peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/interpolate
/tests
/test_rgi.py
import itertools | |
import pytest | |
import numpy as np | |
from numpy.testing import (assert_allclose, assert_equal, assert_warns, | |
assert_array_almost_equal, assert_array_equal) | |
from pytest import raises as assert_raises | |
from scipy.interpolate import (RegularGridInterpolator, interpn, | |
RectBivariateSpline, | |
NearestNDInterpolator, LinearNDInterpolator) | |
from scipy.sparse._sputils import matrix | |
from scipy._lib._util import ComplexWarning | |
parametrize_rgi_interp_methods = pytest.mark.parametrize( | |
"method", RegularGridInterpolator._ALL_METHODS | |
) | |
class TestRegularGridInterpolator: | |
def _get_sample_4d(self): | |
# create a 4-D grid of 3 points in each dimension | |
points = [(0., .5, 1.)] * 4 | |
values = np.asarray([0., .5, 1.]) | |
values0 = values[:, np.newaxis, np.newaxis, np.newaxis] | |
values1 = values[np.newaxis, :, np.newaxis, np.newaxis] | |
values2 = values[np.newaxis, np.newaxis, :, np.newaxis] | |
values3 = values[np.newaxis, np.newaxis, np.newaxis, :] | |
values = (values0 + values1 * 10 + values2 * 100 + values3 * 1000) | |
return points, values | |
def _get_sample_4d_2(self): | |
# create another 4-D grid of 3 points in each dimension | |
points = [(0., .5, 1.)] * 2 + [(0., 5., 10.)] * 2 | |
values = np.asarray([0., .5, 1.]) | |
values0 = values[:, np.newaxis, np.newaxis, np.newaxis] | |
values1 = values[np.newaxis, :, np.newaxis, np.newaxis] | |
values2 = values[np.newaxis, np.newaxis, :, np.newaxis] | |
values3 = values[np.newaxis, np.newaxis, np.newaxis, :] | |
values = (values0 + values1 * 10 + values2 * 100 + values3 * 1000) | |
return points, values | |
def _get_sample_4d_3(self): | |
# create another 4-D grid of 7 points in each dimension | |
points = [(0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0)] * 4 | |
values = np.asarray([0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]) | |
values0 = values[:, np.newaxis, np.newaxis, np.newaxis] | |
values1 = values[np.newaxis, :, np.newaxis, np.newaxis] | |
values2 = values[np.newaxis, np.newaxis, :, np.newaxis] | |
values3 = values[np.newaxis, np.newaxis, np.newaxis, :] | |
values = (values0 + values1 * 10 + values2 * 100 + values3 * 1000) | |
return points, values | |
def _get_sample_4d_4(self): | |
# create another 4-D grid of 2 points in each dimension | |
points = [(0.0, 1.0)] * 4 | |
values = np.asarray([0.0, 1.0]) | |
values0 = values[:, np.newaxis, np.newaxis, np.newaxis] | |
values1 = values[np.newaxis, :, np.newaxis, np.newaxis] | |
values2 = values[np.newaxis, np.newaxis, :, np.newaxis] | |
values3 = values[np.newaxis, np.newaxis, np.newaxis, :] | |
values = (values0 + values1 * 10 + values2 * 100 + values3 * 1000) | |
return points, values | |
def test_list_input(self, method): | |
points, values = self._get_sample_4d_3() | |
sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8], | |
[0.5, 0.5, .5, .5]]) | |
interp = RegularGridInterpolator(points, | |
values.tolist(), | |
method=method) | |
v1 = interp(sample.tolist()) | |
interp = RegularGridInterpolator(points, | |
values, | |
method=method) | |
v2 = interp(sample) | |
assert_allclose(v1, v2) | |
def test_spline_dim_error(self, method): | |
points, values = self._get_sample_4d_4() | |
match = "points in dimension" | |
# Check error raise when creating interpolator | |
with pytest.raises(ValueError, match=match): | |
RegularGridInterpolator(points, values, method=method) | |
# Check error raise when creating interpolator | |
interp = RegularGridInterpolator(points, values) | |
sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8], | |
[0.5, 0.5, .5, .5]]) | |
with pytest.raises(ValueError, match=match): | |
interp(sample, method=method) | |
def test_linear_and_slinear_close(self, points_values, sample): | |
points, values = points_values(self) | |
interp = RegularGridInterpolator(points, values, method="linear") | |
v1 = interp(sample) | |
interp = RegularGridInterpolator(points, values, method="slinear") | |
v2 = interp(sample) | |
assert_allclose(v1, v2) | |
def test_derivatives(self): | |
points, values = self._get_sample_4d() | |
sample = np.array([[0.1 , 0.1 , 1. , 0.9 ], | |
[0.2 , 0.1 , 0.45, 0.8 ], | |
[0.5 , 0.5 , 0.5 , 0.5 ]]) | |
interp = RegularGridInterpolator(points, values, method="slinear") | |
with assert_raises(ValueError): | |
# wrong number of derivatives (need 4) | |
interp(sample, nu=1) | |
assert_allclose(interp(sample, nu=(1, 0, 0, 0)), | |
[1, 1, 1], atol=1e-15) | |
assert_allclose(interp(sample, nu=(0, 1, 0, 0)), | |
[10, 10, 10], atol=1e-15) | |
# 2nd derivatives of a linear function are zero | |
assert_allclose(interp(sample, nu=(0, 1, 1, 0)), | |
[0, 0, 0], atol=1e-12) | |
def test_complex(self, method): | |
if method == "pchip": | |
pytest.skip("pchip does not make sense for complex data") | |
points, values = self._get_sample_4d_3() | |
values = values - 2j*values | |
sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8], | |
[0.5, 0.5, .5, .5]]) | |
interp = RegularGridInterpolator(points, values, method=method) | |
rinterp = RegularGridInterpolator(points, values.real, method=method) | |
iinterp = RegularGridInterpolator(points, values.imag, method=method) | |
v1 = interp(sample) | |
v2 = rinterp(sample) + 1j*iinterp(sample) | |
assert_allclose(v1, v2) | |
def test_cubic_vs_pchip(self): | |
x, y = [1, 2, 3, 4], [1, 2, 3, 4] | |
xg, yg = np.meshgrid(x, y, indexing='ij') | |
values = (lambda x, y: x**4 * y**4)(xg, yg) | |
cubic = RegularGridInterpolator((x, y), values, method='cubic') | |
pchip = RegularGridInterpolator((x, y), values, method='pchip') | |
vals_cubic = cubic([1.5, 2]) | |
vals_pchip = pchip([1.5, 2]) | |
assert not np.allclose(vals_cubic, vals_pchip, atol=1e-14, rtol=0) | |
def test_linear_xi1d(self): | |
points, values = self._get_sample_4d_2() | |
interp = RegularGridInterpolator(points, values) | |
sample = np.asarray([0.1, 0.1, 10., 9.]) | |
wanted = 1001.1 | |
assert_array_almost_equal(interp(sample), wanted) | |
def test_linear_xi3d(self): | |
points, values = self._get_sample_4d() | |
interp = RegularGridInterpolator(points, values) | |
sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8], | |
[0.5, 0.5, .5, .5]]) | |
wanted = np.asarray([1001.1, 846.2, 555.5]) | |
assert_array_almost_equal(interp(sample), wanted) | |
def test_nearest(self, sample, wanted): | |
points, values = self._get_sample_4d() | |
interp = RegularGridInterpolator(points, values, method="nearest") | |
assert_array_almost_equal(interp(sample), wanted) | |
def test_linear_edges(self): | |
points, values = self._get_sample_4d() | |
interp = RegularGridInterpolator(points, values) | |
sample = np.asarray([[0., 0., 0., 0.], [1., 1., 1., 1.]]) | |
wanted = np.asarray([0., 1111.]) | |
assert_array_almost_equal(interp(sample), wanted) | |
def test_valid_create(self): | |
# create a 2-D grid of 3 points in each dimension | |
points = [(0., .5, 1.), (0., 1., .5)] | |
values = np.asarray([0., .5, 1.]) | |
values0 = values[:, np.newaxis] | |
values1 = values[np.newaxis, :] | |
values = (values0 + values1 * 10) | |
assert_raises(ValueError, RegularGridInterpolator, points, values) | |
points = [((0., .5, 1.), ), (0., .5, 1.)] | |
assert_raises(ValueError, RegularGridInterpolator, points, values) | |
points = [(0., .5, .75, 1.), (0., .5, 1.)] | |
assert_raises(ValueError, RegularGridInterpolator, points, values) | |
points = [(0., .5, 1.), (0., .5, 1.), (0., .5, 1.)] | |
assert_raises(ValueError, RegularGridInterpolator, points, values) | |
points = [(0., .5, 1.), (0., .5, 1.)] | |
assert_raises(ValueError, RegularGridInterpolator, points, values, | |
method="undefmethod") | |
def test_valid_call(self): | |
points, values = self._get_sample_4d() | |
interp = RegularGridInterpolator(points, values) | |
sample = np.asarray([[0., 0., 0., 0.], [1., 1., 1., 1.]]) | |
assert_raises(ValueError, interp, sample, "undefmethod") | |
sample = np.asarray([[0., 0., 0.], [1., 1., 1.]]) | |
assert_raises(ValueError, interp, sample) | |
sample = np.asarray([[0., 0., 0., 0.], [1., 1., 1., 1.1]]) | |
assert_raises(ValueError, interp, sample) | |
def test_out_of_bounds_extrap(self): | |
points, values = self._get_sample_4d() | |
interp = RegularGridInterpolator(points, values, bounds_error=False, | |
fill_value=None) | |
sample = np.asarray([[-.1, -.1, -.1, -.1], [1.1, 1.1, 1.1, 1.1], | |
[21, 2.1, -1.1, -11], [2.1, 2.1, -1.1, -1.1]]) | |
wanted = np.asarray([0., 1111., 11., 11.]) | |
assert_array_almost_equal(interp(sample, method="nearest"), wanted) | |
wanted = np.asarray([-111.1, 1222.1, -11068., -1186.9]) | |
assert_array_almost_equal(interp(sample, method="linear"), wanted) | |
def test_out_of_bounds_extrap2(self): | |
points, values = self._get_sample_4d_2() | |
interp = RegularGridInterpolator(points, values, bounds_error=False, | |
fill_value=None) | |
sample = np.asarray([[-.1, -.1, -.1, -.1], [1.1, 1.1, 1.1, 1.1], | |
[21, 2.1, -1.1, -11], [2.1, 2.1, -1.1, -1.1]]) | |
wanted = np.asarray([0., 11., 11., 11.]) | |
assert_array_almost_equal(interp(sample, method="nearest"), wanted) | |
wanted = np.asarray([-12.1, 133.1, -1069., -97.9]) | |
assert_array_almost_equal(interp(sample, method="linear"), wanted) | |
def test_out_of_bounds_fill(self): | |
points, values = self._get_sample_4d() | |
interp = RegularGridInterpolator(points, values, bounds_error=False, | |
fill_value=np.nan) | |
sample = np.asarray([[-.1, -.1, -.1, -.1], [1.1, 1.1, 1.1, 1.1], | |
[2.1, 2.1, -1.1, -1.1]]) | |
wanted = np.asarray([np.nan, np.nan, np.nan]) | |
assert_array_almost_equal(interp(sample, method="nearest"), wanted) | |
assert_array_almost_equal(interp(sample, method="linear"), wanted) | |
sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8], | |
[0.5, 0.5, .5, .5]]) | |
wanted = np.asarray([1001.1, 846.2, 555.5]) | |
assert_array_almost_equal(interp(sample), wanted) | |
def test_nearest_compare_qhull(self): | |
points, values = self._get_sample_4d() | |
interp = RegularGridInterpolator(points, values, method="nearest") | |
points_qhull = itertools.product(*points) | |
points_qhull = [p for p in points_qhull] | |
points_qhull = np.asarray(points_qhull) | |
values_qhull = values.reshape(-1) | |
interp_qhull = NearestNDInterpolator(points_qhull, values_qhull) | |
sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8], | |
[0.5, 0.5, .5, .5]]) | |
assert_array_almost_equal(interp(sample), interp_qhull(sample)) | |
def test_linear_compare_qhull(self): | |
points, values = self._get_sample_4d() | |
interp = RegularGridInterpolator(points, values) | |
points_qhull = itertools.product(*points) | |
points_qhull = [p for p in points_qhull] | |
points_qhull = np.asarray(points_qhull) | |
values_qhull = values.reshape(-1) | |
interp_qhull = LinearNDInterpolator(points_qhull, values_qhull) | |
sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8], | |
[0.5, 0.5, .5, .5]]) | |
assert_array_almost_equal(interp(sample), interp_qhull(sample)) | |
def test_duck_typed_values(self, method): | |
x = np.linspace(0, 2, 5) | |
y = np.linspace(0, 1, 7) | |
values = MyValue((5, 7)) | |
interp = RegularGridInterpolator((x, y), values, method=method) | |
v1 = interp([0.4, 0.7]) | |
interp = RegularGridInterpolator((x, y), values._v, method=method) | |
v2 = interp([0.4, 0.7]) | |
assert_allclose(v1, v2) | |
def test_invalid_fill_value(self): | |
np.random.seed(1234) | |
x = np.linspace(0, 2, 5) | |
y = np.linspace(0, 1, 7) | |
values = np.random.rand(5, 7) | |
# integers can be cast to floats | |
RegularGridInterpolator((x, y), values, fill_value=1) | |
# complex values cannot | |
assert_raises(ValueError, RegularGridInterpolator, | |
(x, y), values, fill_value=1+2j) | |
def test_fillvalue_type(self): | |
# from #3703; test that interpolator object construction succeeds | |
values = np.ones((10, 20, 30), dtype='>f4') | |
points = [np.arange(n) for n in values.shape] | |
# xi = [(1, 1, 1)] | |
RegularGridInterpolator(points, values) | |
RegularGridInterpolator(points, values, fill_value=0.) | |
def test_length_one_axis(self): | |
# gh-5890, gh-9524 : length-1 axis is legal for method='linear'. | |
# Along the axis it's linear interpolation; away from the length-1 | |
# axis, it's an extrapolation, so fill_value should be used. | |
def f(x, y): | |
return x + y | |
x = np.linspace(1, 1, 1) | |
y = np.linspace(1, 10, 10) | |
data = f(*np.meshgrid(x, y, indexing="ij", sparse=True)) | |
interp = RegularGridInterpolator((x, y), data, method="linear", | |
bounds_error=False, fill_value=101) | |
# check values at the grid | |
assert_allclose(interp(np.array([[1, 1], [1, 5], [1, 10]])), | |
[2, 6, 11], | |
atol=1e-14) | |
# check off-grid interpolation is indeed linear | |
assert_allclose(interp(np.array([[1, 1.4], [1, 5.3], [1, 10]])), | |
[2.4, 6.3, 11], | |
atol=1e-14) | |
# check exrapolation w/ fill_value | |
assert_allclose(interp(np.array([1.1, 2.4])), | |
interp.fill_value, | |
atol=1e-14) | |
# check extrapolation: linear along the `y` axis, const along `x` | |
interp.fill_value = None | |
assert_allclose(interp([[1, 0.3], [1, 11.5]]), | |
[1.3, 12.5], atol=1e-15) | |
assert_allclose(interp([[1.5, 0.3], [1.9, 11.5]]), | |
[1.3, 12.5], atol=1e-15) | |
# extrapolation with method='nearest' | |
interp = RegularGridInterpolator((x, y), data, method="nearest", | |
bounds_error=False, fill_value=None) | |
assert_allclose(interp([[1.5, 1.8], [-4, 5.1]]), | |
[3, 6], | |
atol=1e-15) | |
def test_length_one_axis2(self, fill_value, method): | |
options = {"fill_value": fill_value, "bounds_error": False, | |
"method": method} | |
x = np.linspace(0, 2*np.pi, 20) | |
z = np.sin(x) | |
fa = RegularGridInterpolator((x,), z[:], **options) | |
fb = RegularGridInterpolator((x, [0]), z[:, None], **options) | |
x1a = np.linspace(-1, 2*np.pi+1, 100) | |
za = fa(x1a) | |
# evaluated at provided y-value, fb should behave exactly as fa | |
y1b = np.zeros(100) | |
zb = fb(np.vstack([x1a, y1b]).T) | |
assert_allclose(zb, za) | |
# evaluated at a different y-value, fb should return fill value | |
y1b = np.ones(100) | |
zb = fb(np.vstack([x1a, y1b]).T) | |
if fill_value is None: | |
assert_allclose(zb, za) | |
else: | |
assert_allclose(zb, fill_value) | |
def test_nan_x_1d(self, method): | |
# gh-6624 : if x is nan, result should be nan | |
f = RegularGridInterpolator(([1, 2, 3],), [10, 20, 30], fill_value=1, | |
bounds_error=False, method=method) | |
assert np.isnan(f([np.nan])) | |
# test arbitrary nan pattern | |
rng = np.random.default_rng(8143215468) | |
x = rng.random(size=100)*4 | |
i = rng.random(size=100) > 0.5 | |
x[i] = np.nan | |
with np.errstate(invalid='ignore'): | |
# out-of-bounds comparisons, `out_of_bounds += x < grid[0]`, | |
# generate numpy warnings if `x` contains nans. | |
# These warnings should propagate to user (since `x` is user | |
# input) and we simply filter them out. | |
res = f(x) | |
assert_equal(res[i], np.nan) | |
assert_equal(res[~i], f(x[~i])) | |
# also test the length-one axis f(nan) | |
x = [1, 2, 3] | |
y = [1, ] | |
data = np.ones((3, 1)) | |
f = RegularGridInterpolator((x, y), data, fill_value=1, | |
bounds_error=False, method=method) | |
assert np.isnan(f([np.nan, 1])) | |
assert np.isnan(f([1, np.nan])) | |
def test_nan_x_2d(self, method): | |
x, y = np.array([0, 1, 2]), np.array([1, 3, 7]) | |
def f(x, y): | |
return x**2 + y**2 | |
xg, yg = np.meshgrid(x, y, indexing='ij', sparse=True) | |
data = f(xg, yg) | |
interp = RegularGridInterpolator((x, y), data, | |
method=method, bounds_error=False) | |
with np.errstate(invalid='ignore'): | |
res = interp([[1.5, np.nan], [1, 1]]) | |
assert_allclose(res[1], 2, atol=1e-14) | |
assert np.isnan(res[0]) | |
# test arbitrary nan pattern | |
rng = np.random.default_rng(8143215468) | |
x = rng.random(size=100)*4-1 | |
y = rng.random(size=100)*8 | |
i1 = rng.random(size=100) > 0.5 | |
i2 = rng.random(size=100) > 0.5 | |
i = i1 | i2 | |
x[i1] = np.nan | |
y[i2] = np.nan | |
z = np.array([x, y]).T | |
with np.errstate(invalid='ignore'): | |
# out-of-bounds comparisons, `out_of_bounds += x < grid[0]`, | |
# generate numpy warnings if `x` contains nans. | |
# These warnings should propagate to user (since `x` is user | |
# input) and we simply filter them out. | |
res = interp(z) | |
assert_equal(res[i], np.nan) | |
assert_equal(res[~i], interp(z[~i])) | |
def test_descending_points_nd(self, method, ndims, func): | |
if ndims == 5 and method in {"cubic", "quintic"}: | |
pytest.skip("too slow; OOM (quintic); or nearly so (cubic)") | |
rng = np.random.default_rng(42) | |
sample_low = 1 | |
sample_high = 5 | |
test_points = rng.uniform(sample_low, sample_high, size=(2, ndims)) | |
ascending_points = [np.linspace(sample_low, sample_high, 12) | |
for _ in range(ndims)] | |
ascending_values = func(*np.meshgrid(*ascending_points, | |
indexing="ij", | |
sparse=True)) | |
ascending_interp = RegularGridInterpolator(ascending_points, | |
ascending_values, | |
method=method) | |
ascending_result = ascending_interp(test_points) | |
descending_points = [xi[::-1] for xi in ascending_points] | |
descending_values = func(*np.meshgrid(*descending_points, | |
indexing="ij", | |
sparse=True)) | |
descending_interp = RegularGridInterpolator(descending_points, | |
descending_values, | |
method=method) | |
descending_result = descending_interp(test_points) | |
assert_array_equal(ascending_result, descending_result) | |
def test_invalid_points_order(self): | |
def val_func_2d(x, y): | |
return 2 * x ** 3 + 3 * y ** 2 | |
x = np.array([.5, 2., 0., 4., 5.5]) # not ascending or descending | |
y = np.array([.5, 2., 3., 4., 5.5]) | |
points = (x, y) | |
values = val_func_2d(*np.meshgrid(*points, indexing='ij', | |
sparse=True)) | |
match = "must be strictly ascending or descending" | |
with pytest.raises(ValueError, match=match): | |
RegularGridInterpolator(points, values) | |
def test_fill_value(self, method): | |
interp = RegularGridInterpolator([np.arange(6)], np.ones(6), | |
method=method, bounds_error=False) | |
assert np.isnan(interp([10])) | |
def test_nonscalar_values(self, method): | |
if method == "quintic": | |
pytest.skip("Way too slow.") | |
# Verify that non-scalar valued values also works | |
points = [(0.0, 0.5, 1.0, 1.5, 2.0, 2.5)] * 2 + [ | |
(0.0, 5.0, 10.0, 15.0, 20, 25.0) | |
] * 2 | |
rng = np.random.default_rng(1234) | |
values = rng.random((6, 6, 6, 6, 8)) | |
sample = rng.random((7, 3, 4)) | |
interp = RegularGridInterpolator(points, values, method=method, | |
bounds_error=False) | |
v = interp(sample) | |
assert_equal(v.shape, (7, 3, 8), err_msg=method) | |
vs = [] | |
for j in range(8): | |
interp = RegularGridInterpolator(points, values[..., j], | |
method=method, | |
bounds_error=False) | |
vs.append(interp(sample)) | |
v2 = np.array(vs).transpose(1, 2, 0) | |
assert_allclose(v, v2, atol=1e-14, err_msg=method) | |
def test_nonscalar_values_2(self, method, flip_points): | |
if method in {"cubic", "quintic"}: | |
pytest.skip("Way too slow.") | |
# Verify that non-scalar valued values also work : use different | |
# lengths of axes to simplify tracing the internals | |
points = [(0.0, 0.5, 1.0, 1.5, 2.0, 2.5), | |
(0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0), | |
(0.0, 5.0, 10.0, 15.0, 20, 25.0, 35.0, 36.0), | |
(0.0, 5.0, 10.0, 15.0, 20, 25.0, 35.0, 36.0, 47)] | |
# verify, that strictly decreasing dimensions work | |
if flip_points: | |
points = [tuple(reversed(p)) for p in points] | |
rng = np.random.default_rng(1234) | |
trailing_points = (3, 2) | |
# NB: values has a `num_trailing_dims` trailing dimension | |
values = rng.random((6, 7, 8, 9, *trailing_points)) | |
sample = rng.random(4) # a single sample point ! | |
interp = RegularGridInterpolator(points, values, method=method, | |
bounds_error=False) | |
v = interp(sample) | |
# v has a single sample point *per entry in the trailing dimensions* | |
assert v.shape == (1, *trailing_points) | |
# check the values, too : manually loop over the trailing dimensions | |
vs = np.empty(values.shape[-2:]) | |
for i in range(values.shape[-2]): | |
for j in range(values.shape[-1]): | |
interp = RegularGridInterpolator(points, values[..., i, j], | |
method=method, | |
bounds_error=False) | |
vs[i, j] = interp(sample).item() | |
v2 = np.expand_dims(vs, axis=0) | |
assert_allclose(v, v2, atol=1e-14, err_msg=method) | |
def test_nonscalar_values_linear_2D(self): | |
# Verify that non-scalar values work in the 2D fast path | |
method = 'linear' | |
points = [(0.0, 0.5, 1.0, 1.5, 2.0, 2.5), | |
(0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0), ] | |
rng = np.random.default_rng(1234) | |
trailing_points = (3, 4) | |
# NB: values has a `num_trailing_dims` trailing dimension | |
values = rng.random((6, 7, *trailing_points)) | |
sample = rng.random(2) # a single sample point ! | |
interp = RegularGridInterpolator(points, values, method=method, | |
bounds_error=False) | |
v = interp(sample) | |
# v has a single sample point *per entry in the trailing dimensions* | |
assert v.shape == (1, *trailing_points) | |
# check the values, too : manually loop over the trailing dimensions | |
vs = np.empty(values.shape[-2:]) | |
for i in range(values.shape[-2]): | |
for j in range(values.shape[-1]): | |
interp = RegularGridInterpolator(points, values[..., i, j], | |
method=method, | |
bounds_error=False) | |
vs[i, j] = interp(sample).item() | |
v2 = np.expand_dims(vs, axis=0) | |
assert_allclose(v, v2, atol=1e-14, err_msg=method) | |
def test_float32_values(self, dtype, xi_dtype): | |
# regression test for gh-17718: values.dtype=float32 fails | |
def f(x, y): | |
return 2 * x**3 + 3 * y**2 | |
x = np.linspace(1, 4, 11) | |
y = np.linspace(4, 7, 22) | |
xg, yg = np.meshgrid(x, y, indexing='ij', sparse=True) | |
data = f(xg, yg) | |
data = data.astype(dtype) | |
interp = RegularGridInterpolator((x, y), data) | |
pts = np.array([[2.1, 6.2], | |
[3.3, 5.2]], dtype=xi_dtype) | |
# the values here are just what the call returns; the test checks that | |
# that the call succeeds at all, instead of failing with cython not | |
# having a float32 kernel | |
assert_allclose(interp(pts), [134.10469388, 153.40069388], atol=1e-7) | |
def test_bad_solver(self): | |
x = np.linspace(0, 3, 7) | |
y = np.linspace(0, 3, 7) | |
xg, yg = np.meshgrid(x, y, indexing='ij', sparse=True) | |
data = xg + yg | |
# default method 'linear' does not accept 'solver' | |
with assert_raises(ValueError): | |
RegularGridInterpolator((x, y), data, solver=lambda x: x) | |
with assert_raises(TypeError): | |
# wrong solver interface | |
RegularGridInterpolator( | |
(x, y), data, method='slinear', solver=lambda x: x | |
) | |
with assert_raises(TypeError): | |
# unknown argument | |
RegularGridInterpolator( | |
(x, y), data, method='slinear', solver=lambda x: x, woof='woof' | |
) | |
with assert_raises(TypeError): | |
# unknown argument | |
RegularGridInterpolator( | |
(x, y), data, method='slinear', solver_args={'woof': 42} | |
) | |
class MyValue: | |
""" | |
Minimal indexable object | |
""" | |
def __init__(self, shape): | |
self.ndim = 2 | |
self.shape = shape | |
self._v = np.arange(np.prod(shape)).reshape(shape) | |
def __getitem__(self, idx): | |
return self._v[idx] | |
def __array_interface__(self): | |
return None | |
def __array__(self, dtype=None, copy=None): | |
raise RuntimeError("No array representation") | |
class TestInterpN: | |
def _sample_2d_data(self): | |
x = np.array([.5, 2., 3., 4., 5.5, 6.]) | |
y = np.array([.5, 2., 3., 4., 5.5, 6.]) | |
z = np.array( | |
[ | |
[1, 2, 1, 2, 1, 1], | |
[1, 2, 1, 2, 1, 1], | |
[1, 2, 3, 2, 1, 1], | |
[1, 2, 2, 2, 1, 1], | |
[1, 2, 1, 2, 1, 1], | |
[1, 2, 2, 2, 1, 1], | |
] | |
) | |
return x, y, z | |
def test_spline_2d(self): | |
x, y, z = self._sample_2d_data() | |
lut = RectBivariateSpline(x, y, z) | |
xi = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3], | |
[1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T | |
assert_array_almost_equal(interpn((x, y), z, xi, method="splinef2d"), | |
lut.ev(xi[:, 0], xi[:, 1])) | |
def test_list_input(self, method): | |
x, y, z = self._sample_2d_data() | |
xi = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3], | |
[1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T | |
v1 = interpn((x, y), z, xi, method=method) | |
v2 = interpn( | |
(x.tolist(), y.tolist()), z.tolist(), xi.tolist(), method=method | |
) | |
assert_allclose(v1, v2, err_msg=method) | |
def test_spline_2d_outofbounds(self): | |
x = np.array([.5, 2., 3., 4., 5.5]) | |
y = np.array([.5, 2., 3., 4., 5.5]) | |
z = np.array([[1, 2, 1, 2, 1], [1, 2, 1, 2, 1], [1, 2, 3, 2, 1], | |
[1, 2, 2, 2, 1], [1, 2, 1, 2, 1]]) | |
lut = RectBivariateSpline(x, y, z) | |
xi = np.array([[1, 2.3, 6.3, 0.5, 3.3, 1.2, 3], | |
[1, 3.3, 1.2, -4.0, 5.0, 1.0, 3]]).T | |
actual = interpn((x, y), z, xi, method="splinef2d", | |
bounds_error=False, fill_value=999.99) | |
expected = lut.ev(xi[:, 0], xi[:, 1]) | |
expected[2:4] = 999.99 | |
assert_array_almost_equal(actual, expected) | |
# no extrapolation for splinef2d | |
assert_raises(ValueError, interpn, (x, y), z, xi, method="splinef2d", | |
bounds_error=False, fill_value=None) | |
def _sample_4d_data(self): | |
points = [(0., .5, 1.)] * 2 + [(0., 5., 10.)] * 2 | |
values = np.asarray([0., .5, 1.]) | |
values0 = values[:, np.newaxis, np.newaxis, np.newaxis] | |
values1 = values[np.newaxis, :, np.newaxis, np.newaxis] | |
values2 = values[np.newaxis, np.newaxis, :, np.newaxis] | |
values3 = values[np.newaxis, np.newaxis, np.newaxis, :] | |
values = (values0 + values1 * 10 + values2 * 100 + values3 * 1000) | |
return points, values | |
def test_linear_4d(self): | |
# create a 4-D grid of 3 points in each dimension | |
points, values = self._sample_4d_data() | |
interp_rg = RegularGridInterpolator(points, values) | |
sample = np.asarray([[0.1, 0.1, 10., 9.]]) | |
wanted = interpn(points, values, sample, method="linear") | |
assert_array_almost_equal(interp_rg(sample), wanted) | |
def test_4d_linear_outofbounds(self): | |
# create a 4-D grid of 3 points in each dimension | |
points, values = self._sample_4d_data() | |
sample = np.asarray([[0.1, -0.1, 10.1, 9.]]) | |
wanted = 999.99 | |
actual = interpn(points, values, sample, method="linear", | |
bounds_error=False, fill_value=999.99) | |
assert_array_almost_equal(actual, wanted) | |
def test_nearest_4d(self): | |
# create a 4-D grid of 3 points in each dimension | |
points, values = self._sample_4d_data() | |
interp_rg = RegularGridInterpolator(points, values, method="nearest") | |
sample = np.asarray([[0.1, 0.1, 10., 9.]]) | |
wanted = interpn(points, values, sample, method="nearest") | |
assert_array_almost_equal(interp_rg(sample), wanted) | |
def test_4d_nearest_outofbounds(self): | |
# create a 4-D grid of 3 points in each dimension | |
points, values = self._sample_4d_data() | |
sample = np.asarray([[0.1, -0.1, 10.1, 9.]]) | |
wanted = 999.99 | |
actual = interpn(points, values, sample, method="nearest", | |
bounds_error=False, fill_value=999.99) | |
assert_array_almost_equal(actual, wanted) | |
def test_xi_1d(self): | |
# verify that 1-D xi works as expected | |
points, values = self._sample_4d_data() | |
sample = np.asarray([0.1, 0.1, 10., 9.]) | |
v1 = interpn(points, values, sample, bounds_error=False) | |
v2 = interpn(points, values, sample[None,:], bounds_error=False) | |
assert_allclose(v1, v2) | |
def test_xi_nd(self): | |
# verify that higher-d xi works as expected | |
points, values = self._sample_4d_data() | |
np.random.seed(1234) | |
sample = np.random.rand(2, 3, 4) | |
v1 = interpn(points, values, sample, method='nearest', | |
bounds_error=False) | |
assert_equal(v1.shape, (2, 3)) | |
v2 = interpn(points, values, sample.reshape(-1, 4), | |
method='nearest', bounds_error=False) | |
assert_allclose(v1, v2.reshape(v1.shape)) | |
def test_xi_broadcast(self, method): | |
# verify that the interpolators broadcast xi | |
x, y, values = self._sample_2d_data() | |
points = (x, y) | |
xi = np.linspace(0, 1, 2) | |
yi = np.linspace(0, 3, 3) | |
sample = (xi[:, None], yi[None, :]) | |
v1 = interpn(points, values, sample, method=method, bounds_error=False) | |
assert_equal(v1.shape, (2, 3)) | |
xx, yy = np.meshgrid(xi, yi) | |
sample = np.c_[xx.T.ravel(), yy.T.ravel()] | |
v2 = interpn(points, values, sample, | |
method=method, bounds_error=False) | |
assert_allclose(v1, v2.reshape(v1.shape)) | |
def test_nonscalar_values(self, method): | |
if method == "quintic": | |
pytest.skip("Way too slow.") | |
# Verify that non-scalar valued values also works | |
points = [(0.0, 0.5, 1.0, 1.5, 2.0, 2.5)] * 2 + [ | |
(0.0, 5.0, 10.0, 15.0, 20, 25.0) | |
] * 2 | |
rng = np.random.default_rng(1234) | |
values = rng.random((6, 6, 6, 6, 8)) | |
sample = rng.random((7, 3, 4)) | |
v = interpn(points, values, sample, method=method, | |
bounds_error=False) | |
assert_equal(v.shape, (7, 3, 8), err_msg=method) | |
vs = [interpn(points, values[..., j], sample, method=method, | |
bounds_error=False) for j in range(8)] | |
v2 = np.array(vs).transpose(1, 2, 0) | |
assert_allclose(v, v2, atol=1e-14, err_msg=method) | |
def test_nonscalar_values_2(self, method): | |
if method in {"cubic", "quintic"}: | |
pytest.skip("Way too slow.") | |
# Verify that non-scalar valued values also work : use different | |
# lengths of axes to simplify tracing the internals | |
points = [(0.0, 0.5, 1.0, 1.5, 2.0, 2.5), | |
(0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0), | |
(0.0, 5.0, 10.0, 15.0, 20, 25.0, 35.0, 36.0), | |
(0.0, 5.0, 10.0, 15.0, 20, 25.0, 35.0, 36.0, 47)] | |
rng = np.random.default_rng(1234) | |
trailing_points = (3, 2) | |
# NB: values has a `num_trailing_dims` trailing dimension | |
values = rng.random((6, 7, 8, 9, *trailing_points)) | |
sample = rng.random(4) # a single sample point ! | |
v = interpn(points, values, sample, method=method, bounds_error=False) | |
# v has a single sample point *per entry in the trailing dimensions* | |
assert v.shape == (1, *trailing_points) | |
# check the values, too : manually loop over the trailing dimensions | |
vs = [[ | |
interpn(points, values[..., i, j], sample, method=method, | |
bounds_error=False) for i in range(values.shape[-2]) | |
] for j in range(values.shape[-1])] | |
assert_allclose(v, np.asarray(vs).T, atol=1e-14, err_msg=method) | |
def test_non_scalar_values_splinef2d(self): | |
# Vector-valued splines supported with fitpack | |
points, values = self._sample_4d_data() | |
np.random.seed(1234) | |
values = np.random.rand(3, 3, 3, 3, 6) | |
sample = np.random.rand(7, 11, 4) | |
assert_raises(ValueError, interpn, points, values, sample, | |
method='splinef2d') | |
def test_complex(self, method): | |
if method == "pchip": | |
pytest.skip("pchip does not make sense for complex data") | |
x, y, values = self._sample_2d_data() | |
points = (x, y) | |
values = values - 2j*values | |
sample = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3], | |
[1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T | |
v1 = interpn(points, values, sample, method=method) | |
v2r = interpn(points, values.real, sample, method=method) | |
v2i = interpn(points, values.imag, sample, method=method) | |
v2 = v2r + 1j*v2i | |
assert_allclose(v1, v2) | |
def test_complex_pchip(self): | |
# Complex-valued data deprecated for pchip | |
x, y, values = self._sample_2d_data() | |
points = (x, y) | |
values = values - 2j*values | |
sample = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3], | |
[1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T | |
with pytest.deprecated_call(match='complex'): | |
interpn(points, values, sample, method='pchip') | |
def test_complex_spline2fd(self): | |
# Complex-valued data not supported by spline2fd | |
x, y, values = self._sample_2d_data() | |
points = (x, y) | |
values = values - 2j*values | |
sample = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3], | |
[1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T | |
with assert_warns(ComplexWarning): | |
interpn(points, values, sample, method='splinef2d') | |
def test_duck_typed_values(self, method): | |
x = np.linspace(0, 2, 5) | |
y = np.linspace(0, 1, 7) | |
values = MyValue((5, 7)) | |
v1 = interpn((x, y), values, [0.4, 0.7], method=method) | |
v2 = interpn((x, y), values._v, [0.4, 0.7], method=method) | |
assert_allclose(v1, v2) | |
def test_matrix_input(self, method): | |
x = np.linspace(0, 2, 6) | |
y = np.linspace(0, 1, 7) | |
values = matrix(np.random.rand(6, 7)) | |
sample = np.random.rand(3, 7, 2) | |
v1 = interpn((x, y), values, sample, method=method) | |
v2 = interpn((x, y), np.asarray(values), sample, method=method) | |
assert_allclose(v1, v2) | |
def test_length_one_axis(self): | |
# gh-5890, gh-9524 : length-1 axis is legal for method='linear'. | |
# Along the axis it's linear interpolation; away from the length-1 | |
# axis, it's an extrapolation, so fill_value should be used. | |
values = np.array([[0.1, 1, 10]]) | |
xi = np.array([[1, 2.2], [1, 3.2], [1, 3.8]]) | |
res = interpn(([1], [2, 3, 4]), values, xi) | |
wanted = [0.9*0.2 + 0.1, # on [2, 3) it's 0.9*(x-2) + 0.1 | |
9*0.2 + 1, # on [3, 4] it's 9*(x-3) + 1 | |
9*0.8 + 1] | |
assert_allclose(res, wanted, atol=1e-15) | |
# check extrapolation | |
xi = np.array([[1.1, 2.2], [1.5, 3.2], [-2.3, 3.8]]) | |
res = interpn(([1], [2, 3, 4]), values, xi, | |
bounds_error=False, fill_value=None) | |
assert_allclose(res, wanted, atol=1e-15) | |
def test_descending_points(self): | |
def value_func_4d(x, y, z, a): | |
return 2 * x ** 3 + 3 * y ** 2 - z - a | |
x1 = np.array([0, 1, 2, 3]) | |
x2 = np.array([0, 10, 20, 30]) | |
x3 = np.array([0, 10, 20, 30]) | |
x4 = np.array([0, .1, .2, .30]) | |
points = (x1, x2, x3, x4) | |
values = value_func_4d( | |
*np.meshgrid(*points, indexing='ij', sparse=True)) | |
pts = (0.1, 0.3, np.transpose(np.linspace(0, 30, 4)), | |
np.linspace(0, 0.3, 4)) | |
correct_result = interpn(points, values, pts) | |
x1_descend = x1[::-1] | |
x2_descend = x2[::-1] | |
x3_descend = x3[::-1] | |
x4_descend = x4[::-1] | |
points_shuffled = (x1_descend, x2_descend, x3_descend, x4_descend) | |
values_shuffled = value_func_4d( | |
*np.meshgrid(*points_shuffled, indexing='ij', sparse=True)) | |
test_result = interpn(points_shuffled, values_shuffled, pts) | |
assert_array_equal(correct_result, test_result) | |
def test_invalid_points_order(self): | |
x = np.array([.5, 2., 0., 4., 5.5]) # not ascending or descending | |
y = np.array([.5, 2., 3., 4., 5.5]) | |
z = np.array([[1, 2, 1, 2, 1], [1, 2, 1, 2, 1], [1, 2, 3, 2, 1], | |
[1, 2, 2, 2, 1], [1, 2, 1, 2, 1]]) | |
xi = np.array([[1, 2.3, 6.3, 0.5, 3.3, 1.2, 3], | |
[1, 3.3, 1.2, -4.0, 5.0, 1.0, 3]]).T | |
match = "must be strictly ascending or descending" | |
with pytest.raises(ValueError, match=match): | |
interpn((x, y), z, xi) | |
def test_invalid_xi_dimensions(self): | |
# https://github.com/scipy/scipy/issues/16519 | |
points = [(0, 1)] | |
values = [0, 1] | |
xi = np.ones((1, 1, 3)) | |
msg = ("The requested sample points xi have dimension 3, but this " | |
"RegularGridInterpolator has dimension 1") | |
with assert_raises(ValueError, match=msg): | |
interpn(points, values, xi) | |
def test_readonly_grid(self): | |
# https://github.com/scipy/scipy/issues/17716 | |
x = np.linspace(0, 4, 5) | |
y = np.linspace(0, 5, 6) | |
z = np.linspace(0, 6, 7) | |
points = (x, y, z) | |
values = np.ones((5, 6, 7)) | |
point = np.array([2.21, 3.12, 1.15]) | |
for d in points: | |
d.flags.writeable = False | |
values.flags.writeable = False | |
point.flags.writeable = False | |
interpn(points, values, point) | |
RegularGridInterpolator(points, values)(point) | |
def test_2d_readonly_grid(self): | |
# https://github.com/scipy/scipy/issues/17716 | |
# test special 2d case | |
x = np.linspace(0, 4, 5) | |
y = np.linspace(0, 5, 6) | |
points = (x, y) | |
values = np.ones((5, 6)) | |
point = np.array([2.21, 3.12]) | |
for d in points: | |
d.flags.writeable = False | |
values.flags.writeable = False | |
point.flags.writeable = False | |
interpn(points, values, point) | |
RegularGridInterpolator(points, values)(point) | |
def test_non_c_contiguous_grid(self): | |
# https://github.com/scipy/scipy/issues/17716 | |
x = np.linspace(0, 4, 5) | |
x = np.vstack((x, np.empty_like(x))).T.copy()[:, 0] | |
assert not x.flags.c_contiguous | |
y = np.linspace(0, 5, 6) | |
z = np.linspace(0, 6, 7) | |
points = (x, y, z) | |
values = np.ones((5, 6, 7)) | |
point = np.array([2.21, 3.12, 1.15]) | |
interpn(points, values, point) | |
RegularGridInterpolator(points, values)(point) | |
def test_endianness(self, dtype): | |
# https://github.com/scipy/scipy/issues/17716 | |
# test special 2d case | |
x = np.linspace(0, 4, 5, dtype=dtype) | |
y = np.linspace(0, 5, 6, dtype=dtype) | |
points = (x, y) | |
values = np.ones((5, 6), dtype=dtype) | |
point = np.array([2.21, 3.12], dtype=dtype) | |
interpn(points, values, point) | |
RegularGridInterpolator(points, values)(point) | |