peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/signal
/tests
/test_cont2discrete.py
import numpy as np | |
from numpy.testing import \ | |
assert_array_almost_equal, assert_almost_equal, \ | |
assert_allclose, assert_equal | |
import pytest | |
from scipy.signal import cont2discrete as c2d | |
from scipy.signal import dlsim, ss2tf, ss2zpk, lsim, lti | |
from scipy.signal import tf2ss, impulse, dimpulse, step, dstep | |
# Author: Jeffrey Armstrong <[email protected]> | |
# March 29, 2011 | |
class TestC2D: | |
def test_zoh(self): | |
ac = np.eye(2) | |
bc = np.full((2, 1), 0.5) | |
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) | |
dc = np.array([[0.0], [0.0], [-0.33]]) | |
ad_truth = 1.648721270700128 * np.eye(2) | |
bd_truth = np.full((2, 1), 0.324360635350064) | |
# c and d in discrete should be equal to their continuous counterparts | |
dt_requested = 0.5 | |
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, method='zoh') | |
assert_array_almost_equal(ad_truth, ad) | |
assert_array_almost_equal(bd_truth, bd) | |
assert_array_almost_equal(cc, cd) | |
assert_array_almost_equal(dc, dd) | |
assert_almost_equal(dt_requested, dt) | |
def test_foh(self): | |
ac = np.eye(2) | |
bc = np.full((2, 1), 0.5) | |
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) | |
dc = np.array([[0.0], [0.0], [-0.33]]) | |
# True values are verified with Matlab | |
ad_truth = 1.648721270700128 * np.eye(2) | |
bd_truth = np.full((2, 1), 0.420839287058789) | |
cd_truth = cc | |
dd_truth = np.array([[0.260262223725224], | |
[0.297442541400256], | |
[-0.144098411624840]]) | |
dt_requested = 0.5 | |
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, method='foh') | |
assert_array_almost_equal(ad_truth, ad) | |
assert_array_almost_equal(bd_truth, bd) | |
assert_array_almost_equal(cd_truth, cd) | |
assert_array_almost_equal(dd_truth, dd) | |
assert_almost_equal(dt_requested, dt) | |
def test_impulse(self): | |
ac = np.eye(2) | |
bc = np.full((2, 1), 0.5) | |
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) | |
dc = np.array([[0.0], [0.0], [0.0]]) | |
# True values are verified with Matlab | |
ad_truth = 1.648721270700128 * np.eye(2) | |
bd_truth = np.full((2, 1), 0.412180317675032) | |
cd_truth = cc | |
dd_truth = np.array([[0.4375], [0.5], [0.3125]]) | |
dt_requested = 0.5 | |
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, | |
method='impulse') | |
assert_array_almost_equal(ad_truth, ad) | |
assert_array_almost_equal(bd_truth, bd) | |
assert_array_almost_equal(cd_truth, cd) | |
assert_array_almost_equal(dd_truth, dd) | |
assert_almost_equal(dt_requested, dt) | |
def test_gbt(self): | |
ac = np.eye(2) | |
bc = np.full((2, 1), 0.5) | |
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) | |
dc = np.array([[0.0], [0.0], [-0.33]]) | |
dt_requested = 0.5 | |
alpha = 1.0 / 3.0 | |
ad_truth = 1.6 * np.eye(2) | |
bd_truth = np.full((2, 1), 0.3) | |
cd_truth = np.array([[0.9, 1.2], | |
[1.2, 1.2], | |
[1.2, 0.3]]) | |
dd_truth = np.array([[0.175], | |
[0.2], | |
[-0.205]]) | |
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, | |
method='gbt', alpha=alpha) | |
assert_array_almost_equal(ad_truth, ad) | |
assert_array_almost_equal(bd_truth, bd) | |
assert_array_almost_equal(cd_truth, cd) | |
assert_array_almost_equal(dd_truth, dd) | |
def test_euler(self): | |
ac = np.eye(2) | |
bc = np.full((2, 1), 0.5) | |
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) | |
dc = np.array([[0.0], [0.0], [-0.33]]) | |
dt_requested = 0.5 | |
ad_truth = 1.5 * np.eye(2) | |
bd_truth = np.full((2, 1), 0.25) | |
cd_truth = np.array([[0.75, 1.0], | |
[1.0, 1.0], | |
[1.0, 0.25]]) | |
dd_truth = dc | |
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, | |
method='euler') | |
assert_array_almost_equal(ad_truth, ad) | |
assert_array_almost_equal(bd_truth, bd) | |
assert_array_almost_equal(cd_truth, cd) | |
assert_array_almost_equal(dd_truth, dd) | |
assert_almost_equal(dt_requested, dt) | |
def test_backward_diff(self): | |
ac = np.eye(2) | |
bc = np.full((2, 1), 0.5) | |
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) | |
dc = np.array([[0.0], [0.0], [-0.33]]) | |
dt_requested = 0.5 | |
ad_truth = 2.0 * np.eye(2) | |
bd_truth = np.full((2, 1), 0.5) | |
cd_truth = np.array([[1.5, 2.0], | |
[2.0, 2.0], | |
[2.0, 0.5]]) | |
dd_truth = np.array([[0.875], | |
[1.0], | |
[0.295]]) | |
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, | |
method='backward_diff') | |
assert_array_almost_equal(ad_truth, ad) | |
assert_array_almost_equal(bd_truth, bd) | |
assert_array_almost_equal(cd_truth, cd) | |
assert_array_almost_equal(dd_truth, dd) | |
def test_bilinear(self): | |
ac = np.eye(2) | |
bc = np.full((2, 1), 0.5) | |
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) | |
dc = np.array([[0.0], [0.0], [-0.33]]) | |
dt_requested = 0.5 | |
ad_truth = (5.0 / 3.0) * np.eye(2) | |
bd_truth = np.full((2, 1), 1.0 / 3.0) | |
cd_truth = np.array([[1.0, 4.0 / 3.0], | |
[4.0 / 3.0, 4.0 / 3.0], | |
[4.0 / 3.0, 1.0 / 3.0]]) | |
dd_truth = np.array([[0.291666666666667], | |
[1.0 / 3.0], | |
[-0.121666666666667]]) | |
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, | |
method='bilinear') | |
assert_array_almost_equal(ad_truth, ad) | |
assert_array_almost_equal(bd_truth, bd) | |
assert_array_almost_equal(cd_truth, cd) | |
assert_array_almost_equal(dd_truth, dd) | |
assert_almost_equal(dt_requested, dt) | |
# Same continuous system again, but change sampling rate | |
ad_truth = 1.4 * np.eye(2) | |
bd_truth = np.full((2, 1), 0.2) | |
cd_truth = np.array([[0.9, 1.2], [1.2, 1.2], [1.2, 0.3]]) | |
dd_truth = np.array([[0.175], [0.2], [-0.205]]) | |
dt_requested = 1.0 / 3.0 | |
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, | |
method='bilinear') | |
assert_array_almost_equal(ad_truth, ad) | |
assert_array_almost_equal(bd_truth, bd) | |
assert_array_almost_equal(cd_truth, cd) | |
assert_array_almost_equal(dd_truth, dd) | |
assert_almost_equal(dt_requested, dt) | |
def test_transferfunction(self): | |
numc = np.array([0.25, 0.25, 0.5]) | |
denc = np.array([0.75, 0.75, 1.0]) | |
numd = np.array([[1.0 / 3.0, -0.427419169438754, 0.221654141101125]]) | |
dend = np.array([1.0, -1.351394049721225, 0.606530659712634]) | |
dt_requested = 0.5 | |
num, den, dt = c2d((numc, denc), dt_requested, method='zoh') | |
assert_array_almost_equal(numd, num) | |
assert_array_almost_equal(dend, den) | |
assert_almost_equal(dt_requested, dt) | |
def test_zerospolesgain(self): | |
zeros_c = np.array([0.5, -0.5]) | |
poles_c = np.array([1.j / np.sqrt(2), -1.j / np.sqrt(2)]) | |
k_c = 1.0 | |
zeros_d = [1.23371727305860, 0.735356894461267] | |
polls_d = [0.938148335039729 + 0.346233593780536j, | |
0.938148335039729 - 0.346233593780536j] | |
k_d = 1.0 | |
dt_requested = 0.5 | |
zeros, poles, k, dt = c2d((zeros_c, poles_c, k_c), dt_requested, | |
method='zoh') | |
assert_array_almost_equal(zeros_d, zeros) | |
assert_array_almost_equal(polls_d, poles) | |
assert_almost_equal(k_d, k) | |
assert_almost_equal(dt_requested, dt) | |
def test_gbt_with_sio_tf_and_zpk(self): | |
"""Test method='gbt' with alpha=0.25 for tf and zpk cases.""" | |
# State space coefficients for the continuous SIO system. | |
A = -1.0 | |
B = 1.0 | |
C = 1.0 | |
D = 0.5 | |
# The continuous transfer function coefficients. | |
cnum, cden = ss2tf(A, B, C, D) | |
# Continuous zpk representation | |
cz, cp, ck = ss2zpk(A, B, C, D) | |
h = 1.0 | |
alpha = 0.25 | |
# Explicit formulas, in the scalar case. | |
Ad = (1 + (1 - alpha) * h * A) / (1 - alpha * h * A) | |
Bd = h * B / (1 - alpha * h * A) | |
Cd = C / (1 - alpha * h * A) | |
Dd = D + alpha * C * Bd | |
# Convert the explicit solution to tf | |
dnum, dden = ss2tf(Ad, Bd, Cd, Dd) | |
# Compute the discrete tf using cont2discrete. | |
c2dnum, c2dden, dt = c2d((cnum, cden), h, method='gbt', alpha=alpha) | |
assert_allclose(dnum, c2dnum) | |
assert_allclose(dden, c2dden) | |
# Convert explicit solution to zpk. | |
dz, dp, dk = ss2zpk(Ad, Bd, Cd, Dd) | |
# Compute the discrete zpk using cont2discrete. | |
c2dz, c2dp, c2dk, dt = c2d((cz, cp, ck), h, method='gbt', alpha=alpha) | |
assert_allclose(dz, c2dz) | |
assert_allclose(dp, c2dp) | |
assert_allclose(dk, c2dk) | |
def test_discrete_approx(self): | |
""" | |
Test that the solution to the discrete approximation of a continuous | |
system actually approximates the solution to the continuous system. | |
This is an indirect test of the correctness of the implementation | |
of cont2discrete. | |
""" | |
def u(t): | |
return np.sin(2.5 * t) | |
a = np.array([[-0.01]]) | |
b = np.array([[1.0]]) | |
c = np.array([[1.0]]) | |
d = np.array([[0.2]]) | |
x0 = 1.0 | |
t = np.linspace(0, 10.0, 101) | |
dt = t[1] - t[0] | |
u1 = u(t) | |
# Use lsim to compute the solution to the continuous system. | |
t, yout, xout = lsim((a, b, c, d), T=t, U=u1, X0=x0) | |
# Convert the continuous system to a discrete approximation. | |
dsys = c2d((a, b, c, d), dt, method='bilinear') | |
# Use dlsim with the pairwise averaged input to compute the output | |
# of the discrete system. | |
u2 = 0.5 * (u1[:-1] + u1[1:]) | |
t2 = t[:-1] | |
td2, yd2, xd2 = dlsim(dsys, u=u2.reshape(-1, 1), t=t2, x0=x0) | |
# ymid is the average of consecutive terms of the "exact" output | |
# computed by lsim2. This is what the discrete approximation | |
# actually approximates. | |
ymid = 0.5 * (yout[:-1] + yout[1:]) | |
assert_allclose(yd2.ravel(), ymid, rtol=1e-4) | |
def test_simo_tf(self): | |
# See gh-5753 | |
tf = ([[1, 0], [1, 1]], [1, 1]) | |
num, den, dt = c2d(tf, 0.01) | |
assert_equal(dt, 0.01) # sanity check | |
assert_allclose(den, [1, -0.990404983], rtol=1e-3) | |
assert_allclose(num, [[1, -1], [1, -0.99004983]], rtol=1e-3) | |
def test_multioutput(self): | |
ts = 0.01 # time step | |
tf = ([[1, -3], [1, 5]], [1, 1]) | |
num, den, dt = c2d(tf, ts) | |
tf1 = (tf[0][0], tf[1]) | |
num1, den1, dt1 = c2d(tf1, ts) | |
tf2 = (tf[0][1], tf[1]) | |
num2, den2, dt2 = c2d(tf2, ts) | |
# Sanity checks | |
assert_equal(dt, dt1) | |
assert_equal(dt, dt2) | |
# Check that we get the same results | |
assert_allclose(num, np.vstack((num1, num2)), rtol=1e-13) | |
# Single input, so the denominator should | |
# not be multidimensional like the numerator | |
assert_allclose(den, den1, rtol=1e-13) | |
assert_allclose(den, den2, rtol=1e-13) | |
class TestC2dLti: | |
def test_c2d_ss(self): | |
# StateSpace | |
A = np.array([[-0.3, 0.1], [0.2, -0.7]]) | |
B = np.array([[0], [1]]) | |
C = np.array([[1, 0]]) | |
D = 0 | |
A_res = np.array([[0.985136404135682, 0.004876671474795], | |
[0.009753342949590, 0.965629718236502]]) | |
B_res = np.array([[0.000122937599964], [0.049135527547844]]) | |
sys_ssc = lti(A, B, C, D) | |
sys_ssd = sys_ssc.to_discrete(0.05) | |
assert_allclose(sys_ssd.A, A_res) | |
assert_allclose(sys_ssd.B, B_res) | |
assert_allclose(sys_ssd.C, C) | |
assert_allclose(sys_ssd.D, D) | |
def test_c2d_tf(self): | |
sys = lti([0.5, 0.3], [1.0, 0.4]) | |
sys = sys.to_discrete(0.005) | |
# Matlab results | |
num_res = np.array([0.5, -0.485149004980066]) | |
den_res = np.array([1.0, -0.980198673306755]) | |
# Somehow a lot of numerical errors | |
assert_allclose(sys.den, den_res, atol=0.02) | |
assert_allclose(sys.num, num_res, atol=0.02) | |
class TestC2dInvariants: | |
# Some test cases for checking the invariances. | |
# Array of triplets: (system, sample time, number of samples) | |
cases = [ | |
(tf2ss([1, 1], [1, 1.5, 1]), 0.25, 10), | |
(tf2ss([1, 2], [1, 1.5, 3, 1]), 0.5, 10), | |
(tf2ss(0.1, [1, 1, 2, 1]), 0.5, 10), | |
] | |
# Check that systems discretized with the impulse-invariant | |
# method really hold the invariant | |
def test_impulse_invariant(self, sys, sample_time, samples_number): | |
time = np.arange(samples_number) * sample_time | |
_, yout_cont = impulse(sys, T=time) | |
_, yout_disc = dimpulse(c2d(sys, sample_time, method='impulse'), | |
n=len(time)) | |
assert_allclose(sample_time * yout_cont.ravel(), yout_disc[0].ravel()) | |
# Step invariant should hold for ZOH discretized systems | |
def test_step_invariant(self, sys, sample_time, samples_number): | |
time = np.arange(samples_number) * sample_time | |
_, yout_cont = step(sys, T=time) | |
_, yout_disc = dstep(c2d(sys, sample_time, method='zoh'), n=len(time)) | |
assert_allclose(yout_cont.ravel(), yout_disc[0].ravel()) | |
# Linear invariant should hold for FOH discretized systems | |
def test_linear_invariant(self, sys, sample_time, samples_number): | |
time = np.arange(samples_number) * sample_time | |
_, yout_cont, _ = lsim(sys, T=time, U=time) | |
_, yout_disc, _ = dlsim(c2d(sys, sample_time, method='foh'), u=time) | |
assert_allclose(yout_cont.ravel(), yout_disc.ravel()) | |