peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/ndimage
/_measurements.py
# Copyright (C) 2003-2005 Peter J. Verveer | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions | |
# are met: | |
# | |
# 1. Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# | |
# 2. Redistributions in binary form must reproduce the above | |
# copyright notice, this list of conditions and the following | |
# disclaimer in the documentation and/or other materials provided | |
# with the distribution. | |
# | |
# 3. The name of the author may not be used to endorse or promote | |
# products derived from this software without specific prior | |
# written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS | |
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | |
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE | |
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | |
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
import numpy | |
import numpy as np | |
from . import _ni_support | |
from . import _ni_label | |
from . import _nd_image | |
from . import _morphology | |
__all__ = ['label', 'find_objects', 'labeled_comprehension', 'sum', 'mean', | |
'variance', 'standard_deviation', 'minimum', 'maximum', 'median', | |
'minimum_position', 'maximum_position', 'extrema', 'center_of_mass', | |
'histogram', 'watershed_ift', 'sum_labels', 'value_indices'] | |
def label(input, structure=None, output=None): | |
""" | |
Label features in an array. | |
Parameters | |
---------- | |
input : array_like | |
An array-like object to be labeled. Any non-zero values in `input` are | |
counted as features and zero values are considered the background. | |
structure : array_like, optional | |
A structuring element that defines feature connections. | |
`structure` must be centrosymmetric | |
(see Notes). | |
If no structuring element is provided, | |
one is automatically generated with a squared connectivity equal to | |
one. That is, for a 2-D `input` array, the default structuring element | |
is:: | |
[[0,1,0], | |
[1,1,1], | |
[0,1,0]] | |
output : (None, data-type, array_like), optional | |
If `output` is a data type, it specifies the type of the resulting | |
labeled feature array. | |
If `output` is an array-like object, then `output` will be updated | |
with the labeled features from this function. This function can | |
operate in-place, by passing output=input. | |
Note that the output must be able to store the largest label, or this | |
function will raise an Exception. | |
Returns | |
------- | |
label : ndarray or int | |
An integer ndarray where each unique feature in `input` has a unique | |
label in the returned array. | |
num_features : int | |
How many objects were found. | |
If `output` is None, this function returns a tuple of | |
(`labeled_array`, `num_features`). | |
If `output` is a ndarray, then it will be updated with values in | |
`labeled_array` and only `num_features` will be returned by this | |
function. | |
See Also | |
-------- | |
find_objects : generate a list of slices for the labeled features (or | |
objects); useful for finding features' position or | |
dimensions | |
Notes | |
----- | |
A centrosymmetric matrix is a matrix that is symmetric about the center. | |
See [1]_ for more information. | |
The `structure` matrix must be centrosymmetric to ensure | |
two-way connections. | |
For instance, if the `structure` matrix is not centrosymmetric | |
and is defined as:: | |
[[0,1,0], | |
[1,1,0], | |
[0,0,0]] | |
and the `input` is:: | |
[[1,2], | |
[0,3]] | |
then the structure matrix would indicate the | |
entry 2 in the input is connected to 1, | |
but 1 is not connected to 2. | |
References | |
---------- | |
.. [1] James R. Weaver, "Centrosymmetric (cross-symmetric) | |
matrices, their basic properties, eigenvalues, and | |
eigenvectors." The American Mathematical Monthly 92.10 | |
(1985): 711-717. | |
Examples | |
-------- | |
Create an image with some features, then label it using the default | |
(cross-shaped) structuring element: | |
>>> from scipy.ndimage import label, generate_binary_structure | |
>>> import numpy as np | |
>>> a = np.array([[0,0,1,1,0,0], | |
... [0,0,0,1,0,0], | |
... [1,1,0,0,1,0], | |
... [0,0,0,1,0,0]]) | |
>>> labeled_array, num_features = label(a) | |
Each of the 4 features are labeled with a different integer: | |
>>> num_features | |
4 | |
>>> labeled_array | |
array([[0, 0, 1, 1, 0, 0], | |
[0, 0, 0, 1, 0, 0], | |
[2, 2, 0, 0, 3, 0], | |
[0, 0, 0, 4, 0, 0]]) | |
Generate a structuring element that will consider features connected even | |
if they touch diagonally: | |
>>> s = generate_binary_structure(2,2) | |
or, | |
>>> s = [[1,1,1], | |
... [1,1,1], | |
... [1,1,1]] | |
Label the image using the new structuring element: | |
>>> labeled_array, num_features = label(a, structure=s) | |
Show the 2 labeled features (note that features 1, 3, and 4 from above are | |
now considered a single feature): | |
>>> num_features | |
2 | |
>>> labeled_array | |
array([[0, 0, 1, 1, 0, 0], | |
[0, 0, 0, 1, 0, 0], | |
[2, 2, 0, 0, 1, 0], | |
[0, 0, 0, 1, 0, 0]]) | |
""" | |
input = numpy.asarray(input) | |
if numpy.iscomplexobj(input): | |
raise TypeError('Complex type not supported') | |
if structure is None: | |
structure = _morphology.generate_binary_structure(input.ndim, 1) | |
structure = numpy.asarray(structure, dtype=bool) | |
if structure.ndim != input.ndim: | |
raise RuntimeError('structure and input must have equal rank') | |
for ii in structure.shape: | |
if ii != 3: | |
raise ValueError('structure dimensions must be equal to 3') | |
# Use 32 bits if it's large enough for this image. | |
# _ni_label.label() needs two entries for background and | |
# foreground tracking | |
need_64bits = input.size >= (2**31 - 2) | |
if isinstance(output, numpy.ndarray): | |
if output.shape != input.shape: | |
raise ValueError("output shape not correct") | |
caller_provided_output = True | |
else: | |
caller_provided_output = False | |
if output is None: | |
output = np.empty(input.shape, np.intp if need_64bits else np.int32) | |
else: | |
output = np.empty(input.shape, output) | |
# handle scalars, 0-D arrays | |
if input.ndim == 0 or input.size == 0: | |
if input.ndim == 0: | |
# scalar | |
maxlabel = 1 if (input != 0) else 0 | |
output[...] = maxlabel | |
else: | |
# 0-D | |
maxlabel = 0 | |
if caller_provided_output: | |
return maxlabel | |
else: | |
return output, maxlabel | |
try: | |
max_label = _ni_label._label(input, structure, output) | |
except _ni_label.NeedMoreBits as e: | |
# Make another attempt with enough bits, then try to cast to the | |
# new type. | |
tmp_output = np.empty(input.shape, np.intp if need_64bits else np.int32) | |
max_label = _ni_label._label(input, structure, tmp_output) | |
output[...] = tmp_output[...] | |
if not np.all(output == tmp_output): | |
# refuse to return bad results | |
raise RuntimeError( | |
"insufficient bit-depth in requested output type" | |
) from e | |
if caller_provided_output: | |
# result was written in-place | |
return max_label | |
else: | |
return output, max_label | |
def find_objects(input, max_label=0): | |
""" | |
Find objects in a labeled array. | |
Parameters | |
---------- | |
input : ndarray of ints | |
Array containing objects defined by different labels. Labels with | |
value 0 are ignored. | |
max_label : int, optional | |
Maximum label to be searched for in `input`. If max_label is not | |
given, the positions of all objects are returned. | |
Returns | |
------- | |
object_slices : list of tuples | |
A list of tuples, with each tuple containing N slices (with N the | |
dimension of the input array). Slices correspond to the minimal | |
parallelepiped that contains the object. If a number is missing, | |
None is returned instead of a slice. The label ``l`` corresponds to | |
the index ``l-1`` in the returned list. | |
See Also | |
-------- | |
label, center_of_mass | |
Notes | |
----- | |
This function is very useful for isolating a volume of interest inside | |
a 3-D array, that cannot be "seen through". | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> a = np.zeros((6,6), dtype=int) | |
>>> a[2:4, 2:4] = 1 | |
>>> a[4, 4] = 1 | |
>>> a[:2, :3] = 2 | |
>>> a[0, 5] = 3 | |
>>> a | |
array([[2, 2, 2, 0, 0, 3], | |
[2, 2, 2, 0, 0, 0], | |
[0, 0, 1, 1, 0, 0], | |
[0, 0, 1, 1, 0, 0], | |
[0, 0, 0, 0, 1, 0], | |
[0, 0, 0, 0, 0, 0]]) | |
>>> ndimage.find_objects(a) | |
[(slice(2, 5, None), slice(2, 5, None)), | |
(slice(0, 2, None), slice(0, 3, None)), | |
(slice(0, 1, None), slice(5, 6, None))] | |
>>> ndimage.find_objects(a, max_label=2) | |
[(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None))] | |
>>> ndimage.find_objects(a == 1, max_label=2) | |
[(slice(2, 5, None), slice(2, 5, None)), None] | |
>>> loc = ndimage.find_objects(a)[0] | |
>>> a[loc] | |
array([[1, 1, 0], | |
[1, 1, 0], | |
[0, 0, 1]]) | |
""" | |
input = numpy.asarray(input) | |
if numpy.iscomplexobj(input): | |
raise TypeError('Complex type not supported') | |
if max_label < 1: | |
max_label = input.max() | |
return _nd_image.find_objects(input, max_label) | |
def value_indices(arr, *, ignore_value=None): | |
""" | |
Find indices of each distinct value in given array. | |
Parameters | |
---------- | |
arr : ndarray of ints | |
Array containing integer values. | |
ignore_value : int, optional | |
This value will be ignored in searching the `arr` array. If not | |
given, all values found will be included in output. Default | |
is None. | |
Returns | |
------- | |
indices : dictionary | |
A Python dictionary of array indices for each distinct value. The | |
dictionary is keyed by the distinct values, the entries are array | |
index tuples covering all occurrences of the value within the | |
array. | |
This dictionary can occupy significant memory, usually several times | |
the size of the input array. | |
See Also | |
-------- | |
label, maximum, median, minimum_position, extrema, sum, mean, variance, | |
standard_deviation, numpy.where, numpy.unique | |
Notes | |
----- | |
For a small array with few distinct values, one might use | |
`numpy.unique()` to find all possible values, and ``(arr == val)`` to | |
locate each value within that array. However, for large arrays, | |
with many distinct values, this can become extremely inefficient, | |
as locating each value would require a new search through the entire | |
array. Using this function, there is essentially one search, with | |
the indices saved for all distinct values. | |
This is useful when matching a categorical image (e.g. a segmentation | |
or classification) to an associated image of other data, allowing | |
any per-class statistic(s) to then be calculated. Provides a | |
more flexible alternative to functions like ``scipy.ndimage.mean()`` | |
and ``scipy.ndimage.variance()``. | |
Some other closely related functionality, with different strengths and | |
weaknesses, can also be found in ``scipy.stats.binned_statistic()`` and | |
the `scikit-image <https://scikit-image.org/>`_ function | |
``skimage.measure.regionprops()``. | |
Note for IDL users: this provides functionality equivalent to IDL's | |
REVERSE_INDICES option (as per the IDL documentation for the | |
`HISTOGRAM <https://www.l3harrisgeospatial.com/docs/histogram.html>`_ | |
function). | |
.. versionadded:: 1.10.0 | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy import ndimage | |
>>> a = np.zeros((6, 6), dtype=int) | |
>>> a[2:4, 2:4] = 1 | |
>>> a[4, 4] = 1 | |
>>> a[:2, :3] = 2 | |
>>> a[0, 5] = 3 | |
>>> a | |
array([[2, 2, 2, 0, 0, 3], | |
[2, 2, 2, 0, 0, 0], | |
[0, 0, 1, 1, 0, 0], | |
[0, 0, 1, 1, 0, 0], | |
[0, 0, 0, 0, 1, 0], | |
[0, 0, 0, 0, 0, 0]]) | |
>>> val_indices = ndimage.value_indices(a) | |
The dictionary `val_indices` will have an entry for each distinct | |
value in the input array. | |
>>> val_indices.keys() | |
dict_keys([0, 1, 2, 3]) | |
The entry for each value is an index tuple, locating the elements | |
with that value. | |
>>> ndx1 = val_indices[1] | |
>>> ndx1 | |
(array([2, 2, 3, 3, 4]), array([2, 3, 2, 3, 4])) | |
This can be used to index into the original array, or any other | |
array with the same shape. | |
>>> a[ndx1] | |
array([1, 1, 1, 1, 1]) | |
If the zeros were to be ignored, then the resulting dictionary | |
would no longer have an entry for zero. | |
>>> val_indices = ndimage.value_indices(a, ignore_value=0) | |
>>> val_indices.keys() | |
dict_keys([1, 2, 3]) | |
""" | |
# Cope with ignore_value being None, without too much extra complexity | |
# in the C code. If not None, the value is passed in as a numpy array | |
# with the same dtype as arr. | |
ignore_value_arr = numpy.zeros((1,), dtype=arr.dtype) | |
ignoreIsNone = (ignore_value is None) | |
if not ignoreIsNone: | |
ignore_value_arr[0] = ignore_value_arr.dtype.type(ignore_value) | |
val_indices = _nd_image.value_indices(arr, ignoreIsNone, ignore_value_arr) | |
return val_indices | |
def labeled_comprehension(input, labels, index, func, out_dtype, default, | |
pass_positions=False): | |
""" | |
Roughly equivalent to [func(input[labels == i]) for i in index]. | |
Sequentially applies an arbitrary function (that works on array_like input) | |
to subsets of an N-D image array specified by `labels` and `index`. | |
The option exists to provide the function with positional parameters as the | |
second argument. | |
Parameters | |
---------- | |
input : array_like | |
Data from which to select `labels` to process. | |
labels : array_like or None | |
Labels to objects in `input`. | |
If not None, array must be same shape as `input`. | |
If None, `func` is applied to raveled `input`. | |
index : int, sequence of ints or None | |
Subset of `labels` to which to apply `func`. | |
If a scalar, a single value is returned. | |
If None, `func` is applied to all non-zero values of `labels`. | |
func : callable | |
Python function to apply to `labels` from `input`. | |
out_dtype : dtype | |
Dtype to use for `result`. | |
default : int, float or None | |
Default return value when a element of `index` does not exist | |
in `labels`. | |
pass_positions : bool, optional | |
If True, pass linear indices to `func` as a second argument. | |
Default is False. | |
Returns | |
------- | |
result : ndarray | |
Result of applying `func` to each of `labels` to `input` in `index`. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> a = np.array([[1, 2, 0, 0], | |
... [5, 3, 0, 4], | |
... [0, 0, 0, 7], | |
... [9, 3, 0, 0]]) | |
>>> from scipy import ndimage | |
>>> lbl, nlbl = ndimage.label(a) | |
>>> lbls = np.arange(1, nlbl+1) | |
>>> ndimage.labeled_comprehension(a, lbl, lbls, np.mean, float, 0) | |
array([ 2.75, 5.5 , 6. ]) | |
Falling back to `default`: | |
>>> lbls = np.arange(1, nlbl+2) | |
>>> ndimage.labeled_comprehension(a, lbl, lbls, np.mean, float, -1) | |
array([ 2.75, 5.5 , 6. , -1. ]) | |
Passing positions: | |
>>> def fn(val, pos): | |
... print("fn says: %s : %s" % (val, pos)) | |
... return (val.sum()) if (pos.sum() % 2 == 0) else (-val.sum()) | |
... | |
>>> ndimage.labeled_comprehension(a, lbl, lbls, fn, float, 0, True) | |
fn says: [1 2 5 3] : [0 1 4 5] | |
fn says: [4 7] : [ 7 11] | |
fn says: [9 3] : [12 13] | |
array([ 11., 11., -12., 0.]) | |
""" | |
as_scalar = numpy.isscalar(index) | |
input = numpy.asarray(input) | |
if pass_positions: | |
positions = numpy.arange(input.size).reshape(input.shape) | |
if labels is None: | |
if index is not None: | |
raise ValueError("index without defined labels") | |
if not pass_positions: | |
return func(input.ravel()) | |
else: | |
return func(input.ravel(), positions.ravel()) | |
try: | |
input, labels = numpy.broadcast_arrays(input, labels) | |
except ValueError as e: | |
raise ValueError("input and labels must have the same shape " | |
"(excepting dimensions with width 1)") from e | |
if index is None: | |
if not pass_positions: | |
return func(input[labels > 0]) | |
else: | |
return func(input[labels > 0], positions[labels > 0]) | |
index = numpy.atleast_1d(index) | |
if np.any(index.astype(labels.dtype).astype(index.dtype) != index): | |
raise ValueError(f"Cannot convert index values from <{index.dtype}> to " | |
f"<{labels.dtype}> (labels' type) without loss of precision") | |
index = index.astype(labels.dtype) | |
# optimization: find min/max in index, | |
# and select those parts of labels, input, and positions | |
lo = index.min() | |
hi = index.max() | |
mask = (labels >= lo) & (labels <= hi) | |
# this also ravels the arrays | |
labels = labels[mask] | |
input = input[mask] | |
if pass_positions: | |
positions = positions[mask] | |
# sort everything by labels | |
label_order = labels.argsort() | |
labels = labels[label_order] | |
input = input[label_order] | |
if pass_positions: | |
positions = positions[label_order] | |
index_order = index.argsort() | |
sorted_index = index[index_order] | |
def do_map(inputs, output): | |
"""labels must be sorted""" | |
nidx = sorted_index.size | |
# Find boundaries for each stretch of constant labels | |
# This could be faster, but we already paid N log N to sort labels. | |
lo = numpy.searchsorted(labels, sorted_index, side='left') | |
hi = numpy.searchsorted(labels, sorted_index, side='right') | |
for i, l, h in zip(range(nidx), lo, hi): | |
if l == h: | |
continue | |
output[i] = func(*[inp[l:h] for inp in inputs]) | |
temp = numpy.empty(index.shape, out_dtype) | |
temp[:] = default | |
if not pass_positions: | |
do_map([input], temp) | |
else: | |
do_map([input, positions], temp) | |
output = numpy.zeros(index.shape, out_dtype) | |
output[index_order] = temp | |
if as_scalar: | |
output = output[0] | |
return output | |
def _safely_castable_to_int(dt): | |
"""Test whether the NumPy data type `dt` can be safely cast to an int.""" | |
int_size = np.dtype(int).itemsize | |
safe = ((np.issubdtype(dt, np.signedinteger) and dt.itemsize <= int_size) or | |
(np.issubdtype(dt, np.unsignedinteger) and dt.itemsize < int_size)) | |
return safe | |
def _stats(input, labels=None, index=None, centered=False): | |
"""Count, sum, and optionally compute (sum - centre)^2 of input by label | |
Parameters | |
---------- | |
input : array_like, N-D | |
The input data to be analyzed. | |
labels : array_like (N-D), optional | |
The labels of the data in `input`. This array must be broadcast | |
compatible with `input`; typically, it is the same shape as `input`. | |
If `labels` is None, all nonzero values in `input` are treated as | |
the single labeled group. | |
index : label or sequence of labels, optional | |
These are the labels of the groups for which the stats are computed. | |
If `index` is None, the stats are computed for the single group where | |
`labels` is greater than 0. | |
centered : bool, optional | |
If True, the centered sum of squares for each labeled group is | |
also returned. Default is False. | |
Returns | |
------- | |
counts : int or ndarray of ints | |
The number of elements in each labeled group. | |
sums : scalar or ndarray of scalars | |
The sums of the values in each labeled group. | |
sums_c : scalar or ndarray of scalars, optional | |
The sums of mean-centered squares of the values in each labeled group. | |
This is only returned if `centered` is True. | |
""" | |
def single_group(vals): | |
if centered: | |
vals_c = vals - vals.mean() | |
return vals.size, vals.sum(), (vals_c * vals_c.conjugate()).sum() | |
else: | |
return vals.size, vals.sum() | |
if labels is None: | |
return single_group(input) | |
# ensure input and labels match sizes | |
input, labels = numpy.broadcast_arrays(input, labels) | |
if index is None: | |
return single_group(input[labels > 0]) | |
if numpy.isscalar(index): | |
return single_group(input[labels == index]) | |
def _sum_centered(labels): | |
# `labels` is expected to be an ndarray with the same shape as `input`. | |
# It must contain the label indices (which are not necessarily the labels | |
# themselves). | |
means = sums / counts | |
centered_input = input - means[labels] | |
# bincount expects 1-D inputs, so we ravel the arguments. | |
bc = numpy.bincount(labels.ravel(), | |
weights=(centered_input * | |
centered_input.conjugate()).ravel()) | |
return bc | |
# Remap labels to unique integers if necessary, or if the largest | |
# label is larger than the number of values. | |
if (not _safely_castable_to_int(labels.dtype) or | |
labels.min() < 0 or labels.max() > labels.size): | |
# Use numpy.unique to generate the label indices. `new_labels` will | |
# be 1-D, but it should be interpreted as the flattened N-D array of | |
# label indices. | |
unique_labels, new_labels = numpy.unique(labels, return_inverse=True) | |
new_labels = np.reshape(new_labels, (-1,)) # flatten, since it may be >1-D | |
counts = numpy.bincount(new_labels) | |
sums = numpy.bincount(new_labels, weights=input.ravel()) | |
if centered: | |
# Compute the sum of the mean-centered squares. | |
# We must reshape new_labels to the N-D shape of `input` before | |
# passing it _sum_centered. | |
sums_c = _sum_centered(new_labels.reshape(labels.shape)) | |
idxs = numpy.searchsorted(unique_labels, index) | |
# make all of idxs valid | |
idxs[idxs >= unique_labels.size] = 0 | |
found = (unique_labels[idxs] == index) | |
else: | |
# labels are an integer type allowed by bincount, and there aren't too | |
# many, so call bincount directly. | |
counts = numpy.bincount(labels.ravel()) | |
sums = numpy.bincount(labels.ravel(), weights=input.ravel()) | |
if centered: | |
sums_c = _sum_centered(labels) | |
# make sure all index values are valid | |
idxs = numpy.asanyarray(index, numpy.int_).copy() | |
found = (idxs >= 0) & (idxs < counts.size) | |
idxs[~found] = 0 | |
counts = counts[idxs] | |
counts[~found] = 0 | |
sums = sums[idxs] | |
sums[~found] = 0 | |
if not centered: | |
return (counts, sums) | |
else: | |
sums_c = sums_c[idxs] | |
sums_c[~found] = 0 | |
return (counts, sums, sums_c) | |
def sum(input, labels=None, index=None): | |
""" | |
Calculate the sum of the values of the array. | |
Notes | |
----- | |
This is an alias for `ndimage.sum_labels` kept for backwards compatibility | |
reasons, for new code please prefer `sum_labels`. See the `sum_labels` | |
docstring for more details. | |
""" | |
return sum_labels(input, labels, index) | |
def sum_labels(input, labels=None, index=None): | |
""" | |
Calculate the sum of the values of the array. | |
Parameters | |
---------- | |
input : array_like | |
Values of `input` inside the regions defined by `labels` | |
are summed together. | |
labels : array_like of ints, optional | |
Assign labels to the values of the array. Has to have the same shape as | |
`input`. | |
index : array_like, optional | |
A single label number or a sequence of label numbers of | |
the objects to be measured. | |
Returns | |
------- | |
sum : ndarray or scalar | |
An array of the sums of values of `input` inside the regions defined | |
by `labels` with the same shape as `index`. If 'index' is None or scalar, | |
a scalar is returned. | |
See Also | |
-------- | |
mean, median | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> input = [0,1,2,3] | |
>>> labels = [1,1,2,2] | |
>>> ndimage.sum_labels(input, labels, index=[1,2]) | |
[1.0, 5.0] | |
>>> ndimage.sum_labels(input, labels, index=1) | |
1 | |
>>> ndimage.sum_labels(input, labels) | |
6 | |
""" | |
count, sum = _stats(input, labels, index) | |
return sum | |
def mean(input, labels=None, index=None): | |
""" | |
Calculate the mean of the values of an array at labels. | |
Parameters | |
---------- | |
input : array_like | |
Array on which to compute the mean of elements over distinct | |
regions. | |
labels : array_like, optional | |
Array of labels of same shape, or broadcastable to the same shape as | |
`input`. All elements sharing the same label form one region over | |
which the mean of the elements is computed. | |
index : int or sequence of ints, optional | |
Labels of the objects over which the mean is to be computed. | |
Default is None, in which case the mean for all values where label is | |
greater than 0 is calculated. | |
Returns | |
------- | |
out : list | |
Sequence of same length as `index`, with the mean of the different | |
regions labeled by the labels in `index`. | |
See Also | |
-------- | |
variance, standard_deviation, minimum, maximum, sum, label | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> a = np.arange(25).reshape((5,5)) | |
>>> labels = np.zeros_like(a) | |
>>> labels[3:5,3:5] = 1 | |
>>> index = np.unique(labels) | |
>>> labels | |
array([[0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0], | |
[0, 0, 0, 1, 1], | |
[0, 0, 0, 1, 1]]) | |
>>> index | |
array([0, 1]) | |
>>> ndimage.mean(a, labels=labels, index=index) | |
[10.285714285714286, 21.0] | |
""" | |
count, sum = _stats(input, labels, index) | |
return sum / numpy.asanyarray(count).astype(numpy.float64) | |
def variance(input, labels=None, index=None): | |
""" | |
Calculate the variance of the values of an N-D image array, optionally at | |
specified sub-regions. | |
Parameters | |
---------- | |
input : array_like | |
Nd-image data to process. | |
labels : array_like, optional | |
Labels defining sub-regions in `input`. | |
If not None, must be same shape as `input`. | |
index : int or sequence of ints, optional | |
`labels` to include in output. If None (default), all values where | |
`labels` is non-zero are used. | |
Returns | |
------- | |
variance : float or ndarray | |
Values of variance, for each sub-region if `labels` and `index` are | |
specified. | |
See Also | |
-------- | |
label, standard_deviation, maximum, minimum, extrema | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> a = np.array([[1, 2, 0, 0], | |
... [5, 3, 0, 4], | |
... [0, 0, 0, 7], | |
... [9, 3, 0, 0]]) | |
>>> from scipy import ndimage | |
>>> ndimage.variance(a) | |
7.609375 | |
Features to process can be specified using `labels` and `index`: | |
>>> lbl, nlbl = ndimage.label(a) | |
>>> ndimage.variance(a, lbl, index=np.arange(1, nlbl+1)) | |
array([ 2.1875, 2.25 , 9. ]) | |
If no index is given, all non-zero `labels` are processed: | |
>>> ndimage.variance(a, lbl) | |
6.1875 | |
""" | |
count, sum, sum_c_sq = _stats(input, labels, index, centered=True) | |
return sum_c_sq / np.asanyarray(count).astype(float) | |
def standard_deviation(input, labels=None, index=None): | |
""" | |
Calculate the standard deviation of the values of an N-D image array, | |
optionally at specified sub-regions. | |
Parameters | |
---------- | |
input : array_like | |
N-D image data to process. | |
labels : array_like, optional | |
Labels to identify sub-regions in `input`. | |
If not None, must be same shape as `input`. | |
index : int or sequence of ints, optional | |
`labels` to include in output. If None (default), all values where | |
`labels` is non-zero are used. | |
Returns | |
------- | |
standard_deviation : float or ndarray | |
Values of standard deviation, for each sub-region if `labels` and | |
`index` are specified. | |
See Also | |
-------- | |
label, variance, maximum, minimum, extrema | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> a = np.array([[1, 2, 0, 0], | |
... [5, 3, 0, 4], | |
... [0, 0, 0, 7], | |
... [9, 3, 0, 0]]) | |
>>> from scipy import ndimage | |
>>> ndimage.standard_deviation(a) | |
2.7585095613392387 | |
Features to process can be specified using `labels` and `index`: | |
>>> lbl, nlbl = ndimage.label(a) | |
>>> ndimage.standard_deviation(a, lbl, index=np.arange(1, nlbl+1)) | |
array([ 1.479, 1.5 , 3. ]) | |
If no index is given, non-zero `labels` are processed: | |
>>> ndimage.standard_deviation(a, lbl) | |
2.4874685927665499 | |
""" | |
return numpy.sqrt(variance(input, labels, index)) | |
def _select(input, labels=None, index=None, find_min=False, find_max=False, | |
find_min_positions=False, find_max_positions=False, | |
find_median=False): | |
"""Returns min, max, or both, plus their positions (if requested), and | |
median.""" | |
input = numpy.asanyarray(input) | |
find_positions = find_min_positions or find_max_positions | |
positions = None | |
if find_positions: | |
positions = numpy.arange(input.size).reshape(input.shape) | |
def single_group(vals, positions): | |
result = [] | |
if find_min: | |
result += [vals.min()] | |
if find_min_positions: | |
result += [positions[vals == vals.min()][0]] | |
if find_max: | |
result += [vals.max()] | |
if find_max_positions: | |
result += [positions[vals == vals.max()][0]] | |
if find_median: | |
result += [numpy.median(vals)] | |
return result | |
if labels is None: | |
return single_group(input, positions) | |
# ensure input and labels match sizes | |
input, labels = numpy.broadcast_arrays(input, labels) | |
if index is None: | |
mask = (labels > 0) | |
masked_positions = None | |
if find_positions: | |
masked_positions = positions[mask] | |
return single_group(input[mask], masked_positions) | |
if numpy.isscalar(index): | |
mask = (labels == index) | |
masked_positions = None | |
if find_positions: | |
masked_positions = positions[mask] | |
return single_group(input[mask], masked_positions) | |
# remap labels to unique integers if necessary, or if the largest | |
# label is larger than the number of values. | |
if (not _safely_castable_to_int(labels.dtype) or | |
labels.min() < 0 or labels.max() > labels.size): | |
# remap labels, and indexes | |
unique_labels, labels = numpy.unique(labels, return_inverse=True) | |
idxs = numpy.searchsorted(unique_labels, index) | |
# make all of idxs valid | |
idxs[idxs >= unique_labels.size] = 0 | |
found = (unique_labels[idxs] == index) | |
else: | |
# labels are an integer type, and there aren't too many | |
idxs = numpy.asanyarray(index, numpy.int_).copy() | |
found = (idxs >= 0) & (idxs <= labels.max()) | |
idxs[~ found] = labels.max() + 1 | |
if find_median: | |
order = numpy.lexsort((input.ravel(), labels.ravel())) | |
else: | |
order = input.ravel().argsort() | |
input = input.ravel()[order] | |
labels = labels.ravel()[order] | |
if find_positions: | |
positions = positions.ravel()[order] | |
result = [] | |
if find_min: | |
mins = numpy.zeros(labels.max() + 2, input.dtype) | |
mins[labels[::-1]] = input[::-1] | |
result += [mins[idxs]] | |
if find_min_positions: | |
minpos = numpy.zeros(labels.max() + 2, int) | |
minpos[labels[::-1]] = positions[::-1] | |
result += [minpos[idxs]] | |
if find_max: | |
maxs = numpy.zeros(labels.max() + 2, input.dtype) | |
maxs[labels] = input | |
result += [maxs[idxs]] | |
if find_max_positions: | |
maxpos = numpy.zeros(labels.max() + 2, int) | |
maxpos[labels] = positions | |
result += [maxpos[idxs]] | |
if find_median: | |
locs = numpy.arange(len(labels)) | |
lo = numpy.zeros(labels.max() + 2, numpy.int_) | |
lo[labels[::-1]] = locs[::-1] | |
hi = numpy.zeros(labels.max() + 2, numpy.int_) | |
hi[labels] = locs | |
lo = lo[idxs] | |
hi = hi[idxs] | |
# lo is an index to the lowest value in input for each label, | |
# hi is an index to the largest value. | |
# move them to be either the same ((hi - lo) % 2 == 0) or next | |
# to each other ((hi - lo) % 2 == 1), then average. | |
step = (hi - lo) // 2 | |
lo += step | |
hi -= step | |
if (np.issubdtype(input.dtype, np.integer) | |
or np.issubdtype(input.dtype, np.bool_)): | |
# avoid integer overflow or boolean addition (gh-12836) | |
result += [(input[lo].astype('d') + input[hi].astype('d')) / 2.0] | |
else: | |
result += [(input[lo] + input[hi]) / 2.0] | |
return result | |
def minimum(input, labels=None, index=None): | |
""" | |
Calculate the minimum of the values of an array over labeled regions. | |
Parameters | |
---------- | |
input : array_like | |
Array_like of values. For each region specified by `labels`, the | |
minimal values of `input` over the region is computed. | |
labels : array_like, optional | |
An array_like of integers marking different regions over which the | |
minimum value of `input` is to be computed. `labels` must have the | |
same shape as `input`. If `labels` is not specified, the minimum | |
over the whole array is returned. | |
index : array_like, optional | |
A list of region labels that are taken into account for computing the | |
minima. If index is None, the minimum over all elements where `labels` | |
is non-zero is returned. | |
Returns | |
------- | |
minimum : float or list of floats | |
List of minima of `input` over the regions determined by `labels` and | |
whose index is in `index`. If `index` or `labels` are not specified, a | |
float is returned: the minimal value of `input` if `labels` is None, | |
and the minimal value of elements where `labels` is greater than zero | |
if `index` is None. | |
See Also | |
-------- | |
label, maximum, median, minimum_position, extrema, sum, mean, variance, | |
standard_deviation | |
Notes | |
----- | |
The function returns a Python list and not a NumPy array, use | |
`np.array` to convert the list to an array. | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> a = np.array([[1, 2, 0, 0], | |
... [5, 3, 0, 4], | |
... [0, 0, 0, 7], | |
... [9, 3, 0, 0]]) | |
>>> labels, labels_nb = ndimage.label(a) | |
>>> labels | |
array([[1, 1, 0, 0], | |
[1, 1, 0, 2], | |
[0, 0, 0, 2], | |
[3, 3, 0, 0]]) | |
>>> ndimage.minimum(a, labels=labels, index=np.arange(1, labels_nb + 1)) | |
[1.0, 4.0, 3.0] | |
>>> ndimage.minimum(a) | |
0.0 | |
>>> ndimage.minimum(a, labels=labels) | |
1.0 | |
""" | |
return _select(input, labels, index, find_min=True)[0] | |
def maximum(input, labels=None, index=None): | |
""" | |
Calculate the maximum of the values of an array over labeled regions. | |
Parameters | |
---------- | |
input : array_like | |
Array_like of values. For each region specified by `labels`, the | |
maximal values of `input` over the region is computed. | |
labels : array_like, optional | |
An array of integers marking different regions over which the | |
maximum value of `input` is to be computed. `labels` must have the | |
same shape as `input`. If `labels` is not specified, the maximum | |
over the whole array is returned. | |
index : array_like, optional | |
A list of region labels that are taken into account for computing the | |
maxima. If index is None, the maximum over all elements where `labels` | |
is non-zero is returned. | |
Returns | |
------- | |
output : float or list of floats | |
List of maxima of `input` over the regions determined by `labels` and | |
whose index is in `index`. If `index` or `labels` are not specified, a | |
float is returned: the maximal value of `input` if `labels` is None, | |
and the maximal value of elements where `labels` is greater than zero | |
if `index` is None. | |
See Also | |
-------- | |
label, minimum, median, maximum_position, extrema, sum, mean, variance, | |
standard_deviation | |
Notes | |
----- | |
The function returns a Python list and not a NumPy array, use | |
`np.array` to convert the list to an array. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> a = np.arange(16).reshape((4,4)) | |
>>> a | |
array([[ 0, 1, 2, 3], | |
[ 4, 5, 6, 7], | |
[ 8, 9, 10, 11], | |
[12, 13, 14, 15]]) | |
>>> labels = np.zeros_like(a) | |
>>> labels[:2,:2] = 1 | |
>>> labels[2:, 1:3] = 2 | |
>>> labels | |
array([[1, 1, 0, 0], | |
[1, 1, 0, 0], | |
[0, 2, 2, 0], | |
[0, 2, 2, 0]]) | |
>>> from scipy import ndimage | |
>>> ndimage.maximum(a) | |
15.0 | |
>>> ndimage.maximum(a, labels=labels, index=[1,2]) | |
[5.0, 14.0] | |
>>> ndimage.maximum(a, labels=labels) | |
14.0 | |
>>> b = np.array([[1, 2, 0, 0], | |
... [5, 3, 0, 4], | |
... [0, 0, 0, 7], | |
... [9, 3, 0, 0]]) | |
>>> labels, labels_nb = ndimage.label(b) | |
>>> labels | |
array([[1, 1, 0, 0], | |
[1, 1, 0, 2], | |
[0, 0, 0, 2], | |
[3, 3, 0, 0]]) | |
>>> ndimage.maximum(b, labels=labels, index=np.arange(1, labels_nb + 1)) | |
[5.0, 7.0, 9.0] | |
""" | |
return _select(input, labels, index, find_max=True)[0] | |
def median(input, labels=None, index=None): | |
""" | |
Calculate the median of the values of an array over labeled regions. | |
Parameters | |
---------- | |
input : array_like | |
Array_like of values. For each region specified by `labels`, the | |
median value of `input` over the region is computed. | |
labels : array_like, optional | |
An array_like of integers marking different regions over which the | |
median value of `input` is to be computed. `labels` must have the | |
same shape as `input`. If `labels` is not specified, the median | |
over the whole array is returned. | |
index : array_like, optional | |
A list of region labels that are taken into account for computing the | |
medians. If index is None, the median over all elements where `labels` | |
is non-zero is returned. | |
Returns | |
------- | |
median : float or list of floats | |
List of medians of `input` over the regions determined by `labels` and | |
whose index is in `index`. If `index` or `labels` are not specified, a | |
float is returned: the median value of `input` if `labels` is None, | |
and the median value of elements where `labels` is greater than zero | |
if `index` is None. | |
See Also | |
-------- | |
label, minimum, maximum, extrema, sum, mean, variance, standard_deviation | |
Notes | |
----- | |
The function returns a Python list and not a NumPy array, use | |
`np.array` to convert the list to an array. | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> a = np.array([[1, 2, 0, 1], | |
... [5, 3, 0, 4], | |
... [0, 0, 0, 7], | |
... [9, 3, 0, 0]]) | |
>>> labels, labels_nb = ndimage.label(a) | |
>>> labels | |
array([[1, 1, 0, 2], | |
[1, 1, 0, 2], | |
[0, 0, 0, 2], | |
[3, 3, 0, 0]]) | |
>>> ndimage.median(a, labels=labels, index=np.arange(1, labels_nb + 1)) | |
[2.5, 4.0, 6.0] | |
>>> ndimage.median(a) | |
1.0 | |
>>> ndimage.median(a, labels=labels) | |
3.0 | |
""" | |
return _select(input, labels, index, find_median=True)[0] | |
def minimum_position(input, labels=None, index=None): | |
""" | |
Find the positions of the minimums of the values of an array at labels. | |
Parameters | |
---------- | |
input : array_like | |
Array_like of values. | |
labels : array_like, optional | |
An array of integers marking different regions over which the | |
position of the minimum value of `input` is to be computed. | |
`labels` must have the same shape as `input`. If `labels` is not | |
specified, the location of the first minimum over the whole | |
array is returned. | |
The `labels` argument only works when `index` is specified. | |
index : array_like, optional | |
A list of region labels that are taken into account for finding the | |
location of the minima. If `index` is None, the ``first`` minimum | |
over all elements where `labels` is non-zero is returned. | |
The `index` argument only works when `labels` is specified. | |
Returns | |
------- | |
output : list of tuples of ints | |
Tuple of ints or list of tuples of ints that specify the location | |
of minima of `input` over the regions determined by `labels` and | |
whose index is in `index`. | |
If `index` or `labels` are not specified, a tuple of ints is | |
returned specifying the location of the first minimal value of `input`. | |
See Also | |
-------- | |
label, minimum, median, maximum_position, extrema, sum, mean, variance, | |
standard_deviation | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> a = np.array([[10, 20, 30], | |
... [40, 80, 100], | |
... [1, 100, 200]]) | |
>>> b = np.array([[1, 2, 0, 1], | |
... [5, 3, 0, 4], | |
... [0, 0, 0, 7], | |
... [9, 3, 0, 0]]) | |
>>> from scipy import ndimage | |
>>> ndimage.minimum_position(a) | |
(2, 0) | |
>>> ndimage.minimum_position(b) | |
(0, 2) | |
Features to process can be specified using `labels` and `index`: | |
>>> label, pos = ndimage.label(a) | |
>>> ndimage.minimum_position(a, label, index=np.arange(1, pos+1)) | |
[(2, 0)] | |
>>> label, pos = ndimage.label(b) | |
>>> ndimage.minimum_position(b, label, index=np.arange(1, pos+1)) | |
[(0, 0), (0, 3), (3, 1)] | |
""" | |
dims = numpy.array(numpy.asarray(input).shape) | |
# see numpy.unravel_index to understand this line. | |
dim_prod = numpy.cumprod([1] + list(dims[:0:-1]))[::-1] | |
result = _select(input, labels, index, find_min_positions=True)[0] | |
if numpy.isscalar(result): | |
return tuple((result // dim_prod) % dims) | |
return [tuple(v) for v in (result.reshape(-1, 1) // dim_prod) % dims] | |
def maximum_position(input, labels=None, index=None): | |
""" | |
Find the positions of the maximums of the values of an array at labels. | |
For each region specified by `labels`, the position of the maximum | |
value of `input` within the region is returned. | |
Parameters | |
---------- | |
input : array_like | |
Array_like of values. | |
labels : array_like, optional | |
An array of integers marking different regions over which the | |
position of the maximum value of `input` is to be computed. | |
`labels` must have the same shape as `input`. If `labels` is not | |
specified, the location of the first maximum over the whole | |
array is returned. | |
The `labels` argument only works when `index` is specified. | |
index : array_like, optional | |
A list of region labels that are taken into account for finding the | |
location of the maxima. If `index` is None, the first maximum | |
over all elements where `labels` is non-zero is returned. | |
The `index` argument only works when `labels` is specified. | |
Returns | |
------- | |
output : list of tuples of ints | |
List of tuples of ints that specify the location of maxima of | |
`input` over the regions determined by `labels` and whose index | |
is in `index`. | |
If `index` or `labels` are not specified, a tuple of ints is | |
returned specifying the location of the ``first`` maximal value | |
of `input`. | |
See Also | |
-------- | |
label, minimum, median, maximum_position, extrema, sum, mean, variance, | |
standard_deviation | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> a = np.array([[1, 2, 0, 0], | |
... [5, 3, 0, 4], | |
... [0, 0, 0, 7], | |
... [9, 3, 0, 0]]) | |
>>> ndimage.maximum_position(a) | |
(3, 0) | |
Features to process can be specified using `labels` and `index`: | |
>>> lbl = np.array([[0, 1, 2, 3], | |
... [0, 1, 2, 3], | |
... [0, 1, 2, 3], | |
... [0, 1, 2, 3]]) | |
>>> ndimage.maximum_position(a, lbl, 1) | |
(1, 1) | |
If no index is given, non-zero `labels` are processed: | |
>>> ndimage.maximum_position(a, lbl) | |
(2, 3) | |
If there are no maxima, the position of the first element is returned: | |
>>> ndimage.maximum_position(a, lbl, 2) | |
(0, 2) | |
""" | |
dims = numpy.array(numpy.asarray(input).shape) | |
# see numpy.unravel_index to understand this line. | |
dim_prod = numpy.cumprod([1] + list(dims[:0:-1]))[::-1] | |
result = _select(input, labels, index, find_max_positions=True)[0] | |
if numpy.isscalar(result): | |
return tuple((result // dim_prod) % dims) | |
return [tuple(v) for v in (result.reshape(-1, 1) // dim_prod) % dims] | |
def extrema(input, labels=None, index=None): | |
""" | |
Calculate the minimums and maximums of the values of an array | |
at labels, along with their positions. | |
Parameters | |
---------- | |
input : ndarray | |
N-D image data to process. | |
labels : ndarray, optional | |
Labels of features in input. | |
If not None, must be same shape as `input`. | |
index : int or sequence of ints, optional | |
Labels to include in output. If None (default), all values where | |
non-zero `labels` are used. | |
Returns | |
------- | |
minimums, maximums : int or ndarray | |
Values of minimums and maximums in each feature. | |
min_positions, max_positions : tuple or list of tuples | |
Each tuple gives the N-D coordinates of the corresponding minimum | |
or maximum. | |
See Also | |
-------- | |
maximum, minimum, maximum_position, minimum_position, center_of_mass | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> a = np.array([[1, 2, 0, 0], | |
... [5, 3, 0, 4], | |
... [0, 0, 0, 7], | |
... [9, 3, 0, 0]]) | |
>>> from scipy import ndimage | |
>>> ndimage.extrema(a) | |
(0, 9, (0, 2), (3, 0)) | |
Features to process can be specified using `labels` and `index`: | |
>>> lbl, nlbl = ndimage.label(a) | |
>>> ndimage.extrema(a, lbl, index=np.arange(1, nlbl+1)) | |
(array([1, 4, 3]), | |
array([5, 7, 9]), | |
[(0, 0), (1, 3), (3, 1)], | |
[(1, 0), (2, 3), (3, 0)]) | |
If no index is given, non-zero `labels` are processed: | |
>>> ndimage.extrema(a, lbl) | |
(1, 9, (0, 0), (3, 0)) | |
""" | |
dims = numpy.array(numpy.asarray(input).shape) | |
# see numpy.unravel_index to understand this line. | |
dim_prod = numpy.cumprod([1] + list(dims[:0:-1]))[::-1] | |
minimums, min_positions, maximums, max_positions = _select(input, labels, | |
index, | |
find_min=True, | |
find_max=True, | |
find_min_positions=True, | |
find_max_positions=True) | |
if numpy.isscalar(minimums): | |
return (minimums, maximums, tuple((min_positions // dim_prod) % dims), | |
tuple((max_positions // dim_prod) % dims)) | |
min_positions = [ | |
tuple(v) for v in (min_positions.reshape(-1, 1) // dim_prod) % dims | |
] | |
max_positions = [ | |
tuple(v) for v in (max_positions.reshape(-1, 1) // dim_prod) % dims | |
] | |
return minimums, maximums, min_positions, max_positions | |
def center_of_mass(input, labels=None, index=None): | |
""" | |
Calculate the center of mass of the values of an array at labels. | |
Parameters | |
---------- | |
input : ndarray | |
Data from which to calculate center-of-mass. The masses can either | |
be positive or negative. | |
labels : ndarray, optional | |
Labels for objects in `input`, as generated by `ndimage.label`. | |
Only used with `index`. Dimensions must be the same as `input`. | |
index : int or sequence of ints, optional | |
Labels for which to calculate centers-of-mass. If not specified, | |
the combined center of mass of all labels greater than zero | |
will be calculated. Only used with `labels`. | |
Returns | |
------- | |
center_of_mass : tuple, or list of tuples | |
Coordinates of centers-of-mass. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> a = np.array(([0,0,0,0], | |
... [0,1,1,0], | |
... [0,1,1,0], | |
... [0,1,1,0])) | |
>>> from scipy import ndimage | |
>>> ndimage.center_of_mass(a) | |
(2.0, 1.5) | |
Calculation of multiple objects in an image | |
>>> b = np.array(([0,1,1,0], | |
... [0,1,0,0], | |
... [0,0,0,0], | |
... [0,0,1,1], | |
... [0,0,1,1])) | |
>>> lbl = ndimage.label(b)[0] | |
>>> ndimage.center_of_mass(b, lbl, [1,2]) | |
[(0.33333333333333331, 1.3333333333333333), (3.5, 2.5)] | |
Negative masses are also accepted, which can occur for example when | |
bias is removed from measured data due to random noise. | |
>>> c = np.array(([-1,0,0,0], | |
... [0,-1,-1,0], | |
... [0,1,-1,0], | |
... [0,1,1,0])) | |
>>> ndimage.center_of_mass(c) | |
(-4.0, 1.0) | |
If there are division by zero issues, the function does not raise an | |
error but rather issues a RuntimeWarning before returning inf and/or NaN. | |
>>> d = np.array([-1, 1]) | |
>>> ndimage.center_of_mass(d) | |
(inf,) | |
""" | |
normalizer = sum(input, labels, index) | |
grids = numpy.ogrid[[slice(0, i) for i in input.shape]] | |
results = [sum(input * grids[dir].astype(float), labels, index) / normalizer | |
for dir in range(input.ndim)] | |
if numpy.isscalar(results[0]): | |
return tuple(results) | |
return [tuple(v) for v in numpy.array(results).T] | |
def histogram(input, min, max, bins, labels=None, index=None): | |
""" | |
Calculate the histogram of the values of an array, optionally at labels. | |
Histogram calculates the frequency of values in an array within bins | |
determined by `min`, `max`, and `bins`. The `labels` and `index` | |
keywords can limit the scope of the histogram to specified sub-regions | |
within the array. | |
Parameters | |
---------- | |
input : array_like | |
Data for which to calculate histogram. | |
min, max : int | |
Minimum and maximum values of range of histogram bins. | |
bins : int | |
Number of bins. | |
labels : array_like, optional | |
Labels for objects in `input`. | |
If not None, must be same shape as `input`. | |
index : int or sequence of ints, optional | |
Label or labels for which to calculate histogram. If None, all values | |
where label is greater than zero are used | |
Returns | |
------- | |
hist : ndarray | |
Histogram counts. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> a = np.array([[ 0. , 0.2146, 0.5962, 0. ], | |
... [ 0. , 0.7778, 0. , 0. ], | |
... [ 0. , 0. , 0. , 0. ], | |
... [ 0. , 0. , 0.7181, 0.2787], | |
... [ 0. , 0. , 0.6573, 0.3094]]) | |
>>> from scipy import ndimage | |
>>> ndimage.histogram(a, 0, 1, 10) | |
array([13, 0, 2, 1, 0, 1, 1, 2, 0, 0]) | |
With labels and no indices, non-zero elements are counted: | |
>>> lbl, nlbl = ndimage.label(a) | |
>>> ndimage.histogram(a, 0, 1, 10, lbl) | |
array([0, 0, 2, 1, 0, 1, 1, 2, 0, 0]) | |
Indices can be used to count only certain objects: | |
>>> ndimage.histogram(a, 0, 1, 10, lbl, 2) | |
array([0, 0, 1, 1, 0, 0, 1, 1, 0, 0]) | |
""" | |
_bins = numpy.linspace(min, max, bins + 1) | |
def _hist(vals): | |
return numpy.histogram(vals, _bins)[0] | |
return labeled_comprehension(input, labels, index, _hist, object, None, | |
pass_positions=False) | |
def watershed_ift(input, markers, structure=None, output=None): | |
""" | |
Apply watershed from markers using image foresting transform algorithm. | |
Parameters | |
---------- | |
input : array_like | |
Input. | |
markers : array_like | |
Markers are points within each watershed that form the beginning | |
of the process. Negative markers are considered background markers | |
which are processed after the other markers. | |
structure : structure element, optional | |
A structuring element defining the connectivity of the object can be | |
provided. If None, an element is generated with a squared | |
connectivity equal to one. | |
output : ndarray, optional | |
An output array can optionally be provided. The same shape as input. | |
Returns | |
------- | |
watershed_ift : ndarray | |
Output. Same shape as `input`. | |
References | |
---------- | |
.. [1] A.X. Falcao, J. Stolfi and R. de Alencar Lotufo, "The image | |
foresting transform: theory, algorithms, and applications", | |
Pattern Analysis and Machine Intelligence, vol. 26, pp. 19-29, 2004. | |
""" | |
input = numpy.asarray(input) | |
if input.dtype.type not in [numpy.uint8, numpy.uint16]: | |
raise TypeError('only 8 and 16 unsigned inputs are supported') | |
if structure is None: | |
structure = _morphology.generate_binary_structure(input.ndim, 1) | |
structure = numpy.asarray(structure, dtype=bool) | |
if structure.ndim != input.ndim: | |
raise RuntimeError('structure and input must have equal rank') | |
for ii in structure.shape: | |
if ii != 3: | |
raise RuntimeError('structure dimensions must be equal to 3') | |
if not structure.flags.contiguous: | |
structure = structure.copy() | |
markers = numpy.asarray(markers) | |
if input.shape != markers.shape: | |
raise RuntimeError('input and markers must have equal shape') | |
integral_types = [numpy.int8, | |
numpy.int16, | |
numpy.int32, | |
numpy.int64, | |
numpy.intc, | |
numpy.intp] | |
if markers.dtype.type not in integral_types: | |
raise RuntimeError('marker should be of integer type') | |
if isinstance(output, numpy.ndarray): | |
if output.dtype.type not in integral_types: | |
raise RuntimeError('output should be of integer type') | |
else: | |
output = markers.dtype | |
output = _ni_support._get_output(output, input) | |
_nd_image.watershed_ift(input, markers, structure, output) | |
return output | |