peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/ndimage
/_interpolation.py
# Copyright (C) 2003-2005 Peter J. Verveer | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions | |
# are met: | |
# | |
# 1. Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# | |
# 2. Redistributions in binary form must reproduce the above | |
# copyright notice, this list of conditions and the following | |
# disclaimer in the documentation and/or other materials provided | |
# with the distribution. | |
# | |
# 3. The name of the author may not be used to endorse or promote | |
# products derived from this software without specific prior | |
# written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS | |
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | |
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE | |
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | |
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
import itertools | |
import warnings | |
import numpy | |
from scipy._lib._util import normalize_axis_index | |
from scipy import special | |
from . import _ni_support | |
from . import _nd_image | |
from ._ni_docstrings import docfiller | |
__all__ = ['spline_filter1d', 'spline_filter', 'geometric_transform', | |
'map_coordinates', 'affine_transform', 'shift', 'zoom', 'rotate'] | |
def spline_filter1d(input, order=3, axis=-1, output=numpy.float64, | |
mode='mirror'): | |
""" | |
Calculate a 1-D spline filter along the given axis. | |
The lines of the array along the given axis are filtered by a | |
spline filter. The order of the spline must be >= 2 and <= 5. | |
Parameters | |
---------- | |
%(input)s | |
order : int, optional | |
The order of the spline, default is 3. | |
axis : int, optional | |
The axis along which the spline filter is applied. Default is the last | |
axis. | |
output : ndarray or dtype, optional | |
The array in which to place the output, or the dtype of the returned | |
array. Default is ``numpy.float64``. | |
%(mode_interp_mirror)s | |
Returns | |
------- | |
spline_filter1d : ndarray | |
The filtered input. | |
See Also | |
-------- | |
spline_filter : Multidimensional spline filter. | |
Notes | |
----- | |
All of the interpolation functions in `ndimage` do spline interpolation of | |
the input image. If using B-splines of `order > 1`, the input image | |
values have to be converted to B-spline coefficients first, which is | |
done by applying this 1-D filter sequentially along all | |
axes of the input. All functions that require B-spline coefficients | |
will automatically filter their inputs, a behavior controllable with | |
the `prefilter` keyword argument. For functions that accept a `mode` | |
parameter, the result will only be correct if it matches the `mode` | |
used when filtering. | |
For complex-valued `input`, this function processes the real and imaginary | |
components independently. | |
.. versionadded:: 1.6.0 | |
Complex-valued support added. | |
Examples | |
-------- | |
We can filter an image using 1-D spline along the given axis: | |
>>> from scipy.ndimage import spline_filter1d | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> orig_img = np.eye(20) # create an image | |
>>> orig_img[10, :] = 1.0 | |
>>> sp_filter_axis_0 = spline_filter1d(orig_img, axis=0) | |
>>> sp_filter_axis_1 = spline_filter1d(orig_img, axis=1) | |
>>> f, ax = plt.subplots(1, 3, sharex=True) | |
>>> for ind, data in enumerate([[orig_img, "original image"], | |
... [sp_filter_axis_0, "spline filter (axis=0)"], | |
... [sp_filter_axis_1, "spline filter (axis=1)"]]): | |
... ax[ind].imshow(data[0], cmap='gray_r') | |
... ax[ind].set_title(data[1]) | |
>>> plt.tight_layout() | |
>>> plt.show() | |
""" | |
if order < 0 or order > 5: | |
raise RuntimeError('spline order not supported') | |
input = numpy.asarray(input) | |
complex_output = numpy.iscomplexobj(input) | |
output = _ni_support._get_output(output, input, | |
complex_output=complex_output) | |
if complex_output: | |
spline_filter1d(input.real, order, axis, output.real, mode) | |
spline_filter1d(input.imag, order, axis, output.imag, mode) | |
return output | |
if order in [0, 1]: | |
output[...] = numpy.array(input) | |
else: | |
mode = _ni_support._extend_mode_to_code(mode) | |
axis = normalize_axis_index(axis, input.ndim) | |
_nd_image.spline_filter1d(input, order, axis, output, mode) | |
return output | |
def spline_filter(input, order=3, output=numpy.float64, mode='mirror'): | |
""" | |
Multidimensional spline filter. | |
Parameters | |
---------- | |
%(input)s | |
order : int, optional | |
The order of the spline, default is 3. | |
output : ndarray or dtype, optional | |
The array in which to place the output, or the dtype of the returned | |
array. Default is ``numpy.float64``. | |
%(mode_interp_mirror)s | |
Returns | |
------- | |
spline_filter : ndarray | |
Filtered array. Has the same shape as `input`. | |
See Also | |
-------- | |
spline_filter1d : Calculate a 1-D spline filter along the given axis. | |
Notes | |
----- | |
The multidimensional filter is implemented as a sequence of | |
1-D spline filters. The intermediate arrays are stored | |
in the same data type as the output. Therefore, for output types | |
with a limited precision, the results may be imprecise because | |
intermediate results may be stored with insufficient precision. | |
For complex-valued `input`, this function processes the real and imaginary | |
components independently. | |
.. versionadded:: 1.6.0 | |
Complex-valued support added. | |
Examples | |
-------- | |
We can filter an image using multidimentional splines: | |
>>> from scipy.ndimage import spline_filter | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> orig_img = np.eye(20) # create an image | |
>>> orig_img[10, :] = 1.0 | |
>>> sp_filter = spline_filter(orig_img, order=3) | |
>>> f, ax = plt.subplots(1, 2, sharex=True) | |
>>> for ind, data in enumerate([[orig_img, "original image"], | |
... [sp_filter, "spline filter"]]): | |
... ax[ind].imshow(data[0], cmap='gray_r') | |
... ax[ind].set_title(data[1]) | |
>>> plt.tight_layout() | |
>>> plt.show() | |
""" | |
if order < 2 or order > 5: | |
raise RuntimeError('spline order not supported') | |
input = numpy.asarray(input) | |
complex_output = numpy.iscomplexobj(input) | |
output = _ni_support._get_output(output, input, | |
complex_output=complex_output) | |
if complex_output: | |
spline_filter(input.real, order, output.real, mode) | |
spline_filter(input.imag, order, output.imag, mode) | |
return output | |
if order not in [0, 1] and input.ndim > 0: | |
for axis in range(input.ndim): | |
spline_filter1d(input, order, axis, output=output, mode=mode) | |
input = output | |
else: | |
output[...] = input[...] | |
return output | |
def _prepad_for_spline_filter(input, mode, cval): | |
if mode in ['nearest', 'grid-constant']: | |
npad = 12 | |
if mode == 'grid-constant': | |
padded = numpy.pad(input, npad, mode='constant', | |
constant_values=cval) | |
elif mode == 'nearest': | |
padded = numpy.pad(input, npad, mode='edge') | |
else: | |
# other modes have exact boundary conditions implemented so | |
# no prepadding is needed | |
npad = 0 | |
padded = input | |
return padded, npad | |
def geometric_transform(input, mapping, output_shape=None, | |
output=None, order=3, | |
mode='constant', cval=0.0, prefilter=True, | |
extra_arguments=(), extra_keywords={}): | |
""" | |
Apply an arbitrary geometric transform. | |
The given mapping function is used to find, for each point in the | |
output, the corresponding coordinates in the input. The value of the | |
input at those coordinates is determined by spline interpolation of | |
the requested order. | |
Parameters | |
---------- | |
%(input)s | |
mapping : {callable, scipy.LowLevelCallable} | |
A callable object that accepts a tuple of length equal to the output | |
array rank, and returns the corresponding input coordinates as a tuple | |
of length equal to the input array rank. | |
output_shape : tuple of ints, optional | |
Shape tuple. | |
%(output)s | |
order : int, optional | |
The order of the spline interpolation, default is 3. | |
The order has to be in the range 0-5. | |
%(mode_interp_constant)s | |
%(cval)s | |
%(prefilter)s | |
extra_arguments : tuple, optional | |
Extra arguments passed to `mapping`. | |
extra_keywords : dict, optional | |
Extra keywords passed to `mapping`. | |
Returns | |
------- | |
output : ndarray | |
The filtered input. | |
See Also | |
-------- | |
map_coordinates, affine_transform, spline_filter1d | |
Notes | |
----- | |
This function also accepts low-level callback functions with one | |
the following signatures and wrapped in `scipy.LowLevelCallable`: | |
.. code:: c | |
int mapping(npy_intp *output_coordinates, double *input_coordinates, | |
int output_rank, int input_rank, void *user_data) | |
int mapping(intptr_t *output_coordinates, double *input_coordinates, | |
int output_rank, int input_rank, void *user_data) | |
The calling function iterates over the elements of the output array, | |
calling the callback function at each element. The coordinates of the | |
current output element are passed through ``output_coordinates``. The | |
callback function must return the coordinates at which the input must | |
be interpolated in ``input_coordinates``. The rank of the input and | |
output arrays are given by ``input_rank`` and ``output_rank`` | |
respectively. ``user_data`` is the data pointer provided | |
to `scipy.LowLevelCallable` as-is. | |
The callback function must return an integer error status that is zero | |
if something went wrong and one otherwise. If an error occurs, you should | |
normally set the Python error status with an informative message | |
before returning, otherwise a default error message is set by the | |
calling function. | |
In addition, some other low-level function pointer specifications | |
are accepted, but these are for backward compatibility only and should | |
not be used in new code. | |
For complex-valued `input`, this function transforms the real and imaginary | |
components independently. | |
.. versionadded:: 1.6.0 | |
Complex-valued support added. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.ndimage import geometric_transform | |
>>> a = np.arange(12.).reshape((4, 3)) | |
>>> def shift_func(output_coords): | |
... return (output_coords[0] - 0.5, output_coords[1] - 0.5) | |
... | |
>>> geometric_transform(a, shift_func) | |
array([[ 0. , 0. , 0. ], | |
[ 0. , 1.362, 2.738], | |
[ 0. , 4.812, 6.187], | |
[ 0. , 8.263, 9.637]]) | |
>>> b = [1, 2, 3, 4, 5] | |
>>> def shift_func(output_coords): | |
... return (output_coords[0] - 3,) | |
... | |
>>> geometric_transform(b, shift_func, mode='constant') | |
array([0, 0, 0, 1, 2]) | |
>>> geometric_transform(b, shift_func, mode='nearest') | |
array([1, 1, 1, 1, 2]) | |
>>> geometric_transform(b, shift_func, mode='reflect') | |
array([3, 2, 1, 1, 2]) | |
>>> geometric_transform(b, shift_func, mode='wrap') | |
array([2, 3, 4, 1, 2]) | |
""" | |
if order < 0 or order > 5: | |
raise RuntimeError('spline order not supported') | |
input = numpy.asarray(input) | |
if output_shape is None: | |
output_shape = input.shape | |
if input.ndim < 1 or len(output_shape) < 1: | |
raise RuntimeError('input and output rank must be > 0') | |
complex_output = numpy.iscomplexobj(input) | |
output = _ni_support._get_output(output, input, shape=output_shape, | |
complex_output=complex_output) | |
if complex_output: | |
kwargs = dict(order=order, mode=mode, prefilter=prefilter, | |
output_shape=output_shape, | |
extra_arguments=extra_arguments, | |
extra_keywords=extra_keywords) | |
geometric_transform(input.real, mapping, output=output.real, | |
cval=numpy.real(cval), **kwargs) | |
geometric_transform(input.imag, mapping, output=output.imag, | |
cval=numpy.imag(cval), **kwargs) | |
return output | |
if prefilter and order > 1: | |
padded, npad = _prepad_for_spline_filter(input, mode, cval) | |
filtered = spline_filter(padded, order, output=numpy.float64, | |
mode=mode) | |
else: | |
npad = 0 | |
filtered = input | |
mode = _ni_support._extend_mode_to_code(mode) | |
_nd_image.geometric_transform(filtered, mapping, None, None, None, output, | |
order, mode, cval, npad, extra_arguments, | |
extra_keywords) | |
return output | |
def map_coordinates(input, coordinates, output=None, order=3, | |
mode='constant', cval=0.0, prefilter=True): | |
""" | |
Map the input array to new coordinates by interpolation. | |
The array of coordinates is used to find, for each point in the output, | |
the corresponding coordinates in the input. The value of the input at | |
those coordinates is determined by spline interpolation of the | |
requested order. | |
The shape of the output is derived from that of the coordinate | |
array by dropping the first axis. The values of the array along | |
the first axis are the coordinates in the input array at which the | |
output value is found. | |
Parameters | |
---------- | |
%(input)s | |
coordinates : array_like | |
The coordinates at which `input` is evaluated. | |
%(output)s | |
order : int, optional | |
The order of the spline interpolation, default is 3. | |
The order has to be in the range 0-5. | |
%(mode_interp_constant)s | |
%(cval)s | |
%(prefilter)s | |
Returns | |
------- | |
map_coordinates : ndarray | |
The result of transforming the input. The shape of the output is | |
derived from that of `coordinates` by dropping the first axis. | |
See Also | |
-------- | |
spline_filter, geometric_transform, scipy.interpolate | |
Notes | |
----- | |
For complex-valued `input`, this function maps the real and imaginary | |
components independently. | |
.. versionadded:: 1.6.0 | |
Complex-valued support added. | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> a = np.arange(12.).reshape((4, 3)) | |
>>> a | |
array([[ 0., 1., 2.], | |
[ 3., 4., 5.], | |
[ 6., 7., 8.], | |
[ 9., 10., 11.]]) | |
>>> ndimage.map_coordinates(a, [[0.5, 2], [0.5, 1]], order=1) | |
array([ 2., 7.]) | |
Above, the interpolated value of a[0.5, 0.5] gives output[0], while | |
a[2, 1] is output[1]. | |
>>> inds = np.array([[0.5, 2], [0.5, 4]]) | |
>>> ndimage.map_coordinates(a, inds, order=1, cval=-33.3) | |
array([ 2. , -33.3]) | |
>>> ndimage.map_coordinates(a, inds, order=1, mode='nearest') | |
array([ 2., 8.]) | |
>>> ndimage.map_coordinates(a, inds, order=1, cval=0, output=bool) | |
array([ True, False], dtype=bool) | |
""" | |
if order < 0 or order > 5: | |
raise RuntimeError('spline order not supported') | |
input = numpy.asarray(input) | |
coordinates = numpy.asarray(coordinates) | |
if numpy.iscomplexobj(coordinates): | |
raise TypeError('Complex type not supported') | |
output_shape = coordinates.shape[1:] | |
if input.ndim < 1 or len(output_shape) < 1: | |
raise RuntimeError('input and output rank must be > 0') | |
if coordinates.shape[0] != input.ndim: | |
raise RuntimeError('invalid shape for coordinate array') | |
complex_output = numpy.iscomplexobj(input) | |
output = _ni_support._get_output(output, input, shape=output_shape, | |
complex_output=complex_output) | |
if complex_output: | |
kwargs = dict(order=order, mode=mode, prefilter=prefilter) | |
map_coordinates(input.real, coordinates, output=output.real, | |
cval=numpy.real(cval), **kwargs) | |
map_coordinates(input.imag, coordinates, output=output.imag, | |
cval=numpy.imag(cval), **kwargs) | |
return output | |
if prefilter and order > 1: | |
padded, npad = _prepad_for_spline_filter(input, mode, cval) | |
filtered = spline_filter(padded, order, output=numpy.float64, | |
mode=mode) | |
else: | |
npad = 0 | |
filtered = input | |
mode = _ni_support._extend_mode_to_code(mode) | |
_nd_image.geometric_transform(filtered, None, coordinates, None, None, | |
output, order, mode, cval, npad, None, None) | |
return output | |
def affine_transform(input, matrix, offset=0.0, output_shape=None, | |
output=None, order=3, | |
mode='constant', cval=0.0, prefilter=True): | |
""" | |
Apply an affine transformation. | |
Given an output image pixel index vector ``o``, the pixel value | |
is determined from the input image at position | |
``np.dot(matrix, o) + offset``. | |
This does 'pull' (or 'backward') resampling, transforming the output space | |
to the input to locate data. Affine transformations are often described in | |
the 'push' (or 'forward') direction, transforming input to output. If you | |
have a matrix for the 'push' transformation, use its inverse | |
(:func:`numpy.linalg.inv`) in this function. | |
Parameters | |
---------- | |
%(input)s | |
matrix : ndarray | |
The inverse coordinate transformation matrix, mapping output | |
coordinates to input coordinates. If ``ndim`` is the number of | |
dimensions of ``input``, the given matrix must have one of the | |
following shapes: | |
- ``(ndim, ndim)``: the linear transformation matrix for each | |
output coordinate. | |
- ``(ndim,)``: assume that the 2-D transformation matrix is | |
diagonal, with the diagonal specified by the given value. A more | |
efficient algorithm is then used that exploits the separability | |
of the problem. | |
- ``(ndim + 1, ndim + 1)``: assume that the transformation is | |
specified using homogeneous coordinates [1]_. In this case, any | |
value passed to ``offset`` is ignored. | |
- ``(ndim, ndim + 1)``: as above, but the bottom row of a | |
homogeneous transformation matrix is always ``[0, 0, ..., 1]``, | |
and may be omitted. | |
offset : float or sequence, optional | |
The offset into the array where the transform is applied. If a float, | |
`offset` is the same for each axis. If a sequence, `offset` should | |
contain one value for each axis. | |
output_shape : tuple of ints, optional | |
Shape tuple. | |
%(output)s | |
order : int, optional | |
The order of the spline interpolation, default is 3. | |
The order has to be in the range 0-5. | |
%(mode_interp_constant)s | |
%(cval)s | |
%(prefilter)s | |
Returns | |
------- | |
affine_transform : ndarray | |
The transformed input. | |
Notes | |
----- | |
The given matrix and offset are used to find for each point in the | |
output the corresponding coordinates in the input by an affine | |
transformation. The value of the input at those coordinates is | |
determined by spline interpolation of the requested order. Points | |
outside the boundaries of the input are filled according to the given | |
mode. | |
.. versionchanged:: 0.18.0 | |
Previously, the exact interpretation of the affine transformation | |
depended on whether the matrix was supplied as a 1-D or a | |
2-D array. If a 1-D array was supplied | |
to the matrix parameter, the output pixel value at index ``o`` | |
was determined from the input image at position | |
``matrix * (o + offset)``. | |
For complex-valued `input`, this function transforms the real and imaginary | |
components independently. | |
.. versionadded:: 1.6.0 | |
Complex-valued support added. | |
References | |
---------- | |
.. [1] https://en.wikipedia.org/wiki/Homogeneous_coordinates | |
""" | |
if order < 0 or order > 5: | |
raise RuntimeError('spline order not supported') | |
input = numpy.asarray(input) | |
if output_shape is None: | |
if isinstance(output, numpy.ndarray): | |
output_shape = output.shape | |
else: | |
output_shape = input.shape | |
if input.ndim < 1 or len(output_shape) < 1: | |
raise RuntimeError('input and output rank must be > 0') | |
complex_output = numpy.iscomplexobj(input) | |
output = _ni_support._get_output(output, input, shape=output_shape, | |
complex_output=complex_output) | |
if complex_output: | |
kwargs = dict(offset=offset, output_shape=output_shape, order=order, | |
mode=mode, prefilter=prefilter) | |
affine_transform(input.real, matrix, output=output.real, | |
cval=numpy.real(cval), **kwargs) | |
affine_transform(input.imag, matrix, output=output.imag, | |
cval=numpy.imag(cval), **kwargs) | |
return output | |
if prefilter and order > 1: | |
padded, npad = _prepad_for_spline_filter(input, mode, cval) | |
filtered = spline_filter(padded, order, output=numpy.float64, | |
mode=mode) | |
else: | |
npad = 0 | |
filtered = input | |
mode = _ni_support._extend_mode_to_code(mode) | |
matrix = numpy.asarray(matrix, dtype=numpy.float64) | |
if matrix.ndim not in [1, 2] or matrix.shape[0] < 1: | |
raise RuntimeError('no proper affine matrix provided') | |
if (matrix.ndim == 2 and matrix.shape[1] == input.ndim + 1 and | |
(matrix.shape[0] in [input.ndim, input.ndim + 1])): | |
if matrix.shape[0] == input.ndim + 1: | |
exptd = [0] * input.ndim + [1] | |
if not numpy.all(matrix[input.ndim] == exptd): | |
msg = ('Expected homogeneous transformation matrix with ' | |
'shape {} for image shape {}, but bottom row was ' | |
'not equal to {}'.format(matrix.shape, input.shape, exptd)) | |
raise ValueError(msg) | |
# assume input is homogeneous coordinate transformation matrix | |
offset = matrix[:input.ndim, input.ndim] | |
matrix = matrix[:input.ndim, :input.ndim] | |
if matrix.shape[0] != input.ndim: | |
raise RuntimeError('affine matrix has wrong number of rows') | |
if matrix.ndim == 2 and matrix.shape[1] != output.ndim: | |
raise RuntimeError('affine matrix has wrong number of columns') | |
if not matrix.flags.contiguous: | |
matrix = matrix.copy() | |
offset = _ni_support._normalize_sequence(offset, input.ndim) | |
offset = numpy.asarray(offset, dtype=numpy.float64) | |
if offset.ndim != 1 or offset.shape[0] < 1: | |
raise RuntimeError('no proper offset provided') | |
if not offset.flags.contiguous: | |
offset = offset.copy() | |
if matrix.ndim == 1: | |
warnings.warn( | |
"The behavior of affine_transform with a 1-D " | |
"array supplied for the matrix parameter has changed in " | |
"SciPy 0.18.0.", | |
stacklevel=2 | |
) | |
_nd_image.zoom_shift(filtered, matrix, offset/matrix, output, order, | |
mode, cval, npad, False) | |
else: | |
_nd_image.geometric_transform(filtered, None, None, matrix, offset, | |
output, order, mode, cval, npad, None, | |
None) | |
return output | |
def shift(input, shift, output=None, order=3, mode='constant', cval=0.0, | |
prefilter=True): | |
""" | |
Shift an array. | |
The array is shifted using spline interpolation of the requested order. | |
Points outside the boundaries of the input are filled according to the | |
given mode. | |
Parameters | |
---------- | |
%(input)s | |
shift : float or sequence | |
The shift along the axes. If a float, `shift` is the same for each | |
axis. If a sequence, `shift` should contain one value for each axis. | |
%(output)s | |
order : int, optional | |
The order of the spline interpolation, default is 3. | |
The order has to be in the range 0-5. | |
%(mode_interp_constant)s | |
%(cval)s | |
%(prefilter)s | |
Returns | |
------- | |
shift : ndarray | |
The shifted input. | |
See Also | |
-------- | |
affine_transform : Affine transformations | |
Notes | |
----- | |
For complex-valued `input`, this function shifts the real and imaginary | |
components independently. | |
.. versionadded:: 1.6.0 | |
Complex-valued support added. | |
Examples | |
-------- | |
Import the necessary modules and an exemplary image. | |
>>> from scipy.ndimage import shift | |
>>> import matplotlib.pyplot as plt | |
>>> from scipy import datasets | |
>>> image = datasets.ascent() | |
Shift the image vertically by 20 pixels. | |
>>> image_shifted_vertically = shift(image, (20, 0)) | |
Shift the image vertically by -200 pixels and horizontally by 100 pixels. | |
>>> image_shifted_both_directions = shift(image, (-200, 100)) | |
Plot the original and the shifted images. | |
>>> fig, axes = plt.subplots(3, 1, figsize=(4, 12)) | |
>>> plt.gray() # show the filtered result in grayscale | |
>>> top, middle, bottom = axes | |
>>> for ax in axes: | |
... ax.set_axis_off() # remove coordinate system | |
>>> top.imshow(image) | |
>>> top.set_title("Original image") | |
>>> middle.imshow(image_shifted_vertically) | |
>>> middle.set_title("Vertically shifted image") | |
>>> bottom.imshow(image_shifted_both_directions) | |
>>> bottom.set_title("Image shifted in both directions") | |
>>> fig.tight_layout() | |
""" | |
if order < 0 or order > 5: | |
raise RuntimeError('spline order not supported') | |
input = numpy.asarray(input) | |
if input.ndim < 1: | |
raise RuntimeError('input and output rank must be > 0') | |
complex_output = numpy.iscomplexobj(input) | |
output = _ni_support._get_output(output, input, | |
complex_output=complex_output) | |
if complex_output: | |
# import under different name to avoid confusion with shift parameter | |
from scipy.ndimage._interpolation import shift as _shift | |
kwargs = dict(order=order, mode=mode, prefilter=prefilter) | |
_shift(input.real, shift, output=output.real, cval=numpy.real(cval), | |
**kwargs) | |
_shift(input.imag, shift, output=output.imag, cval=numpy.imag(cval), | |
**kwargs) | |
return output | |
if prefilter and order > 1: | |
padded, npad = _prepad_for_spline_filter(input, mode, cval) | |
filtered = spline_filter(padded, order, output=numpy.float64, | |
mode=mode) | |
else: | |
npad = 0 | |
filtered = input | |
mode = _ni_support._extend_mode_to_code(mode) | |
shift = _ni_support._normalize_sequence(shift, input.ndim) | |
shift = [-ii for ii in shift] | |
shift = numpy.asarray(shift, dtype=numpy.float64) | |
if not shift.flags.contiguous: | |
shift = shift.copy() | |
_nd_image.zoom_shift(filtered, None, shift, output, order, mode, cval, | |
npad, False) | |
return output | |
def zoom(input, zoom, output=None, order=3, mode='constant', cval=0.0, | |
prefilter=True, *, grid_mode=False): | |
""" | |
Zoom an array. | |
The array is zoomed using spline interpolation of the requested order. | |
Parameters | |
---------- | |
%(input)s | |
zoom : float or sequence | |
The zoom factor along the axes. If a float, `zoom` is the same for each | |
axis. If a sequence, `zoom` should contain one value for each axis. | |
%(output)s | |
order : int, optional | |
The order of the spline interpolation, default is 3. | |
The order has to be in the range 0-5. | |
%(mode_interp_constant)s | |
%(cval)s | |
%(prefilter)s | |
grid_mode : bool, optional | |
If False, the distance from the pixel centers is zoomed. Otherwise, the | |
distance including the full pixel extent is used. For example, a 1d | |
signal of length 5 is considered to have length 4 when `grid_mode` is | |
False, but length 5 when `grid_mode` is True. See the following | |
visual illustration: | |
.. code-block:: text | |
| pixel 1 | pixel 2 | pixel 3 | pixel 4 | pixel 5 | | |
|<-------------------------------------->| | |
vs. | |
|<----------------------------------------------->| | |
The starting point of the arrow in the diagram above corresponds to | |
coordinate location 0 in each mode. | |
Returns | |
------- | |
zoom : ndarray | |
The zoomed input. | |
Notes | |
----- | |
For complex-valued `input`, this function zooms the real and imaginary | |
components independently. | |
.. versionadded:: 1.6.0 | |
Complex-valued support added. | |
Examples | |
-------- | |
>>> from scipy import ndimage, datasets | |
>>> import matplotlib.pyplot as plt | |
>>> fig = plt.figure() | |
>>> ax1 = fig.add_subplot(121) # left side | |
>>> ax2 = fig.add_subplot(122) # right side | |
>>> ascent = datasets.ascent() | |
>>> result = ndimage.zoom(ascent, 3.0) | |
>>> ax1.imshow(ascent, vmin=0, vmax=255) | |
>>> ax2.imshow(result, vmin=0, vmax=255) | |
>>> plt.show() | |
>>> print(ascent.shape) | |
(512, 512) | |
>>> print(result.shape) | |
(1536, 1536) | |
""" | |
if order < 0 or order > 5: | |
raise RuntimeError('spline order not supported') | |
input = numpy.asarray(input) | |
if input.ndim < 1: | |
raise RuntimeError('input and output rank must be > 0') | |
zoom = _ni_support._normalize_sequence(zoom, input.ndim) | |
output_shape = tuple( | |
[int(round(ii * jj)) for ii, jj in zip(input.shape, zoom)]) | |
complex_output = numpy.iscomplexobj(input) | |
output = _ni_support._get_output(output, input, shape=output_shape, | |
complex_output=complex_output) | |
if complex_output: | |
# import under different name to avoid confusion with zoom parameter | |
from scipy.ndimage._interpolation import zoom as _zoom | |
kwargs = dict(order=order, mode=mode, prefilter=prefilter) | |
_zoom(input.real, zoom, output=output.real, cval=numpy.real(cval), | |
**kwargs) | |
_zoom(input.imag, zoom, output=output.imag, cval=numpy.imag(cval), | |
**kwargs) | |
return output | |
if prefilter and order > 1: | |
padded, npad = _prepad_for_spline_filter(input, mode, cval) | |
filtered = spline_filter(padded, order, output=numpy.float64, | |
mode=mode) | |
else: | |
npad = 0 | |
filtered = input | |
if grid_mode: | |
# warn about modes that may have surprising behavior | |
suggest_mode = None | |
if mode == 'constant': | |
suggest_mode = 'grid-constant' | |
elif mode == 'wrap': | |
suggest_mode = 'grid-wrap' | |
if suggest_mode is not None: | |
warnings.warn( | |
("It is recommended to use mode = {} instead of {} when " | |
"grid_mode is True.").format(suggest_mode, mode), | |
stacklevel=2 | |
) | |
mode = _ni_support._extend_mode_to_code(mode) | |
zoom_div = numpy.array(output_shape) | |
zoom_nominator = numpy.array(input.shape) | |
if not grid_mode: | |
zoom_div -= 1 | |
zoom_nominator -= 1 | |
# Zooming to infinite values is unpredictable, so just choose | |
# zoom factor 1 instead | |
zoom = numpy.divide(zoom_nominator, zoom_div, | |
out=numpy.ones_like(input.shape, dtype=numpy.float64), | |
where=zoom_div != 0) | |
zoom = numpy.ascontiguousarray(zoom) | |
_nd_image.zoom_shift(filtered, zoom, None, output, order, mode, cval, npad, | |
grid_mode) | |
return output | |
def rotate(input, angle, axes=(1, 0), reshape=True, output=None, order=3, | |
mode='constant', cval=0.0, prefilter=True): | |
""" | |
Rotate an array. | |
The array is rotated in the plane defined by the two axes given by the | |
`axes` parameter using spline interpolation of the requested order. | |
Parameters | |
---------- | |
%(input)s | |
angle : float | |
The rotation angle in degrees. | |
axes : tuple of 2 ints, optional | |
The two axes that define the plane of rotation. Default is the first | |
two axes. | |
reshape : bool, optional | |
If `reshape` is true, the output shape is adapted so that the input | |
array is contained completely in the output. Default is True. | |
%(output)s | |
order : int, optional | |
The order of the spline interpolation, default is 3. | |
The order has to be in the range 0-5. | |
%(mode_interp_constant)s | |
%(cval)s | |
%(prefilter)s | |
Returns | |
------- | |
rotate : ndarray | |
The rotated input. | |
Notes | |
----- | |
For complex-valued `input`, this function rotates the real and imaginary | |
components independently. | |
.. versionadded:: 1.6.0 | |
Complex-valued support added. | |
Examples | |
-------- | |
>>> from scipy import ndimage, datasets | |
>>> import matplotlib.pyplot as plt | |
>>> fig = plt.figure(figsize=(10, 3)) | |
>>> ax1, ax2, ax3 = fig.subplots(1, 3) | |
>>> img = datasets.ascent() | |
>>> img_45 = ndimage.rotate(img, 45, reshape=False) | |
>>> full_img_45 = ndimage.rotate(img, 45, reshape=True) | |
>>> ax1.imshow(img, cmap='gray') | |
>>> ax1.set_axis_off() | |
>>> ax2.imshow(img_45, cmap='gray') | |
>>> ax2.set_axis_off() | |
>>> ax3.imshow(full_img_45, cmap='gray') | |
>>> ax3.set_axis_off() | |
>>> fig.set_layout_engine('tight') | |
>>> plt.show() | |
>>> print(img.shape) | |
(512, 512) | |
>>> print(img_45.shape) | |
(512, 512) | |
>>> print(full_img_45.shape) | |
(724, 724) | |
""" | |
input_arr = numpy.asarray(input) | |
ndim = input_arr.ndim | |
if ndim < 2: | |
raise ValueError('input array should be at least 2D') | |
axes = list(axes) | |
if len(axes) != 2: | |
raise ValueError('axes should contain exactly two values') | |
if not all([float(ax).is_integer() for ax in axes]): | |
raise ValueError('axes should contain only integer values') | |
if axes[0] < 0: | |
axes[0] += ndim | |
if axes[1] < 0: | |
axes[1] += ndim | |
if axes[0] < 0 or axes[1] < 0 or axes[0] >= ndim or axes[1] >= ndim: | |
raise ValueError('invalid rotation plane specified') | |
axes.sort() | |
c, s = special.cosdg(angle), special.sindg(angle) | |
rot_matrix = numpy.array([[c, s], | |
[-s, c]]) | |
img_shape = numpy.asarray(input_arr.shape) | |
in_plane_shape = img_shape[axes] | |
if reshape: | |
# Compute transformed input bounds | |
iy, ix = in_plane_shape | |
out_bounds = rot_matrix @ [[0, 0, iy, iy], | |
[0, ix, 0, ix]] | |
# Compute the shape of the transformed input plane | |
out_plane_shape = (numpy.ptp(out_bounds, axis=1) + 0.5).astype(int) | |
else: | |
out_plane_shape = img_shape[axes] | |
out_center = rot_matrix @ ((out_plane_shape - 1) / 2) | |
in_center = (in_plane_shape - 1) / 2 | |
offset = in_center - out_center | |
output_shape = img_shape | |
output_shape[axes] = out_plane_shape | |
output_shape = tuple(output_shape) | |
complex_output = numpy.iscomplexobj(input_arr) | |
output = _ni_support._get_output(output, input_arr, shape=output_shape, | |
complex_output=complex_output) | |
if ndim <= 2: | |
affine_transform(input_arr, rot_matrix, offset, output_shape, output, | |
order, mode, cval, prefilter) | |
else: | |
# If ndim > 2, the rotation is applied over all the planes | |
# parallel to axes | |
planes_coord = itertools.product( | |
*[[slice(None)] if ax in axes else range(img_shape[ax]) | |
for ax in range(ndim)]) | |
out_plane_shape = tuple(out_plane_shape) | |
for coordinates in planes_coord: | |
ia = input_arr[coordinates] | |
oa = output[coordinates] | |
affine_transform(ia, rot_matrix, offset, out_plane_shape, | |
oa, order, mode, cval, prefilter) | |
return output | |