peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/ndimage
/tests
/test_measurements.py
import os.path | |
import numpy as np | |
from numpy.testing import ( | |
assert_, | |
assert_allclose, | |
assert_almost_equal, | |
assert_array_almost_equal, | |
assert_array_equal, | |
assert_equal, | |
suppress_warnings, | |
) | |
from pytest import raises as assert_raises | |
import scipy.ndimage as ndimage | |
from . import types | |
class Test_measurements_stats: | |
"""ndimage._measurements._stats() is a utility used by other functions.""" | |
def test_a(self): | |
x = [0, 1, 2, 6] | |
labels = [0, 0, 1, 1] | |
index = [0, 1] | |
for shp in [(4,), (2, 2)]: | |
x = np.array(x).reshape(shp) | |
labels = np.array(labels).reshape(shp) | |
counts, sums = ndimage._measurements._stats( | |
x, labels=labels, index=index) | |
assert_array_equal(counts, [2, 2]) | |
assert_array_equal(sums, [1.0, 8.0]) | |
def test_b(self): | |
# Same data as test_a, but different labels. The label 9 exceeds the | |
# length of 'labels', so this test will follow a different code path. | |
x = [0, 1, 2, 6] | |
labels = [0, 0, 9, 9] | |
index = [0, 9] | |
for shp in [(4,), (2, 2)]: | |
x = np.array(x).reshape(shp) | |
labels = np.array(labels).reshape(shp) | |
counts, sums = ndimage._measurements._stats( | |
x, labels=labels, index=index) | |
assert_array_equal(counts, [2, 2]) | |
assert_array_equal(sums, [1.0, 8.0]) | |
def test_a_centered(self): | |
x = [0, 1, 2, 6] | |
labels = [0, 0, 1, 1] | |
index = [0, 1] | |
for shp in [(4,), (2, 2)]: | |
x = np.array(x).reshape(shp) | |
labels = np.array(labels).reshape(shp) | |
counts, sums, centers = ndimage._measurements._stats( | |
x, labels=labels, index=index, centered=True) | |
assert_array_equal(counts, [2, 2]) | |
assert_array_equal(sums, [1.0, 8.0]) | |
assert_array_equal(centers, [0.5, 8.0]) | |
def test_b_centered(self): | |
x = [0, 1, 2, 6] | |
labels = [0, 0, 9, 9] | |
index = [0, 9] | |
for shp in [(4,), (2, 2)]: | |
x = np.array(x).reshape(shp) | |
labels = np.array(labels).reshape(shp) | |
counts, sums, centers = ndimage._measurements._stats( | |
x, labels=labels, index=index, centered=True) | |
assert_array_equal(counts, [2, 2]) | |
assert_array_equal(sums, [1.0, 8.0]) | |
assert_array_equal(centers, [0.5, 8.0]) | |
def test_nonint_labels(self): | |
x = [0, 1, 2, 6] | |
labels = [0.0, 0.0, 9.0, 9.0] | |
index = [0.0, 9.0] | |
for shp in [(4,), (2, 2)]: | |
x = np.array(x).reshape(shp) | |
labels = np.array(labels).reshape(shp) | |
counts, sums, centers = ndimage._measurements._stats( | |
x, labels=labels, index=index, centered=True) | |
assert_array_equal(counts, [2, 2]) | |
assert_array_equal(sums, [1.0, 8.0]) | |
assert_array_equal(centers, [0.5, 8.0]) | |
class Test_measurements_select: | |
"""ndimage._measurements._select() is a utility used by other functions.""" | |
def test_basic(self): | |
x = [0, 1, 6, 2] | |
cases = [ | |
([0, 0, 1, 1], [0, 1]), # "Small" integer labels | |
([0, 0, 9, 9], [0, 9]), # A label larger than len(labels) | |
([0.0, 0.0, 7.0, 7.0], [0.0, 7.0]), # Non-integer labels | |
] | |
for labels, index in cases: | |
result = ndimage._measurements._select( | |
x, labels=labels, index=index) | |
assert_(len(result) == 0) | |
result = ndimage._measurements._select( | |
x, labels=labels, index=index, find_max=True) | |
assert_(len(result) == 1) | |
assert_array_equal(result[0], [1, 6]) | |
result = ndimage._measurements._select( | |
x, labels=labels, index=index, find_min=True) | |
assert_(len(result) == 1) | |
assert_array_equal(result[0], [0, 2]) | |
result = ndimage._measurements._select( | |
x, labels=labels, index=index, find_min=True, | |
find_min_positions=True) | |
assert_(len(result) == 2) | |
assert_array_equal(result[0], [0, 2]) | |
assert_array_equal(result[1], [0, 3]) | |
assert_equal(result[1].dtype.kind, 'i') | |
result = ndimage._measurements._select( | |
x, labels=labels, index=index, find_max=True, | |
find_max_positions=True) | |
assert_(len(result) == 2) | |
assert_array_equal(result[0], [1, 6]) | |
assert_array_equal(result[1], [1, 2]) | |
assert_equal(result[1].dtype.kind, 'i') | |
def test_label01(): | |
data = np.ones([]) | |
out, n = ndimage.label(data) | |
assert_array_almost_equal(out, 1) | |
assert_equal(n, 1) | |
def test_label02(): | |
data = np.zeros([]) | |
out, n = ndimage.label(data) | |
assert_array_almost_equal(out, 0) | |
assert_equal(n, 0) | |
def test_label03(): | |
data = np.ones([1]) | |
out, n = ndimage.label(data) | |
assert_array_almost_equal(out, [1]) | |
assert_equal(n, 1) | |
def test_label04(): | |
data = np.zeros([1]) | |
out, n = ndimage.label(data) | |
assert_array_almost_equal(out, [0]) | |
assert_equal(n, 0) | |
def test_label05(): | |
data = np.ones([5]) | |
out, n = ndimage.label(data) | |
assert_array_almost_equal(out, [1, 1, 1, 1, 1]) | |
assert_equal(n, 1) | |
def test_label06(): | |
data = np.array([1, 0, 1, 1, 0, 1]) | |
out, n = ndimage.label(data) | |
assert_array_almost_equal(out, [1, 0, 2, 2, 0, 3]) | |
assert_equal(n, 3) | |
def test_label07(): | |
data = np.array([[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0]]) | |
out, n = ndimage.label(data) | |
assert_array_almost_equal(out, [[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0]]) | |
assert_equal(n, 0) | |
def test_label08(): | |
data = np.array([[1, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0], | |
[1, 1, 0, 0, 0, 0], | |
[1, 1, 0, 0, 0, 0], | |
[0, 0, 0, 1, 1, 0]]) | |
out, n = ndimage.label(data) | |
assert_array_almost_equal(out, [[1, 0, 0, 0, 0, 0], | |
[0, 0, 2, 2, 0, 0], | |
[0, 0, 2, 2, 2, 0], | |
[3, 3, 0, 0, 0, 0], | |
[3, 3, 0, 0, 0, 0], | |
[0, 0, 0, 4, 4, 0]]) | |
assert_equal(n, 4) | |
def test_label09(): | |
data = np.array([[1, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0], | |
[1, 1, 0, 0, 0, 0], | |
[1, 1, 0, 0, 0, 0], | |
[0, 0, 0, 1, 1, 0]]) | |
struct = ndimage.generate_binary_structure(2, 2) | |
out, n = ndimage.label(data, struct) | |
assert_array_almost_equal(out, [[1, 0, 0, 0, 0, 0], | |
[0, 0, 2, 2, 0, 0], | |
[0, 0, 2, 2, 2, 0], | |
[2, 2, 0, 0, 0, 0], | |
[2, 2, 0, 0, 0, 0], | |
[0, 0, 0, 3, 3, 0]]) | |
assert_equal(n, 3) | |
def test_label10(): | |
data = np.array([[0, 0, 0, 0, 0, 0], | |
[0, 1, 1, 0, 1, 0], | |
[0, 1, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0, 0]]) | |
struct = ndimage.generate_binary_structure(2, 2) | |
out, n = ndimage.label(data, struct) | |
assert_array_almost_equal(out, [[0, 0, 0, 0, 0, 0], | |
[0, 1, 1, 0, 1, 0], | |
[0, 1, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0, 0]]) | |
assert_equal(n, 1) | |
def test_label11(): | |
for type in types: | |
data = np.array([[1, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0], | |
[1, 1, 0, 0, 0, 0], | |
[1, 1, 0, 0, 0, 0], | |
[0, 0, 0, 1, 1, 0]], type) | |
out, n = ndimage.label(data) | |
expected = [[1, 0, 0, 0, 0, 0], | |
[0, 0, 2, 2, 0, 0], | |
[0, 0, 2, 2, 2, 0], | |
[3, 3, 0, 0, 0, 0], | |
[3, 3, 0, 0, 0, 0], | |
[0, 0, 0, 4, 4, 0]] | |
assert_array_almost_equal(out, expected) | |
assert_equal(n, 4) | |
def test_label11_inplace(): | |
for type in types: | |
data = np.array([[1, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0], | |
[1, 1, 0, 0, 0, 0], | |
[1, 1, 0, 0, 0, 0], | |
[0, 0, 0, 1, 1, 0]], type) | |
n = ndimage.label(data, output=data) | |
expected = [[1, 0, 0, 0, 0, 0], | |
[0, 0, 2, 2, 0, 0], | |
[0, 0, 2, 2, 2, 0], | |
[3, 3, 0, 0, 0, 0], | |
[3, 3, 0, 0, 0, 0], | |
[0, 0, 0, 4, 4, 0]] | |
assert_array_almost_equal(data, expected) | |
assert_equal(n, 4) | |
def test_label12(): | |
for type in types: | |
data = np.array([[0, 0, 0, 0, 1, 1], | |
[0, 0, 0, 0, 0, 1], | |
[0, 0, 1, 0, 1, 1], | |
[0, 0, 1, 1, 1, 1], | |
[0, 0, 0, 1, 1, 0]], type) | |
out, n = ndimage.label(data) | |
expected = [[0, 0, 0, 0, 1, 1], | |
[0, 0, 0, 0, 0, 1], | |
[0, 0, 1, 0, 1, 1], | |
[0, 0, 1, 1, 1, 1], | |
[0, 0, 0, 1, 1, 0]] | |
assert_array_almost_equal(out, expected) | |
assert_equal(n, 1) | |
def test_label13(): | |
for type in types: | |
data = np.array([[1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1], | |
[1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1], | |
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], | |
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], | |
type) | |
out, n = ndimage.label(data) | |
expected = [[1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1], | |
[1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1], | |
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], | |
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] | |
assert_array_almost_equal(out, expected) | |
assert_equal(n, 1) | |
def test_label_output_typed(): | |
data = np.ones([5]) | |
for t in types: | |
output = np.zeros([5], dtype=t) | |
n = ndimage.label(data, output=output) | |
assert_array_almost_equal(output, 1) | |
assert_equal(n, 1) | |
def test_label_output_dtype(): | |
data = np.ones([5]) | |
for t in types: | |
output, n = ndimage.label(data, output=t) | |
assert_array_almost_equal(output, 1) | |
assert output.dtype == t | |
def test_label_output_wrong_size(): | |
data = np.ones([5]) | |
for t in types: | |
output = np.zeros([10], t) | |
assert_raises((RuntimeError, ValueError), | |
ndimage.label, data, output=output) | |
def test_label_structuring_elements(): | |
data = np.loadtxt(os.path.join(os.path.dirname( | |
__file__), "data", "label_inputs.txt")) | |
strels = np.loadtxt(os.path.join( | |
os.path.dirname(__file__), "data", "label_strels.txt")) | |
results = np.loadtxt(os.path.join( | |
os.path.dirname(__file__), "data", "label_results.txt")) | |
data = data.reshape((-1, 7, 7)) | |
strels = strels.reshape((-1, 3, 3)) | |
results = results.reshape((-1, 7, 7)) | |
r = 0 | |
for i in range(data.shape[0]): | |
d = data[i, :, :] | |
for j in range(strels.shape[0]): | |
s = strels[j, :, :] | |
assert_equal(ndimage.label(d, s)[0], results[r, :, :]) | |
r += 1 | |
def test_ticket_742(): | |
def SE(img, thresh=.7, size=4): | |
mask = img > thresh | |
rank = len(mask.shape) | |
la, co = ndimage.label(mask, | |
ndimage.generate_binary_structure(rank, rank)) | |
_ = ndimage.find_objects(la) | |
if np.dtype(np.intp) != np.dtype('i'): | |
shape = (3, 1240, 1240) | |
a = np.random.rand(np.prod(shape)).reshape(shape) | |
# shouldn't crash | |
SE(a) | |
def test_gh_issue_3025(): | |
"""Github issue #3025 - improper merging of labels""" | |
d = np.zeros((60, 320)) | |
d[:, :257] = 1 | |
d[:, 260:] = 1 | |
d[36, 257] = 1 | |
d[35, 258] = 1 | |
d[35, 259] = 1 | |
assert ndimage.label(d, np.ones((3, 3)))[1] == 1 | |
def test_label_default_dtype(): | |
test_array = np.random.rand(10, 10) | |
label, no_features = ndimage.label(test_array > 0.5) | |
assert_(label.dtype in (np.int32, np.int64)) | |
# Shouldn't raise an exception | |
ndimage.find_objects(label) | |
def test_find_objects01(): | |
data = np.ones([], dtype=int) | |
out = ndimage.find_objects(data) | |
assert_(out == [()]) | |
def test_find_objects02(): | |
data = np.zeros([], dtype=int) | |
out = ndimage.find_objects(data) | |
assert_(out == []) | |
def test_find_objects03(): | |
data = np.ones([1], dtype=int) | |
out = ndimage.find_objects(data) | |
assert_equal(out, [(slice(0, 1, None),)]) | |
def test_find_objects04(): | |
data = np.zeros([1], dtype=int) | |
out = ndimage.find_objects(data) | |
assert_equal(out, []) | |
def test_find_objects05(): | |
data = np.ones([5], dtype=int) | |
out = ndimage.find_objects(data) | |
assert_equal(out, [(slice(0, 5, None),)]) | |
def test_find_objects06(): | |
data = np.array([1, 0, 2, 2, 0, 3]) | |
out = ndimage.find_objects(data) | |
assert_equal(out, [(slice(0, 1, None),), | |
(slice(2, 4, None),), | |
(slice(5, 6, None),)]) | |
def test_find_objects07(): | |
data = np.array([[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0]]) | |
out = ndimage.find_objects(data) | |
assert_equal(out, []) | |
def test_find_objects08(): | |
data = np.array([[1, 0, 0, 0, 0, 0], | |
[0, 0, 2, 2, 0, 0], | |
[0, 0, 2, 2, 2, 0], | |
[3, 3, 0, 0, 0, 0], | |
[3, 3, 0, 0, 0, 0], | |
[0, 0, 0, 4, 4, 0]]) | |
out = ndimage.find_objects(data) | |
assert_equal(out, [(slice(0, 1, None), slice(0, 1, None)), | |
(slice(1, 3, None), slice(2, 5, None)), | |
(slice(3, 5, None), slice(0, 2, None)), | |
(slice(5, 6, None), slice(3, 5, None))]) | |
def test_find_objects09(): | |
data = np.array([[1, 0, 0, 0, 0, 0], | |
[0, 0, 2, 2, 0, 0], | |
[0, 0, 2, 2, 2, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 4, 4, 0]]) | |
out = ndimage.find_objects(data) | |
assert_equal(out, [(slice(0, 1, None), slice(0, 1, None)), | |
(slice(1, 3, None), slice(2, 5, None)), | |
None, | |
(slice(5, 6, None), slice(3, 5, None))]) | |
def test_value_indices01(): | |
"Test dictionary keys and entries" | |
data = np.array([[1, 0, 0, 0, 0, 0], | |
[0, 0, 2, 2, 0, 0], | |
[0, 0, 2, 2, 2, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 4, 4, 0]]) | |
vi = ndimage.value_indices(data, ignore_value=0) | |
true_keys = [1, 2, 4] | |
assert_equal(list(vi.keys()), true_keys) | |
truevi = {} | |
for k in true_keys: | |
truevi[k] = np.where(data == k) | |
vi = ndimage.value_indices(data, ignore_value=0) | |
assert_equal(vi, truevi) | |
def test_value_indices02(): | |
"Test input checking" | |
data = np.zeros((5, 4), dtype=np.float32) | |
msg = "Parameter 'arr' must be an integer array" | |
with assert_raises(ValueError, match=msg): | |
ndimage.value_indices(data) | |
def test_value_indices03(): | |
"Test different input array shapes, from 1-D to 4-D" | |
for shape in [(36,), (18, 2), (3, 3, 4), (3, 3, 2, 2)]: | |
a = np.array((12*[1]+12*[2]+12*[3]), dtype=np.int32).reshape(shape) | |
trueKeys = np.unique(a) | |
vi = ndimage.value_indices(a) | |
assert_equal(list(vi.keys()), list(trueKeys)) | |
for k in trueKeys: | |
trueNdx = np.where(a == k) | |
assert_equal(vi[k], trueNdx) | |
def test_sum01(): | |
for type in types: | |
input = np.array([], type) | |
output = ndimage.sum(input) | |
assert_equal(output, 0.0) | |
def test_sum02(): | |
for type in types: | |
input = np.zeros([0, 4], type) | |
output = ndimage.sum(input) | |
assert_equal(output, 0.0) | |
def test_sum03(): | |
for type in types: | |
input = np.ones([], type) | |
output = ndimage.sum(input) | |
assert_almost_equal(output, 1.0) | |
def test_sum04(): | |
for type in types: | |
input = np.array([1, 2], type) | |
output = ndimage.sum(input) | |
assert_almost_equal(output, 3.0) | |
def test_sum05(): | |
for type in types: | |
input = np.array([[1, 2], [3, 4]], type) | |
output = ndimage.sum(input) | |
assert_almost_equal(output, 10.0) | |
def test_sum06(): | |
labels = np.array([], bool) | |
for type in types: | |
input = np.array([], type) | |
output = ndimage.sum(input, labels=labels) | |
assert_equal(output, 0.0) | |
def test_sum07(): | |
labels = np.ones([0, 4], bool) | |
for type in types: | |
input = np.zeros([0, 4], type) | |
output = ndimage.sum(input, labels=labels) | |
assert_equal(output, 0.0) | |
def test_sum08(): | |
labels = np.array([1, 0], bool) | |
for type in types: | |
input = np.array([1, 2], type) | |
output = ndimage.sum(input, labels=labels) | |
assert_equal(output, 1.0) | |
def test_sum09(): | |
labels = np.array([1, 0], bool) | |
for type in types: | |
input = np.array([[1, 2], [3, 4]], type) | |
output = ndimage.sum(input, labels=labels) | |
assert_almost_equal(output, 4.0) | |
def test_sum10(): | |
labels = np.array([1, 0], bool) | |
input = np.array([[1, 2], [3, 4]], bool) | |
output = ndimage.sum(input, labels=labels) | |
assert_almost_equal(output, 2.0) | |
def test_sum11(): | |
labels = np.array([1, 2], np.int8) | |
for type in types: | |
input = np.array([[1, 2], [3, 4]], type) | |
output = ndimage.sum(input, labels=labels, | |
index=2) | |
assert_almost_equal(output, 6.0) | |
def test_sum12(): | |
labels = np.array([[1, 2], [2, 4]], np.int8) | |
for type in types: | |
input = np.array([[1, 2], [3, 4]], type) | |
output = ndimage.sum(input, labels=labels, index=[4, 8, 2]) | |
assert_array_almost_equal(output, [4.0, 0.0, 5.0]) | |
def test_sum_labels(): | |
labels = np.array([[1, 2], [2, 4]], np.int8) | |
for type in types: | |
input = np.array([[1, 2], [3, 4]], type) | |
output_sum = ndimage.sum(input, labels=labels, index=[4, 8, 2]) | |
output_labels = ndimage.sum_labels( | |
input, labels=labels, index=[4, 8, 2]) | |
assert (output_sum == output_labels).all() | |
assert_array_almost_equal(output_labels, [4.0, 0.0, 5.0]) | |
def test_mean01(): | |
labels = np.array([1, 0], bool) | |
for type in types: | |
input = np.array([[1, 2], [3, 4]], type) | |
output = ndimage.mean(input, labels=labels) | |
assert_almost_equal(output, 2.0) | |
def test_mean02(): | |
labels = np.array([1, 0], bool) | |
input = np.array([[1, 2], [3, 4]], bool) | |
output = ndimage.mean(input, labels=labels) | |
assert_almost_equal(output, 1.0) | |
def test_mean03(): | |
labels = np.array([1, 2]) | |
for type in types: | |
input = np.array([[1, 2], [3, 4]], type) | |
output = ndimage.mean(input, labels=labels, | |
index=2) | |
assert_almost_equal(output, 3.0) | |
def test_mean04(): | |
labels = np.array([[1, 2], [2, 4]], np.int8) | |
with np.errstate(all='ignore'): | |
for type in types: | |
input = np.array([[1, 2], [3, 4]], type) | |
output = ndimage.mean(input, labels=labels, | |
index=[4, 8, 2]) | |
assert_array_almost_equal(output[[0, 2]], [4.0, 2.5]) | |
assert_(np.isnan(output[1])) | |
def test_minimum01(): | |
labels = np.array([1, 0], bool) | |
for type in types: | |
input = np.array([[1, 2], [3, 4]], type) | |
output = ndimage.minimum(input, labels=labels) | |
assert_almost_equal(output, 1.0) | |
def test_minimum02(): | |
labels = np.array([1, 0], bool) | |
input = np.array([[2, 2], [2, 4]], bool) | |
output = ndimage.minimum(input, labels=labels) | |
assert_almost_equal(output, 1.0) | |
def test_minimum03(): | |
labels = np.array([1, 2]) | |
for type in types: | |
input = np.array([[1, 2], [3, 4]], type) | |
output = ndimage.minimum(input, labels=labels, | |
index=2) | |
assert_almost_equal(output, 2.0) | |
def test_minimum04(): | |
labels = np.array([[1, 2], [2, 3]]) | |
for type in types: | |
input = np.array([[1, 2], [3, 4]], type) | |
output = ndimage.minimum(input, labels=labels, | |
index=[2, 3, 8]) | |
assert_array_almost_equal(output, [2.0, 4.0, 0.0]) | |
def test_maximum01(): | |
labels = np.array([1, 0], bool) | |
for type in types: | |
input = np.array([[1, 2], [3, 4]], type) | |
output = ndimage.maximum(input, labels=labels) | |
assert_almost_equal(output, 3.0) | |
def test_maximum02(): | |
labels = np.array([1, 0], bool) | |
input = np.array([[2, 2], [2, 4]], bool) | |
output = ndimage.maximum(input, labels=labels) | |
assert_almost_equal(output, 1.0) | |
def test_maximum03(): | |
labels = np.array([1, 2]) | |
for type in types: | |
input = np.array([[1, 2], [3, 4]], type) | |
output = ndimage.maximum(input, labels=labels, | |
index=2) | |
assert_almost_equal(output, 4.0) | |
def test_maximum04(): | |
labels = np.array([[1, 2], [2, 3]]) | |
for type in types: | |
input = np.array([[1, 2], [3, 4]], type) | |
output = ndimage.maximum(input, labels=labels, | |
index=[2, 3, 8]) | |
assert_array_almost_equal(output, [3.0, 4.0, 0.0]) | |
def test_maximum05(): | |
# Regression test for ticket #501 (Trac) | |
x = np.array([-3, -2, -1]) | |
assert_equal(ndimage.maximum(x), -1) | |
def test_median01(): | |
a = np.array([[1, 2, 0, 1], | |
[5, 3, 0, 4], | |
[0, 0, 0, 7], | |
[9, 3, 0, 0]]) | |
labels = np.array([[1, 1, 0, 2], | |
[1, 1, 0, 2], | |
[0, 0, 0, 2], | |
[3, 3, 0, 0]]) | |
output = ndimage.median(a, labels=labels, index=[1, 2, 3]) | |
assert_array_almost_equal(output, [2.5, 4.0, 6.0]) | |
def test_median02(): | |
a = np.array([[1, 2, 0, 1], | |
[5, 3, 0, 4], | |
[0, 0, 0, 7], | |
[9, 3, 0, 0]]) | |
output = ndimage.median(a) | |
assert_almost_equal(output, 1.0) | |
def test_median03(): | |
a = np.array([[1, 2, 0, 1], | |
[5, 3, 0, 4], | |
[0, 0, 0, 7], | |
[9, 3, 0, 0]]) | |
labels = np.array([[1, 1, 0, 2], | |
[1, 1, 0, 2], | |
[0, 0, 0, 2], | |
[3, 3, 0, 0]]) | |
output = ndimage.median(a, labels=labels) | |
assert_almost_equal(output, 3.0) | |
def test_median_gh12836_bool(): | |
# test boolean addition fix on example from gh-12836 | |
a = np.asarray([1, 1], dtype=bool) | |
output = ndimage.median(a, labels=np.ones((2,)), index=[1]) | |
assert_array_almost_equal(output, [1.0]) | |
def test_median_no_int_overflow(): | |
# test integer overflow fix on example from gh-12836 | |
a = np.asarray([65, 70], dtype=np.int8) | |
output = ndimage.median(a, labels=np.ones((2,)), index=[1]) | |
assert_array_almost_equal(output, [67.5]) | |
def test_variance01(): | |
with np.errstate(all='ignore'): | |
for type in types: | |
input = np.array([], type) | |
with suppress_warnings() as sup: | |
sup.filter(RuntimeWarning, "Mean of empty slice") | |
output = ndimage.variance(input) | |
assert_(np.isnan(output)) | |
def test_variance02(): | |
for type in types: | |
input = np.array([1], type) | |
output = ndimage.variance(input) | |
assert_almost_equal(output, 0.0) | |
def test_variance03(): | |
for type in types: | |
input = np.array([1, 3], type) | |
output = ndimage.variance(input) | |
assert_almost_equal(output, 1.0) | |
def test_variance04(): | |
input = np.array([1, 0], bool) | |
output = ndimage.variance(input) | |
assert_almost_equal(output, 0.25) | |
def test_variance05(): | |
labels = [2, 2, 3] | |
for type in types: | |
input = np.array([1, 3, 8], type) | |
output = ndimage.variance(input, labels, 2) | |
assert_almost_equal(output, 1.0) | |
def test_variance06(): | |
labels = [2, 2, 3, 3, 4] | |
with np.errstate(all='ignore'): | |
for type in types: | |
input = np.array([1, 3, 8, 10, 8], type) | |
output = ndimage.variance(input, labels, [2, 3, 4]) | |
assert_array_almost_equal(output, [1.0, 1.0, 0.0]) | |
def test_standard_deviation01(): | |
with np.errstate(all='ignore'): | |
for type in types: | |
input = np.array([], type) | |
with suppress_warnings() as sup: | |
sup.filter(RuntimeWarning, "Mean of empty slice") | |
output = ndimage.standard_deviation(input) | |
assert_(np.isnan(output)) | |
def test_standard_deviation02(): | |
for type in types: | |
input = np.array([1], type) | |
output = ndimage.standard_deviation(input) | |
assert_almost_equal(output, 0.0) | |
def test_standard_deviation03(): | |
for type in types: | |
input = np.array([1, 3], type) | |
output = ndimage.standard_deviation(input) | |
assert_almost_equal(output, np.sqrt(1.0)) | |
def test_standard_deviation04(): | |
input = np.array([1, 0], bool) | |
output = ndimage.standard_deviation(input) | |
assert_almost_equal(output, 0.5) | |
def test_standard_deviation05(): | |
labels = [2, 2, 3] | |
for type in types: | |
input = np.array([1, 3, 8], type) | |
output = ndimage.standard_deviation(input, labels, 2) | |
assert_almost_equal(output, 1.0) | |
def test_standard_deviation06(): | |
labels = [2, 2, 3, 3, 4] | |
with np.errstate(all='ignore'): | |
for type in types: | |
input = np.array([1, 3, 8, 10, 8], type) | |
output = ndimage.standard_deviation(input, labels, [2, 3, 4]) | |
assert_array_almost_equal(output, [1.0, 1.0, 0.0]) | |
def test_standard_deviation07(): | |
labels = [1] | |
with np.errstate(all='ignore'): | |
for type in types: | |
input = np.array([-0.00619519], type) | |
output = ndimage.standard_deviation(input, labels, [1]) | |
assert_array_almost_equal(output, [0]) | |
def test_minimum_position01(): | |
labels = np.array([1, 0], bool) | |
for type in types: | |
input = np.array([[1, 2], [3, 4]], type) | |
output = ndimage.minimum_position(input, labels=labels) | |
assert_equal(output, (0, 0)) | |
def test_minimum_position02(): | |
for type in types: | |
input = np.array([[5, 4, 2, 5], | |
[3, 7, 0, 2], | |
[1, 5, 1, 1]], type) | |
output = ndimage.minimum_position(input) | |
assert_equal(output, (1, 2)) | |
def test_minimum_position03(): | |
input = np.array([[5, 4, 2, 5], | |
[3, 7, 0, 2], | |
[1, 5, 1, 1]], bool) | |
output = ndimage.minimum_position(input) | |
assert_equal(output, (1, 2)) | |
def test_minimum_position04(): | |
input = np.array([[5, 4, 2, 5], | |
[3, 7, 1, 2], | |
[1, 5, 1, 1]], bool) | |
output = ndimage.minimum_position(input) | |
assert_equal(output, (0, 0)) | |
def test_minimum_position05(): | |
labels = [1, 2, 0, 4] | |
for type in types: | |
input = np.array([[5, 4, 2, 5], | |
[3, 7, 0, 2], | |
[1, 5, 2, 3]], type) | |
output = ndimage.minimum_position(input, labels) | |
assert_equal(output, (2, 0)) | |
def test_minimum_position06(): | |
labels = [1, 2, 3, 4] | |
for type in types: | |
input = np.array([[5, 4, 2, 5], | |
[3, 7, 0, 2], | |
[1, 5, 1, 1]], type) | |
output = ndimage.minimum_position(input, labels, 2) | |
assert_equal(output, (0, 1)) | |
def test_minimum_position07(): | |
labels = [1, 2, 3, 4] | |
for type in types: | |
input = np.array([[5, 4, 2, 5], | |
[3, 7, 0, 2], | |
[1, 5, 1, 1]], type) | |
output = ndimage.minimum_position(input, labels, | |
[2, 3]) | |
assert_equal(output[0], (0, 1)) | |
assert_equal(output[1], (1, 2)) | |
def test_maximum_position01(): | |
labels = np.array([1, 0], bool) | |
for type in types: | |
input = np.array([[1, 2], [3, 4]], type) | |
output = ndimage.maximum_position(input, | |
labels=labels) | |
assert_equal(output, (1, 0)) | |
def test_maximum_position02(): | |
for type in types: | |
input = np.array([[5, 4, 2, 5], | |
[3, 7, 8, 2], | |
[1, 5, 1, 1]], type) | |
output = ndimage.maximum_position(input) | |
assert_equal(output, (1, 2)) | |
def test_maximum_position03(): | |
input = np.array([[5, 4, 2, 5], | |
[3, 7, 8, 2], | |
[1, 5, 1, 1]], bool) | |
output = ndimage.maximum_position(input) | |
assert_equal(output, (0, 0)) | |
def test_maximum_position04(): | |
labels = [1, 2, 0, 4] | |
for type in types: | |
input = np.array([[5, 4, 2, 5], | |
[3, 7, 8, 2], | |
[1, 5, 1, 1]], type) | |
output = ndimage.maximum_position(input, labels) | |
assert_equal(output, (1, 1)) | |
def test_maximum_position05(): | |
labels = [1, 2, 0, 4] | |
for type in types: | |
input = np.array([[5, 4, 2, 5], | |
[3, 7, 8, 2], | |
[1, 5, 1, 1]], type) | |
output = ndimage.maximum_position(input, labels, 1) | |
assert_equal(output, (0, 0)) | |
def test_maximum_position06(): | |
labels = [1, 2, 0, 4] | |
for type in types: | |
input = np.array([[5, 4, 2, 5], | |
[3, 7, 8, 2], | |
[1, 5, 1, 1]], type) | |
output = ndimage.maximum_position(input, labels, | |
[1, 2]) | |
assert_equal(output[0], (0, 0)) | |
assert_equal(output[1], (1, 1)) | |
def test_maximum_position07(): | |
# Test float labels | |
labels = np.array([1.0, 2.5, 0.0, 4.5]) | |
for type in types: | |
input = np.array([[5, 4, 2, 5], | |
[3, 7, 8, 2], | |
[1, 5, 1, 1]], type) | |
output = ndimage.maximum_position(input, labels, | |
[1.0, 4.5]) | |
assert_equal(output[0], (0, 0)) | |
assert_equal(output[1], (0, 3)) | |
def test_extrema01(): | |
labels = np.array([1, 0], bool) | |
for type in types: | |
input = np.array([[1, 2], [3, 4]], type) | |
output1 = ndimage.extrema(input, labels=labels) | |
output2 = ndimage.minimum(input, labels=labels) | |
output3 = ndimage.maximum(input, labels=labels) | |
output4 = ndimage.minimum_position(input, | |
labels=labels) | |
output5 = ndimage.maximum_position(input, | |
labels=labels) | |
assert_equal(output1, (output2, output3, output4, output5)) | |
def test_extrema02(): | |
labels = np.array([1, 2]) | |
for type in types: | |
input = np.array([[1, 2], [3, 4]], type) | |
output1 = ndimage.extrema(input, labels=labels, | |
index=2) | |
output2 = ndimage.minimum(input, labels=labels, | |
index=2) | |
output3 = ndimage.maximum(input, labels=labels, | |
index=2) | |
output4 = ndimage.minimum_position(input, | |
labels=labels, index=2) | |
output5 = ndimage.maximum_position(input, | |
labels=labels, index=2) | |
assert_equal(output1, (output2, output3, output4, output5)) | |
def test_extrema03(): | |
labels = np.array([[1, 2], [2, 3]]) | |
for type in types: | |
input = np.array([[1, 2], [3, 4]], type) | |
output1 = ndimage.extrema(input, labels=labels, | |
index=[2, 3, 8]) | |
output2 = ndimage.minimum(input, labels=labels, | |
index=[2, 3, 8]) | |
output3 = ndimage.maximum(input, labels=labels, | |
index=[2, 3, 8]) | |
output4 = ndimage.minimum_position(input, | |
labels=labels, index=[2, 3, 8]) | |
output5 = ndimage.maximum_position(input, | |
labels=labels, index=[2, 3, 8]) | |
assert_array_almost_equal(output1[0], output2) | |
assert_array_almost_equal(output1[1], output3) | |
assert_array_almost_equal(output1[2], output4) | |
assert_array_almost_equal(output1[3], output5) | |
def test_extrema04(): | |
labels = [1, 2, 0, 4] | |
for type in types: | |
input = np.array([[5, 4, 2, 5], | |
[3, 7, 8, 2], | |
[1, 5, 1, 1]], type) | |
output1 = ndimage.extrema(input, labels, [1, 2]) | |
output2 = ndimage.minimum(input, labels, [1, 2]) | |
output3 = ndimage.maximum(input, labels, [1, 2]) | |
output4 = ndimage.minimum_position(input, labels, | |
[1, 2]) | |
output5 = ndimage.maximum_position(input, labels, | |
[1, 2]) | |
assert_array_almost_equal(output1[0], output2) | |
assert_array_almost_equal(output1[1], output3) | |
assert_array_almost_equal(output1[2], output4) | |
assert_array_almost_equal(output1[3], output5) | |
def test_center_of_mass01(): | |
expected = [0.0, 0.0] | |
for type in types: | |
input = np.array([[1, 0], [0, 0]], type) | |
output = ndimage.center_of_mass(input) | |
assert_array_almost_equal(output, expected) | |
def test_center_of_mass02(): | |
expected = [1, 0] | |
for type in types: | |
input = np.array([[0, 0], [1, 0]], type) | |
output = ndimage.center_of_mass(input) | |
assert_array_almost_equal(output, expected) | |
def test_center_of_mass03(): | |
expected = [0, 1] | |
for type in types: | |
input = np.array([[0, 1], [0, 0]], type) | |
output = ndimage.center_of_mass(input) | |
assert_array_almost_equal(output, expected) | |
def test_center_of_mass04(): | |
expected = [1, 1] | |
for type in types: | |
input = np.array([[0, 0], [0, 1]], type) | |
output = ndimage.center_of_mass(input) | |
assert_array_almost_equal(output, expected) | |
def test_center_of_mass05(): | |
expected = [0.5, 0.5] | |
for type in types: | |
input = np.array([[1, 1], [1, 1]], type) | |
output = ndimage.center_of_mass(input) | |
assert_array_almost_equal(output, expected) | |
def test_center_of_mass06(): | |
expected = [0.5, 0.5] | |
input = np.array([[1, 2], [3, 1]], bool) | |
output = ndimage.center_of_mass(input) | |
assert_array_almost_equal(output, expected) | |
def test_center_of_mass07(): | |
labels = [1, 0] | |
expected = [0.5, 0.0] | |
input = np.array([[1, 2], [3, 1]], bool) | |
output = ndimage.center_of_mass(input, labels) | |
assert_array_almost_equal(output, expected) | |
def test_center_of_mass08(): | |
labels = [1, 2] | |
expected = [0.5, 1.0] | |
input = np.array([[5, 2], [3, 1]], bool) | |
output = ndimage.center_of_mass(input, labels, 2) | |
assert_array_almost_equal(output, expected) | |
def test_center_of_mass09(): | |
labels = [1, 2] | |
expected = [(0.5, 0.0), (0.5, 1.0)] | |
input = np.array([[1, 2], [1, 1]], bool) | |
output = ndimage.center_of_mass(input, labels, [1, 2]) | |
assert_array_almost_equal(output, expected) | |
def test_histogram01(): | |
expected = np.ones(10) | |
input = np.arange(10) | |
output = ndimage.histogram(input, 0, 10, 10) | |
assert_array_almost_equal(output, expected) | |
def test_histogram02(): | |
labels = [1, 1, 1, 1, 2, 2, 2, 2] | |
expected = [0, 2, 0, 1, 1] | |
input = np.array([1, 1, 3, 4, 3, 3, 3, 3]) | |
output = ndimage.histogram(input, 0, 4, 5, labels, 1) | |
assert_array_almost_equal(output, expected) | |
def test_histogram03(): | |
labels = [1, 0, 1, 1, 2, 2, 2, 2] | |
expected1 = [0, 1, 0, 1, 1] | |
expected2 = [0, 0, 0, 3, 0] | |
input = np.array([1, 1, 3, 4, 3, 5, 3, 3]) | |
output = ndimage.histogram(input, 0, 4, 5, labels, (1, 2)) | |
assert_array_almost_equal(output[0], expected1) | |
assert_array_almost_equal(output[1], expected2) | |
def test_stat_funcs_2d(): | |
a = np.array([[5, 6, 0, 0, 0], [8, 9, 0, 0, 0], [0, 0, 0, 3, 5]]) | |
lbl = np.array([[1, 1, 0, 0, 0], [1, 1, 0, 0, 0], [0, 0, 0, 2, 2]]) | |
mean = ndimage.mean(a, labels=lbl, index=[1, 2]) | |
assert_array_equal(mean, [7.0, 4.0]) | |
var = ndimage.variance(a, labels=lbl, index=[1, 2]) | |
assert_array_equal(var, [2.5, 1.0]) | |
std = ndimage.standard_deviation(a, labels=lbl, index=[1, 2]) | |
assert_array_almost_equal(std, np.sqrt([2.5, 1.0])) | |
med = ndimage.median(a, labels=lbl, index=[1, 2]) | |
assert_array_equal(med, [7.0, 4.0]) | |
min = ndimage.minimum(a, labels=lbl, index=[1, 2]) | |
assert_array_equal(min, [5, 3]) | |
max = ndimage.maximum(a, labels=lbl, index=[1, 2]) | |
assert_array_equal(max, [9, 5]) | |
class TestWatershedIft: | |
def test_watershed_ift01(self): | |
data = np.array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 1, 0, 0, 0, 1, 0], | |
[0, 1, 0, 0, 0, 1, 0], | |
[0, 1, 0, 0, 0, 1, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]], np.uint8) | |
markers = np.array([[-1, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 1, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]], np.int8) | |
out = ndimage.watershed_ift(data, markers, structure=[[1, 1, 1], | |
[1, 1, 1], | |
[1, 1, 1]]) | |
expected = [[-1, -1, -1, -1, -1, -1, -1], | |
[-1, 1, 1, 1, 1, 1, -1], | |
[-1, 1, 1, 1, 1, 1, -1], | |
[-1, 1, 1, 1, 1, 1, -1], | |
[-1, 1, 1, 1, 1, 1, -1], | |
[-1, 1, 1, 1, 1, 1, -1], | |
[-1, -1, -1, -1, -1, -1, -1], | |
[-1, -1, -1, -1, -1, -1, -1]] | |
assert_array_almost_equal(out, expected) | |
def test_watershed_ift02(self): | |
data = np.array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 1, 0, 0, 0, 1, 0], | |
[0, 1, 0, 0, 0, 1, 0], | |
[0, 1, 0, 0, 0, 1, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]], np.uint8) | |
markers = np.array([[-1, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 1, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]], np.int8) | |
out = ndimage.watershed_ift(data, markers) | |
expected = [[-1, -1, -1, -1, -1, -1, -1], | |
[-1, -1, 1, 1, 1, -1, -1], | |
[-1, 1, 1, 1, 1, 1, -1], | |
[-1, 1, 1, 1, 1, 1, -1], | |
[-1, 1, 1, 1, 1, 1, -1], | |
[-1, -1, 1, 1, 1, -1, -1], | |
[-1, -1, -1, -1, -1, -1, -1], | |
[-1, -1, -1, -1, -1, -1, -1]] | |
assert_array_almost_equal(out, expected) | |
def test_watershed_ift03(self): | |
data = np.array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 1, 0, 1, 0, 1, 0], | |
[0, 1, 0, 1, 0, 1, 0], | |
[0, 1, 0, 1, 0, 1, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0, 0, 0]], np.uint8) | |
markers = np.array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 2, 0, 3, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, -1]], np.int8) | |
out = ndimage.watershed_ift(data, markers) | |
expected = [[-1, -1, -1, -1, -1, -1, -1], | |
[-1, -1, 2, -1, 3, -1, -1], | |
[-1, 2, 2, 3, 3, 3, -1], | |
[-1, 2, 2, 3, 3, 3, -1], | |
[-1, 2, 2, 3, 3, 3, -1], | |
[-1, -1, 2, -1, 3, -1, -1], | |
[-1, -1, -1, -1, -1, -1, -1]] | |
assert_array_almost_equal(out, expected) | |
def test_watershed_ift04(self): | |
data = np.array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 1, 0, 1, 0, 1, 0], | |
[0, 1, 0, 1, 0, 1, 0], | |
[0, 1, 0, 1, 0, 1, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0, 0, 0]], np.uint8) | |
markers = np.array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 2, 0, 3, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, -1]], | |
np.int8) | |
out = ndimage.watershed_ift(data, markers, | |
structure=[[1, 1, 1], | |
[1, 1, 1], | |
[1, 1, 1]]) | |
expected = [[-1, -1, -1, -1, -1, -1, -1], | |
[-1, 2, 2, 3, 3, 3, -1], | |
[-1, 2, 2, 3, 3, 3, -1], | |
[-1, 2, 2, 3, 3, 3, -1], | |
[-1, 2, 2, 3, 3, 3, -1], | |
[-1, 2, 2, 3, 3, 3, -1], | |
[-1, -1, -1, -1, -1, -1, -1]] | |
assert_array_almost_equal(out, expected) | |
def test_watershed_ift05(self): | |
data = np.array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 1, 0, 1, 0, 1, 0], | |
[0, 1, 0, 1, 0, 1, 0], | |
[0, 1, 0, 1, 0, 1, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0, 0, 0]], np.uint8) | |
markers = np.array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 3, 0, 2, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, -1]], | |
np.int8) | |
out = ndimage.watershed_ift(data, markers, | |
structure=[[1, 1, 1], | |
[1, 1, 1], | |
[1, 1, 1]]) | |
expected = [[-1, -1, -1, -1, -1, -1, -1], | |
[-1, 3, 3, 2, 2, 2, -1], | |
[-1, 3, 3, 2, 2, 2, -1], | |
[-1, 3, 3, 2, 2, 2, -1], | |
[-1, 3, 3, 2, 2, 2, -1], | |
[-1, 3, 3, 2, 2, 2, -1], | |
[-1, -1, -1, -1, -1, -1, -1]] | |
assert_array_almost_equal(out, expected) | |
def test_watershed_ift06(self): | |
data = np.array([[0, 1, 0, 0, 0, 1, 0], | |
[0, 1, 0, 0, 0, 1, 0], | |
[0, 1, 0, 0, 0, 1, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]], np.uint8) | |
markers = np.array([[-1, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 1, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]], np.int8) | |
out = ndimage.watershed_ift(data, markers, | |
structure=[[1, 1, 1], | |
[1, 1, 1], | |
[1, 1, 1]]) | |
expected = [[-1, 1, 1, 1, 1, 1, -1], | |
[-1, 1, 1, 1, 1, 1, -1], | |
[-1, 1, 1, 1, 1, 1, -1], | |
[-1, 1, 1, 1, 1, 1, -1], | |
[-1, -1, -1, -1, -1, -1, -1], | |
[-1, -1, -1, -1, -1, -1, -1]] | |
assert_array_almost_equal(out, expected) | |
def test_watershed_ift07(self): | |
shape = (7, 6) | |
data = np.zeros(shape, dtype=np.uint8) | |
data = data.transpose() | |
data[...] = np.array([[0, 1, 0, 0, 0, 1, 0], | |
[0, 1, 0, 0, 0, 1, 0], | |
[0, 1, 0, 0, 0, 1, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]], np.uint8) | |
markers = np.array([[-1, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 1, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]], np.int8) | |
out = np.zeros(shape, dtype=np.int16) | |
out = out.transpose() | |
ndimage.watershed_ift(data, markers, | |
structure=[[1, 1, 1], | |
[1, 1, 1], | |
[1, 1, 1]], | |
output=out) | |
expected = [[-1, 1, 1, 1, 1, 1, -1], | |
[-1, 1, 1, 1, 1, 1, -1], | |
[-1, 1, 1, 1, 1, 1, -1], | |
[-1, 1, 1, 1, 1, 1, -1], | |
[-1, -1, -1, -1, -1, -1, -1], | |
[-1, -1, -1, -1, -1, -1, -1]] | |
assert_array_almost_equal(out, expected) | |
def test_watershed_ift08(self): | |
# Test cost larger than uint8. See gh-10069. | |
data = np.array([[256, 0], | |
[0, 0]], np.uint16) | |
markers = np.array([[1, 0], | |
[0, 0]], np.int8) | |
out = ndimage.watershed_ift(data, markers) | |
expected = [[1, 1], | |
[1, 1]] | |
assert_array_almost_equal(out, expected) | |
def test_watershed_ift09(self): | |
# Test large cost. See gh-19575 | |
data = np.array([[np.iinfo(np.uint16).max, 0], | |
[0, 0]], np.uint16) | |
markers = np.array([[1, 0], | |
[0, 0]], np.int8) | |
out = ndimage.watershed_ift(data, markers) | |
expected = [[1, 1], | |
[1, 1]] | |
assert_allclose(out, expected) | |