peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/ndimage
/_fourier.py
# Copyright (C) 2003-2005 Peter J. Verveer | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions | |
# are met: | |
# | |
# 1. Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# | |
# 2. Redistributions in binary form must reproduce the above | |
# copyright notice, this list of conditions and the following | |
# disclaimer in the documentation and/or other materials provided | |
# with the distribution. | |
# | |
# 3. The name of the author may not be used to endorse or promote | |
# products derived from this software without specific prior | |
# written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS | |
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | |
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE | |
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | |
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
import numpy | |
from scipy._lib._util import normalize_axis_index | |
from . import _ni_support | |
from . import _nd_image | |
__all__ = ['fourier_gaussian', 'fourier_uniform', 'fourier_ellipsoid', | |
'fourier_shift'] | |
def _get_output_fourier(output, input): | |
if output is None: | |
if input.dtype.type in [numpy.complex64, numpy.complex128, | |
numpy.float32]: | |
output = numpy.zeros(input.shape, dtype=input.dtype) | |
else: | |
output = numpy.zeros(input.shape, dtype=numpy.float64) | |
elif type(output) is type: | |
if output not in [numpy.complex64, numpy.complex128, | |
numpy.float32, numpy.float64]: | |
raise RuntimeError("output type not supported") | |
output = numpy.zeros(input.shape, dtype=output) | |
elif output.shape != input.shape: | |
raise RuntimeError("output shape not correct") | |
return output | |
def _get_output_fourier_complex(output, input): | |
if output is None: | |
if input.dtype.type in [numpy.complex64, numpy.complex128]: | |
output = numpy.zeros(input.shape, dtype=input.dtype) | |
else: | |
output = numpy.zeros(input.shape, dtype=numpy.complex128) | |
elif type(output) is type: | |
if output not in [numpy.complex64, numpy.complex128]: | |
raise RuntimeError("output type not supported") | |
output = numpy.zeros(input.shape, dtype=output) | |
elif output.shape != input.shape: | |
raise RuntimeError("output shape not correct") | |
return output | |
def fourier_gaussian(input, sigma, n=-1, axis=-1, output=None): | |
""" | |
Multidimensional Gaussian fourier filter. | |
The array is multiplied with the fourier transform of a Gaussian | |
kernel. | |
Parameters | |
---------- | |
input : array_like | |
The input array. | |
sigma : float or sequence | |
The sigma of the Gaussian kernel. If a float, `sigma` is the same for | |
all axes. If a sequence, `sigma` has to contain one value for each | |
axis. | |
n : int, optional | |
If `n` is negative (default), then the input is assumed to be the | |
result of a complex fft. | |
If `n` is larger than or equal to zero, the input is assumed to be the | |
result of a real fft, and `n` gives the length of the array before | |
transformation along the real transform direction. | |
axis : int, optional | |
The axis of the real transform. | |
output : ndarray, optional | |
If given, the result of filtering the input is placed in this array. | |
Returns | |
------- | |
fourier_gaussian : ndarray | |
The filtered input. | |
Examples | |
-------- | |
>>> from scipy import ndimage, datasets | |
>>> import numpy.fft | |
>>> import matplotlib.pyplot as plt | |
>>> fig, (ax1, ax2) = plt.subplots(1, 2) | |
>>> plt.gray() # show the filtered result in grayscale | |
>>> ascent = datasets.ascent() | |
>>> input_ = numpy.fft.fft2(ascent) | |
>>> result = ndimage.fourier_gaussian(input_, sigma=4) | |
>>> result = numpy.fft.ifft2(result) | |
>>> ax1.imshow(ascent) | |
>>> ax2.imshow(result.real) # the imaginary part is an artifact | |
>>> plt.show() | |
""" | |
input = numpy.asarray(input) | |
output = _get_output_fourier(output, input) | |
axis = normalize_axis_index(axis, input.ndim) | |
sigmas = _ni_support._normalize_sequence(sigma, input.ndim) | |
sigmas = numpy.asarray(sigmas, dtype=numpy.float64) | |
if not sigmas.flags.contiguous: | |
sigmas = sigmas.copy() | |
_nd_image.fourier_filter(input, sigmas, n, axis, output, 0) | |
return output | |
def fourier_uniform(input, size, n=-1, axis=-1, output=None): | |
""" | |
Multidimensional uniform fourier filter. | |
The array is multiplied with the Fourier transform of a box of given | |
size. | |
Parameters | |
---------- | |
input : array_like | |
The input array. | |
size : float or sequence | |
The size of the box used for filtering. | |
If a float, `size` is the same for all axes. If a sequence, `size` has | |
to contain one value for each axis. | |
n : int, optional | |
If `n` is negative (default), then the input is assumed to be the | |
result of a complex fft. | |
If `n` is larger than or equal to zero, the input is assumed to be the | |
result of a real fft, and `n` gives the length of the array before | |
transformation along the real transform direction. | |
axis : int, optional | |
The axis of the real transform. | |
output : ndarray, optional | |
If given, the result of filtering the input is placed in this array. | |
Returns | |
------- | |
fourier_uniform : ndarray | |
The filtered input. | |
Examples | |
-------- | |
>>> from scipy import ndimage, datasets | |
>>> import numpy.fft | |
>>> import matplotlib.pyplot as plt | |
>>> fig, (ax1, ax2) = plt.subplots(1, 2) | |
>>> plt.gray() # show the filtered result in grayscale | |
>>> ascent = datasets.ascent() | |
>>> input_ = numpy.fft.fft2(ascent) | |
>>> result = ndimage.fourier_uniform(input_, size=20) | |
>>> result = numpy.fft.ifft2(result) | |
>>> ax1.imshow(ascent) | |
>>> ax2.imshow(result.real) # the imaginary part is an artifact | |
>>> plt.show() | |
""" | |
input = numpy.asarray(input) | |
output = _get_output_fourier(output, input) | |
axis = normalize_axis_index(axis, input.ndim) | |
sizes = _ni_support._normalize_sequence(size, input.ndim) | |
sizes = numpy.asarray(sizes, dtype=numpy.float64) | |
if not sizes.flags.contiguous: | |
sizes = sizes.copy() | |
_nd_image.fourier_filter(input, sizes, n, axis, output, 1) | |
return output | |
def fourier_ellipsoid(input, size, n=-1, axis=-1, output=None): | |
""" | |
Multidimensional ellipsoid Fourier filter. | |
The array is multiplied with the fourier transform of an ellipsoid of | |
given sizes. | |
Parameters | |
---------- | |
input : array_like | |
The input array. | |
size : float or sequence | |
The size of the box used for filtering. | |
If a float, `size` is the same for all axes. If a sequence, `size` has | |
to contain one value for each axis. | |
n : int, optional | |
If `n` is negative (default), then the input is assumed to be the | |
result of a complex fft. | |
If `n` is larger than or equal to zero, the input is assumed to be the | |
result of a real fft, and `n` gives the length of the array before | |
transformation along the real transform direction. | |
axis : int, optional | |
The axis of the real transform. | |
output : ndarray, optional | |
If given, the result of filtering the input is placed in this array. | |
Returns | |
------- | |
fourier_ellipsoid : ndarray | |
The filtered input. | |
Notes | |
----- | |
This function is implemented for arrays of rank 1, 2, or 3. | |
Examples | |
-------- | |
>>> from scipy import ndimage, datasets | |
>>> import numpy.fft | |
>>> import matplotlib.pyplot as plt | |
>>> fig, (ax1, ax2) = plt.subplots(1, 2) | |
>>> plt.gray() # show the filtered result in grayscale | |
>>> ascent = datasets.ascent() | |
>>> input_ = numpy.fft.fft2(ascent) | |
>>> result = ndimage.fourier_ellipsoid(input_, size=20) | |
>>> result = numpy.fft.ifft2(result) | |
>>> ax1.imshow(ascent) | |
>>> ax2.imshow(result.real) # the imaginary part is an artifact | |
>>> plt.show() | |
""" | |
input = numpy.asarray(input) | |
if input.ndim > 3: | |
raise NotImplementedError("Only 1d, 2d and 3d inputs are supported") | |
output = _get_output_fourier(output, input) | |
if output.size == 0: | |
# The C code has a bug that can result in a segfault with arrays | |
# that have size 0 (gh-17270), so check here. | |
return output | |
axis = normalize_axis_index(axis, input.ndim) | |
sizes = _ni_support._normalize_sequence(size, input.ndim) | |
sizes = numpy.asarray(sizes, dtype=numpy.float64) | |
if not sizes.flags.contiguous: | |
sizes = sizes.copy() | |
_nd_image.fourier_filter(input, sizes, n, axis, output, 2) | |
return output | |
def fourier_shift(input, shift, n=-1, axis=-1, output=None): | |
""" | |
Multidimensional Fourier shift filter. | |
The array is multiplied with the Fourier transform of a shift operation. | |
Parameters | |
---------- | |
input : array_like | |
The input array. | |
shift : float or sequence | |
The size of the box used for filtering. | |
If a float, `shift` is the same for all axes. If a sequence, `shift` | |
has to contain one value for each axis. | |
n : int, optional | |
If `n` is negative (default), then the input is assumed to be the | |
result of a complex fft. | |
If `n` is larger than or equal to zero, the input is assumed to be the | |
result of a real fft, and `n` gives the length of the array before | |
transformation along the real transform direction. | |
axis : int, optional | |
The axis of the real transform. | |
output : ndarray, optional | |
If given, the result of shifting the input is placed in this array. | |
Returns | |
------- | |
fourier_shift : ndarray | |
The shifted input. | |
Examples | |
-------- | |
>>> from scipy import ndimage, datasets | |
>>> import matplotlib.pyplot as plt | |
>>> import numpy.fft | |
>>> fig, (ax1, ax2) = plt.subplots(1, 2) | |
>>> plt.gray() # show the filtered result in grayscale | |
>>> ascent = datasets.ascent() | |
>>> input_ = numpy.fft.fft2(ascent) | |
>>> result = ndimage.fourier_shift(input_, shift=200) | |
>>> result = numpy.fft.ifft2(result) | |
>>> ax1.imshow(ascent) | |
>>> ax2.imshow(result.real) # the imaginary part is an artifact | |
>>> plt.show() | |
""" | |
input = numpy.asarray(input) | |
output = _get_output_fourier_complex(output, input) | |
axis = normalize_axis_index(axis, input.ndim) | |
shifts = _ni_support._normalize_sequence(shift, input.ndim) | |
shifts = numpy.asarray(shifts, dtype=numpy.float64) | |
if not shifts.flags.contiguous: | |
shifts = shifts.copy() | |
_nd_image.fourier_shift(input, shifts, n, axis, output) | |
return output | |