Robert Hetland, 2007 | |
""" Test functions for rbf module """ | |
import numpy as np | |
from numpy.testing import (assert_, assert_array_almost_equal, | |
assert_almost_equal) | |
from numpy import linspace, sin, cos, random, exp, allclose | |
from scipy.interpolate._rbf import Rbf | |
FUNCTIONS = ('multiquadric', 'inverse multiquadric', 'gaussian', | |
'cubic', 'quintic', 'thin-plate', 'linear') | |
def check_rbf1d_interpolation(function): | |
# Check that the Rbf function interpolates through the nodes (1D) | |
x = linspace(0,10,9) | |
y = sin(x) | |
rbf = Rbf(x, y, function=function) | |
yi = rbf(x) | |
assert_array_almost_equal(y, yi) | |
assert_almost_equal(rbf(float(x[0])), y[0]) | |
def check_rbf2d_interpolation(function): | |
# Check that the Rbf function interpolates through the nodes (2D). | |
x = random.rand(50,1)*4-2 | |
y = random.rand(50,1)*4-2 | |
z = x*exp(-x**2-1j*y**2) | |
rbf = Rbf(x, y, z, epsilon=2, function=function) | |
zi = rbf(x, y) | |
zi.shape = x.shape | |
assert_array_almost_equal(z, zi) | |
def check_rbf3d_interpolation(function): | |
# Check that the Rbf function interpolates through the nodes (3D). | |
x = random.rand(50, 1)*4 - 2 | |
y = random.rand(50, 1)*4 - 2 | |
z = random.rand(50, 1)*4 - 2 | |
d = x*exp(-x**2 - y**2) | |
rbf = Rbf(x, y, z, d, epsilon=2, function=function) | |
di = rbf(x, y, z) | |
di.shape = x.shape | |
assert_array_almost_equal(di, d) | |
def test_rbf_interpolation(): | |
for function in FUNCTIONS: | |
check_rbf1d_interpolation(function) | |
check_rbf2d_interpolation(function) | |
check_rbf3d_interpolation(function) | |
def check_2drbf1d_interpolation(function): | |
# Check that the 2-D Rbf function interpolates through the nodes (1D) | |
x = linspace(0, 10, 9) | |
y0 = sin(x) | |
y1 = cos(x) | |
y = np.vstack([y0, y1]).T | |
rbf = Rbf(x, y, function=function, mode='N-D') | |
yi = rbf(x) | |
assert_array_almost_equal(y, yi) | |
assert_almost_equal(rbf(float(x[0])), y[0]) | |
def check_2drbf2d_interpolation(function): | |
# Check that the 2-D Rbf function interpolates through the nodes (2D). | |
x = random.rand(50, ) * 4 - 2 | |
y = random.rand(50, ) * 4 - 2 | |
z0 = x * exp(-x ** 2 - 1j * y ** 2) | |
z1 = y * exp(-y ** 2 - 1j * x ** 2) | |
z = np.vstack([z0, z1]).T | |
rbf = Rbf(x, y, z, epsilon=2, function=function, mode='N-D') | |
zi = rbf(x, y) | |
zi.shape = z.shape | |
assert_array_almost_equal(z, zi) | |
def check_2drbf3d_interpolation(function): | |
# Check that the 2-D Rbf function interpolates through the nodes (3D). | |
x = random.rand(50, ) * 4 - 2 | |
y = random.rand(50, ) * 4 - 2 | |
z = random.rand(50, ) * 4 - 2 | |
d0 = x * exp(-x ** 2 - y ** 2) | |
d1 = y * exp(-y ** 2 - x ** 2) | |
d = np.vstack([d0, d1]).T | |
rbf = Rbf(x, y, z, d, epsilon=2, function=function, mode='N-D') | |
di = rbf(x, y, z) | |
di.shape = d.shape | |
assert_array_almost_equal(di, d) | |
def test_2drbf_interpolation(): | |
for function in FUNCTIONS: | |
check_2drbf1d_interpolation(function) | |
check_2drbf2d_interpolation(function) | |
check_2drbf3d_interpolation(function) | |
def check_rbf1d_regularity(function, atol): | |
# Check that the Rbf function approximates a smooth function well away | |
# from the nodes. | |
x = linspace(0, 10, 9) | |
y = sin(x) | |
rbf = Rbf(x, y, function=function) | |
xi = linspace(0, 10, 100) | |
yi = rbf(xi) | |
msg = "abs-diff: %f" % abs(yi - sin(xi)).max() | |
assert_(allclose(yi, sin(xi), atol=atol), msg) | |
def test_rbf_regularity(): | |
tolerances = { | |
'multiquadric': 0.1, | |
'inverse multiquadric': 0.15, | |
'gaussian': 0.15, | |
'cubic': 0.15, | |
'quintic': 0.1, | |
'thin-plate': 0.1, | |
'linear': 0.2 | |
} | |
for function in FUNCTIONS: | |
check_rbf1d_regularity(function, tolerances.get(function, 1e-2)) | |
def check_2drbf1d_regularity(function, atol): | |
# Check that the 2-D Rbf function approximates a smooth function well away | |
# from the nodes. | |
x = linspace(0, 10, 9) | |
y0 = sin(x) | |
y1 = cos(x) | |
y = np.vstack([y0, y1]).T | |
rbf = Rbf(x, y, function=function, mode='N-D') | |
xi = linspace(0, 10, 100) | |
yi = rbf(xi) | |
msg = "abs-diff: %f" % abs(yi - np.vstack([sin(xi), cos(xi)]).T).max() | |
assert_(allclose(yi, np.vstack([sin(xi), cos(xi)]).T, atol=atol), msg) | |
def test_2drbf_regularity(): | |
tolerances = { | |
'multiquadric': 0.1, | |
'inverse multiquadric': 0.15, | |
'gaussian': 0.15, | |
'cubic': 0.15, | |
'quintic': 0.1, | |
'thin-plate': 0.15, | |
'linear': 0.2 | |
} | |
for function in FUNCTIONS: | |
check_2drbf1d_regularity(function, tolerances.get(function, 1e-2)) | |
def check_rbf1d_stability(function): | |
# Check that the Rbf function with default epsilon is not subject | |
# to overshoot. Regression for issue #4523. | |
# | |
# Generate some data (fixed random seed hence deterministic) | |
np.random.seed(1234) | |
x = np.linspace(0, 10, 50) | |
z = x + 4.0 * np.random.randn(len(x)) | |
rbf = Rbf(x, z, function=function) | |
xi = np.linspace(0, 10, 1000) | |
yi = rbf(xi) | |
# subtract the linear trend and make sure there no spikes | |
assert_(np.abs(yi-xi).max() / np.abs(z-x).max() < 1.1) | |
def test_rbf_stability(): | |
for function in FUNCTIONS: | |
check_rbf1d_stability(function) | |
def test_default_construction(): | |
# Check that the Rbf class can be constructed with the default | |
# multiquadric basis function. Regression test for ticket #1228. | |
x = linspace(0,10,9) | |
y = sin(x) | |
rbf = Rbf(x, y) | |
yi = rbf(x) | |
assert_array_almost_equal(y, yi) | |
def test_function_is_callable(): | |
# Check that the Rbf class can be constructed with function=callable. | |
x = linspace(0,10,9) | |
y = sin(x) | |
def linfunc(x): | |
return x | |
rbf = Rbf(x, y, function=linfunc) | |
yi = rbf(x) | |
assert_array_almost_equal(y, yi) | |
def test_two_arg_function_is_callable(): | |
# Check that the Rbf class can be constructed with a two argument | |
# function=callable. | |
def _func(self, r): | |
return self.epsilon + r | |
x = linspace(0,10,9) | |
y = sin(x) | |
rbf = Rbf(x, y, function=_func) | |
yi = rbf(x) | |
assert_array_almost_equal(y, yi) | |
def test_rbf_epsilon_none(): | |
x = linspace(0, 10, 9) | |
y = sin(x) | |
Rbf(x, y, epsilon=None) | |
def test_rbf_epsilon_none_collinear(): | |
# Check that collinear points in one dimension doesn't cause an error | |
# due to epsilon = 0 | |
x = [1, 2, 3] | |
y = [4, 4, 4] | |
z = [5, 6, 7] | |
rbf = Rbf(x, y, z, epsilon=None) | |
assert_(rbf.epsilon > 0) | |