peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/signal
/tests
/test_signaltools.py
import sys | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
from decimal import Decimal | |
from itertools import product | |
from math import gcd | |
import pytest | |
from pytest import raises as assert_raises | |
from numpy.testing import ( | |
assert_equal, | |
assert_almost_equal, assert_array_equal, assert_array_almost_equal, | |
assert_allclose, assert_, assert_array_less, | |
suppress_warnings) | |
from numpy import array, arange | |
import numpy as np | |
from scipy.fft import fft | |
from scipy.ndimage import correlate1d | |
from scipy.optimize import fmin, linear_sum_assignment | |
from scipy import signal | |
from scipy.signal import ( | |
correlate, correlate2d, correlation_lags, convolve, convolve2d, | |
fftconvolve, oaconvolve, choose_conv_method, | |
hilbert, hilbert2, lfilter, lfilter_zi, filtfilt, butter, zpk2tf, zpk2sos, | |
invres, invresz, vectorstrength, lfiltic, tf2sos, sosfilt, sosfiltfilt, | |
sosfilt_zi, tf2zpk, BadCoefficients, detrend, unique_roots, residue, | |
residuez) | |
from scipy.signal.windows import hann | |
from scipy.signal._signaltools import (_filtfilt_gust, _compute_factors, | |
_group_poles) | |
from scipy.signal._upfirdn import _upfirdn_modes | |
from scipy._lib import _testutils | |
from scipy._lib._util import ComplexWarning, np_long, np_ulong | |
class _TestConvolve: | |
def test_basic(self): | |
a = [3, 4, 5, 6, 5, 4] | |
b = [1, 2, 3] | |
c = convolve(a, b) | |
assert_array_equal(c, array([3, 10, 22, 28, 32, 32, 23, 12])) | |
def test_same(self): | |
a = [3, 4, 5] | |
b = [1, 2, 3, 4] | |
c = convolve(a, b, mode="same") | |
assert_array_equal(c, array([10, 22, 34])) | |
def test_same_eq(self): | |
a = [3, 4, 5] | |
b = [1, 2, 3] | |
c = convolve(a, b, mode="same") | |
assert_array_equal(c, array([10, 22, 22])) | |
def test_complex(self): | |
x = array([1 + 1j, 2 + 1j, 3 + 1j]) | |
y = array([1 + 1j, 2 + 1j]) | |
z = convolve(x, y) | |
assert_array_equal(z, array([2j, 2 + 6j, 5 + 8j, 5 + 5j])) | |
def test_zero_rank(self): | |
a = 1289 | |
b = 4567 | |
c = convolve(a, b) | |
assert_equal(c, a * b) | |
def test_broadcastable(self): | |
a = np.arange(27).reshape(3, 3, 3) | |
b = np.arange(3) | |
for i in range(3): | |
b_shape = [1]*3 | |
b_shape[i] = 3 | |
x = convolve(a, b.reshape(b_shape), method='direct') | |
y = convolve(a, b.reshape(b_shape), method='fft') | |
assert_allclose(x, y) | |
def test_single_element(self): | |
a = array([4967]) | |
b = array([3920]) | |
c = convolve(a, b) | |
assert_equal(c, a * b) | |
def test_2d_arrays(self): | |
a = [[1, 2, 3], [3, 4, 5]] | |
b = [[2, 3, 4], [4, 5, 6]] | |
c = convolve(a, b) | |
d = array([[2, 7, 16, 17, 12], | |
[10, 30, 62, 58, 38], | |
[12, 31, 58, 49, 30]]) | |
assert_array_equal(c, d) | |
def test_input_swapping(self): | |
small = arange(8).reshape(2, 2, 2) | |
big = 1j * arange(27).reshape(3, 3, 3) | |
big += arange(27)[::-1].reshape(3, 3, 3) | |
out_array = array( | |
[[[0 + 0j, 26 + 0j, 25 + 1j, 24 + 2j], | |
[52 + 0j, 151 + 5j, 145 + 11j, 93 + 11j], | |
[46 + 6j, 133 + 23j, 127 + 29j, 81 + 23j], | |
[40 + 12j, 98 + 32j, 93 + 37j, 54 + 24j]], | |
[[104 + 0j, 247 + 13j, 237 + 23j, 135 + 21j], | |
[282 + 30j, 632 + 96j, 604 + 124j, 330 + 86j], | |
[246 + 66j, 548 + 180j, 520 + 208j, 282 + 134j], | |
[142 + 66j, 307 + 161j, 289 + 179j, 153 + 107j]], | |
[[68 + 36j, 157 + 103j, 147 + 113j, 81 + 75j], | |
[174 + 138j, 380 + 348j, 352 + 376j, 186 + 230j], | |
[138 + 174j, 296 + 432j, 268 + 460j, 138 + 278j], | |
[70 + 138j, 145 + 323j, 127 + 341j, 63 + 197j]], | |
[[32 + 72j, 68 + 166j, 59 + 175j, 30 + 100j], | |
[68 + 192j, 139 + 433j, 117 + 455j, 57 + 255j], | |
[38 + 222j, 73 + 499j, 51 + 521j, 21 + 291j], | |
[12 + 144j, 20 + 318j, 7 + 331j, 0 + 182j]]]) | |
assert_array_equal(convolve(small, big, 'full'), out_array) | |
assert_array_equal(convolve(big, small, 'full'), out_array) | |
assert_array_equal(convolve(small, big, 'same'), | |
out_array[1:3, 1:3, 1:3]) | |
assert_array_equal(convolve(big, small, 'same'), | |
out_array[0:3, 0:3, 0:3]) | |
assert_array_equal(convolve(small, big, 'valid'), | |
out_array[1:3, 1:3, 1:3]) | |
assert_array_equal(convolve(big, small, 'valid'), | |
out_array[1:3, 1:3, 1:3]) | |
def test_invalid_params(self): | |
a = [3, 4, 5] | |
b = [1, 2, 3] | |
assert_raises(ValueError, convolve, a, b, mode='spam') | |
assert_raises(ValueError, convolve, a, b, mode='eggs', method='fft') | |
assert_raises(ValueError, convolve, a, b, mode='ham', method='direct') | |
assert_raises(ValueError, convolve, a, b, mode='full', method='bacon') | |
assert_raises(ValueError, convolve, a, b, mode='same', method='bacon') | |
class TestConvolve(_TestConvolve): | |
def test_valid_mode2(self): | |
# See gh-5897 | |
a = [1, 2, 3, 6, 5, 3] | |
b = [2, 3, 4, 5, 3, 4, 2, 2, 1] | |
expected = [70, 78, 73, 65] | |
out = convolve(a, b, 'valid') | |
assert_array_equal(out, expected) | |
out = convolve(b, a, 'valid') | |
assert_array_equal(out, expected) | |
a = [1 + 5j, 2 - 1j, 3 + 0j] | |
b = [2 - 3j, 1 + 0j] | |
expected = [2 - 3j, 8 - 10j] | |
out = convolve(a, b, 'valid') | |
assert_array_equal(out, expected) | |
out = convolve(b, a, 'valid') | |
assert_array_equal(out, expected) | |
def test_same_mode(self): | |
a = [1, 2, 3, 3, 1, 2] | |
b = [1, 4, 3, 4, 5, 6, 7, 4, 3, 2, 1, 1, 3] | |
c = convolve(a, b, 'same') | |
d = array([57, 61, 63, 57, 45, 36]) | |
assert_array_equal(c, d) | |
def test_invalid_shapes(self): | |
# By "invalid," we mean that no one | |
# array has dimensions that are all at | |
# least as large as the corresponding | |
# dimensions of the other array. This | |
# setup should throw a ValueError. | |
a = np.arange(1, 7).reshape((2, 3)) | |
b = np.arange(-6, 0).reshape((3, 2)) | |
assert_raises(ValueError, convolve, *(a, b), **{'mode': 'valid'}) | |
assert_raises(ValueError, convolve, *(b, a), **{'mode': 'valid'}) | |
def test_convolve_method(self, n=100): | |
# this types data structure was manually encoded instead of | |
# using custom filters on the soon-to-be-removed np.sctypes | |
types = {'uint16', 'uint64', 'int64', 'int32', | |
'complex128', 'float64', 'float16', | |
'complex64', 'float32', 'int16', | |
'uint8', 'uint32', 'int8', 'bool'} | |
args = [(t1, t2, mode) for t1 in types for t2 in types | |
for mode in ['valid', 'full', 'same']] | |
# These are random arrays, which means test is much stronger than | |
# convolving testing by convolving two np.ones arrays | |
np.random.seed(42) | |
array_types = {'i': np.random.choice([0, 1], size=n), | |
'f': np.random.randn(n)} | |
array_types['b'] = array_types['u'] = array_types['i'] | |
array_types['c'] = array_types['f'] + 0.5j*array_types['f'] | |
for t1, t2, mode in args: | |
x1 = array_types[np.dtype(t1).kind].astype(t1) | |
x2 = array_types[np.dtype(t2).kind].astype(t2) | |
results = {key: convolve(x1, x2, method=key, mode=mode) | |
for key in ['fft', 'direct']} | |
assert_equal(results['fft'].dtype, results['direct'].dtype) | |
if 'bool' in t1 and 'bool' in t2: | |
assert_equal(choose_conv_method(x1, x2), 'direct') | |
continue | |
# Found by experiment. Found approx smallest value for (rtol, atol) | |
# threshold to have tests pass. | |
if any([t in {'complex64', 'float32'} for t in [t1, t2]]): | |
kwargs = {'rtol': 1.0e-4, 'atol': 1e-6} | |
elif 'float16' in [t1, t2]: | |
# atol is default for np.allclose | |
kwargs = {'rtol': 1e-3, 'atol': 1e-3} | |
else: | |
# defaults for np.allclose (different from assert_allclose) | |
kwargs = {'rtol': 1e-5, 'atol': 1e-8} | |
assert_allclose(results['fft'], results['direct'], **kwargs) | |
def test_convolve_method_large_input(self): | |
# This is really a test that convolving two large integers goes to the | |
# direct method even if they're in the fft method. | |
for n in [10, 20, 50, 51, 52, 53, 54, 60, 62]: | |
z = np.array([2**n], dtype=np.int64) | |
fft = convolve(z, z, method='fft') | |
direct = convolve(z, z, method='direct') | |
# this is the case when integer precision gets to us | |
# issue #6076 has more detail, hopefully more tests after resolved | |
if n < 50: | |
assert_equal(fft, direct) | |
assert_equal(fft, 2**(2*n)) | |
assert_equal(direct, 2**(2*n)) | |
def test_mismatched_dims(self): | |
# Input arrays should have the same number of dimensions | |
assert_raises(ValueError, convolve, [1], 2, method='direct') | |
assert_raises(ValueError, convolve, 1, [2], method='direct') | |
assert_raises(ValueError, convolve, [1], 2, method='fft') | |
assert_raises(ValueError, convolve, 1, [2], method='fft') | |
assert_raises(ValueError, convolve, [1], [[2]]) | |
assert_raises(ValueError, convolve, [3], 2) | |
class _TestConvolve2d: | |
def test_2d_arrays(self): | |
a = [[1, 2, 3], [3, 4, 5]] | |
b = [[2, 3, 4], [4, 5, 6]] | |
d = array([[2, 7, 16, 17, 12], | |
[10, 30, 62, 58, 38], | |
[12, 31, 58, 49, 30]]) | |
e = convolve2d(a, b) | |
assert_array_equal(e, d) | |
def test_valid_mode(self): | |
e = [[2, 3, 4, 5, 6, 7, 8], [4, 5, 6, 7, 8, 9, 10]] | |
f = [[1, 2, 3], [3, 4, 5]] | |
h = array([[62, 80, 98, 116, 134]]) | |
g = convolve2d(e, f, 'valid') | |
assert_array_equal(g, h) | |
# See gh-5897 | |
g = convolve2d(f, e, 'valid') | |
assert_array_equal(g, h) | |
def test_valid_mode_complx(self): | |
e = [[2, 3, 4, 5, 6, 7, 8], [4, 5, 6, 7, 8, 9, 10]] | |
f = np.array([[1, 2, 3], [3, 4, 5]], dtype=complex) + 1j | |
h = array([[62.+24.j, 80.+30.j, 98.+36.j, 116.+42.j, 134.+48.j]]) | |
g = convolve2d(e, f, 'valid') | |
assert_array_almost_equal(g, h) | |
# See gh-5897 | |
g = convolve2d(f, e, 'valid') | |
assert_array_equal(g, h) | |
def test_fillvalue(self): | |
a = [[1, 2, 3], [3, 4, 5]] | |
b = [[2, 3, 4], [4, 5, 6]] | |
fillval = 1 | |
c = convolve2d(a, b, 'full', 'fill', fillval) | |
d = array([[24, 26, 31, 34, 32], | |
[28, 40, 62, 64, 52], | |
[32, 46, 67, 62, 48]]) | |
assert_array_equal(c, d) | |
def test_fillvalue_errors(self): | |
msg = "could not cast `fillvalue` directly to the output " | |
with np.testing.suppress_warnings() as sup: | |
sup.filter(ComplexWarning, "Casting complex values") | |
with assert_raises(ValueError, match=msg): | |
convolve2d([[1]], [[1, 2]], fillvalue=1j) | |
msg = "`fillvalue` must be scalar or an array with " | |
with assert_raises(ValueError, match=msg): | |
convolve2d([[1]], [[1, 2]], fillvalue=[1, 2]) | |
def test_fillvalue_empty(self): | |
# Check that fillvalue being empty raises an error: | |
assert_raises(ValueError, convolve2d, [[1]], [[1, 2]], | |
fillvalue=[]) | |
def test_wrap_boundary(self): | |
a = [[1, 2, 3], [3, 4, 5]] | |
b = [[2, 3, 4], [4, 5, 6]] | |
c = convolve2d(a, b, 'full', 'wrap') | |
d = array([[80, 80, 74, 80, 80], | |
[68, 68, 62, 68, 68], | |
[80, 80, 74, 80, 80]]) | |
assert_array_equal(c, d) | |
def test_sym_boundary(self): | |
a = [[1, 2, 3], [3, 4, 5]] | |
b = [[2, 3, 4], [4, 5, 6]] | |
c = convolve2d(a, b, 'full', 'symm') | |
d = array([[34, 30, 44, 62, 66], | |
[52, 48, 62, 80, 84], | |
[82, 78, 92, 110, 114]]) | |
assert_array_equal(c, d) | |
def test_same_with_boundary(self, func, boundary, expected): | |
# Test boundary='symm' and boundary='wrap' with a "long" kernel. | |
# The size of the kernel requires that the values in the "image" | |
# be extended more than once to handle the requested boundary method. | |
# This is a regression test for gh-8684 and gh-8814. | |
image = np.array([[2.0, -1.0, 3.0, 4.0]]) | |
kernel = np.ones((1, 21)) | |
result = func(image, kernel, mode='same', boundary=boundary) | |
# The expected results were calculated "by hand". Because the | |
# kernel is all ones, the same result is expected for convolve2d | |
# and correlate2d. | |
assert_array_equal(result, expected) | |
def test_boundary_extension_same(self): | |
# Regression test for gh-12686. | |
# Use ndimage.convolve with appropriate arguments to create the | |
# expected result. | |
import scipy.ndimage as ndi | |
a = np.arange(1, 10*3+1, dtype=float).reshape(10, 3) | |
b = np.arange(1, 10*10+1, dtype=float).reshape(10, 10) | |
c = convolve2d(a, b, mode='same', boundary='wrap') | |
assert_array_equal(c, ndi.convolve(a, b, mode='wrap', origin=(-1, -1))) | |
def test_boundary_extension_full(self): | |
# Regression test for gh-12686. | |
# Use ndimage.convolve with appropriate arguments to create the | |
# expected result. | |
import scipy.ndimage as ndi | |
a = np.arange(1, 3*3+1, dtype=float).reshape(3, 3) | |
b = np.arange(1, 6*6+1, dtype=float).reshape(6, 6) | |
c = convolve2d(a, b, mode='full', boundary='wrap') | |
apad = np.pad(a, ((3, 3), (3, 3)), 'wrap') | |
assert_array_equal(c, ndi.convolve(apad, b, mode='wrap')[:-1, :-1]) | |
def test_invalid_shapes(self): | |
# By "invalid," we mean that no one | |
# array has dimensions that are all at | |
# least as large as the corresponding | |
# dimensions of the other array. This | |
# setup should throw a ValueError. | |
a = np.arange(1, 7).reshape((2, 3)) | |
b = np.arange(-6, 0).reshape((3, 2)) | |
assert_raises(ValueError, convolve2d, *(a, b), **{'mode': 'valid'}) | |
assert_raises(ValueError, convolve2d, *(b, a), **{'mode': 'valid'}) | |
class TestConvolve2d(_TestConvolve2d): | |
def test_same_mode(self): | |
e = [[1, 2, 3], [3, 4, 5]] | |
f = [[2, 3, 4, 5, 6, 7, 8], [4, 5, 6, 7, 8, 9, 10]] | |
g = convolve2d(e, f, 'same') | |
h = array([[22, 28, 34], | |
[80, 98, 116]]) | |
assert_array_equal(g, h) | |
def test_valid_mode2(self): | |
# See gh-5897 | |
e = [[1, 2, 3], [3, 4, 5]] | |
f = [[2, 3, 4, 5, 6, 7, 8], [4, 5, 6, 7, 8, 9, 10]] | |
expected = [[62, 80, 98, 116, 134]] | |
out = convolve2d(e, f, 'valid') | |
assert_array_equal(out, expected) | |
out = convolve2d(f, e, 'valid') | |
assert_array_equal(out, expected) | |
e = [[1 + 1j, 2 - 3j], [3 + 1j, 4 + 0j]] | |
f = [[2 - 1j, 3 + 2j, 4 + 0j], [4 - 0j, 5 + 1j, 6 - 3j]] | |
expected = [[27 - 1j, 46. + 2j]] | |
out = convolve2d(e, f, 'valid') | |
assert_array_equal(out, expected) | |
# See gh-5897 | |
out = convolve2d(f, e, 'valid') | |
assert_array_equal(out, expected) | |
def test_consistency_convolve_funcs(self): | |
# Compare np.convolve, signal.convolve, signal.convolve2d | |
a = np.arange(5) | |
b = np.array([3.2, 1.4, 3]) | |
for mode in ['full', 'valid', 'same']: | |
assert_almost_equal(np.convolve(a, b, mode=mode), | |
signal.convolve(a, b, mode=mode)) | |
assert_almost_equal(np.squeeze( | |
signal.convolve2d([a], [b], mode=mode)), | |
signal.convolve(a, b, mode=mode)) | |
def test_invalid_dims(self): | |
assert_raises(ValueError, convolve2d, 3, 4) | |
assert_raises(ValueError, convolve2d, [3], [4]) | |
assert_raises(ValueError, convolve2d, [[[3]]], [[[4]]]) | |
def test_large_array(self): | |
# Test indexing doesn't overflow an int (gh-10761) | |
n = 2**31 // (1000 * np.int64().itemsize) | |
_testutils.check_free_memory(2 * n * 1001 * np.int64().itemsize / 1e6) | |
# Create a chequered pattern of 1s and 0s | |
a = np.zeros(1001 * n, dtype=np.int64) | |
a[::2] = 1 | |
a = np.lib.stride_tricks.as_strided(a, shape=(n, 1000), strides=(8008, 8)) | |
count = signal.convolve2d(a, [[1, 1]]) | |
fails = np.where(count > 1) | |
assert fails[0].size == 0 | |
class TestFFTConvolve: | |
def test_real(self, axes): | |
a = array([1, 2, 3]) | |
expected = array([1, 4, 10, 12, 9.]) | |
if axes == '': | |
out = fftconvolve(a, a) | |
else: | |
out = fftconvolve(a, a, axes=axes) | |
assert_array_almost_equal(out, expected) | |
def test_real_axes(self, axes): | |
a = array([1, 2, 3]) | |
expected = array([1, 4, 10, 12, 9.]) | |
a = np.tile(a, [2, 1]) | |
expected = np.tile(expected, [2, 1]) | |
out = fftconvolve(a, a, axes=axes) | |
assert_array_almost_equal(out, expected) | |
def test_complex(self, axes): | |
a = array([1 + 1j, 2 + 2j, 3 + 3j]) | |
expected = array([0 + 2j, 0 + 8j, 0 + 20j, 0 + 24j, 0 + 18j]) | |
if axes == '': | |
out = fftconvolve(a, a) | |
else: | |
out = fftconvolve(a, a, axes=axes) | |
assert_array_almost_equal(out, expected) | |
def test_complex_axes(self, axes): | |
a = array([1 + 1j, 2 + 2j, 3 + 3j]) | |
expected = array([0 + 2j, 0 + 8j, 0 + 20j, 0 + 24j, 0 + 18j]) | |
a = np.tile(a, [2, 1]) | |
expected = np.tile(expected, [2, 1]) | |
out = fftconvolve(a, a, axes=axes) | |
assert_array_almost_equal(out, expected) | |
def test_2d_real_same(self, axes): | |
a = array([[1, 2, 3], | |
[4, 5, 6]]) | |
expected = array([[1, 4, 10, 12, 9], | |
[8, 26, 56, 54, 36], | |
[16, 40, 73, 60, 36]]) | |
if axes == '': | |
out = fftconvolve(a, a) | |
else: | |
out = fftconvolve(a, a, axes=axes) | |
assert_array_almost_equal(out, expected) | |
def test_2d_real_same_axes(self, axes): | |
a = array([[1, 2, 3], | |
[4, 5, 6]]) | |
expected = array([[1, 4, 10, 12, 9], | |
[8, 26, 56, 54, 36], | |
[16, 40, 73, 60, 36]]) | |
a = np.tile(a, [2, 1, 1]) | |
expected = np.tile(expected, [2, 1, 1]) | |
out = fftconvolve(a, a, axes=axes) | |
assert_array_almost_equal(out, expected) | |
def test_2d_complex_same(self, axes): | |
a = array([[1 + 2j, 3 + 4j, 5 + 6j], | |
[2 + 1j, 4 + 3j, 6 + 5j]]) | |
expected = array([ | |
[-3 + 4j, -10 + 20j, -21 + 56j, -18 + 76j, -11 + 60j], | |
[10j, 44j, 118j, 156j, 122j], | |
[3 + 4j, 10 + 20j, 21 + 56j, 18 + 76j, 11 + 60j] | |
]) | |
if axes == '': | |
out = fftconvolve(a, a) | |
else: | |
out = fftconvolve(a, a, axes=axes) | |
assert_array_almost_equal(out, expected) | |
def test_2d_complex_same_axes(self, axes): | |
a = array([[1 + 2j, 3 + 4j, 5 + 6j], | |
[2 + 1j, 4 + 3j, 6 + 5j]]) | |
expected = array([ | |
[-3 + 4j, -10 + 20j, -21 + 56j, -18 + 76j, -11 + 60j], | |
[10j, 44j, 118j, 156j, 122j], | |
[3 + 4j, 10 + 20j, 21 + 56j, 18 + 76j, 11 + 60j] | |
]) | |
a = np.tile(a, [2, 1, 1]) | |
expected = np.tile(expected, [2, 1, 1]) | |
out = fftconvolve(a, a, axes=axes) | |
assert_array_almost_equal(out, expected) | |
def test_real_same_mode(self, axes): | |
a = array([1, 2, 3]) | |
b = array([3, 3, 5, 6, 8, 7, 9, 0, 1]) | |
expected_1 = array([35., 41., 47.]) | |
expected_2 = array([9., 20., 25., 35., 41., 47., 39., 28., 2.]) | |
if axes == '': | |
out = fftconvolve(a, b, 'same') | |
else: | |
out = fftconvolve(a, b, 'same', axes=axes) | |
assert_array_almost_equal(out, expected_1) | |
if axes == '': | |
out = fftconvolve(b, a, 'same') | |
else: | |
out = fftconvolve(b, a, 'same', axes=axes) | |
assert_array_almost_equal(out, expected_2) | |
def test_real_same_mode_axes(self, axes): | |
a = array([1, 2, 3]) | |
b = array([3, 3, 5, 6, 8, 7, 9, 0, 1]) | |
expected_1 = array([35., 41., 47.]) | |
expected_2 = array([9., 20., 25., 35., 41., 47., 39., 28., 2.]) | |
a = np.tile(a, [2, 1]) | |
b = np.tile(b, [2, 1]) | |
expected_1 = np.tile(expected_1, [2, 1]) | |
expected_2 = np.tile(expected_2, [2, 1]) | |
out = fftconvolve(a, b, 'same', axes=axes) | |
assert_array_almost_equal(out, expected_1) | |
out = fftconvolve(b, a, 'same', axes=axes) | |
assert_array_almost_equal(out, expected_2) | |
def test_valid_mode_real(self, axes): | |
# See gh-5897 | |
a = array([3, 2, 1]) | |
b = array([3, 3, 5, 6, 8, 7, 9, 0, 1]) | |
expected = array([24., 31., 41., 43., 49., 25., 12.]) | |
if axes == '': | |
out = fftconvolve(a, b, 'valid') | |
else: | |
out = fftconvolve(a, b, 'valid', axes=axes) | |
assert_array_almost_equal(out, expected) | |
if axes == '': | |
out = fftconvolve(b, a, 'valid') | |
else: | |
out = fftconvolve(b, a, 'valid', axes=axes) | |
assert_array_almost_equal(out, expected) | |
def test_valid_mode_real_axes(self, axes): | |
# See gh-5897 | |
a = array([3, 2, 1]) | |
b = array([3, 3, 5, 6, 8, 7, 9, 0, 1]) | |
expected = array([24., 31., 41., 43., 49., 25., 12.]) | |
a = np.tile(a, [2, 1]) | |
b = np.tile(b, [2, 1]) | |
expected = np.tile(expected, [2, 1]) | |
out = fftconvolve(a, b, 'valid', axes=axes) | |
assert_array_almost_equal(out, expected) | |
def test_valid_mode_complex(self, axes): | |
a = array([3 - 1j, 2 + 7j, 1 + 0j]) | |
b = array([3 + 2j, 3 - 3j, 5 + 0j, 6 - 1j, 8 + 0j]) | |
expected = array([45. + 12.j, 30. + 23.j, 48 + 32.j]) | |
if axes == '': | |
out = fftconvolve(a, b, 'valid') | |
else: | |
out = fftconvolve(a, b, 'valid', axes=axes) | |
assert_array_almost_equal(out, expected) | |
if axes == '': | |
out = fftconvolve(b, a, 'valid') | |
else: | |
out = fftconvolve(b, a, 'valid', axes=axes) | |
assert_array_almost_equal(out, expected) | |
def test_valid_mode_complex_axes(self, axes): | |
a = array([3 - 1j, 2 + 7j, 1 + 0j]) | |
b = array([3 + 2j, 3 - 3j, 5 + 0j, 6 - 1j, 8 + 0j]) | |
expected = array([45. + 12.j, 30. + 23.j, 48 + 32.j]) | |
a = np.tile(a, [2, 1]) | |
b = np.tile(b, [2, 1]) | |
expected = np.tile(expected, [2, 1]) | |
out = fftconvolve(a, b, 'valid', axes=axes) | |
assert_array_almost_equal(out, expected) | |
out = fftconvolve(b, a, 'valid', axes=axes) | |
assert_array_almost_equal(out, expected) | |
def test_valid_mode_ignore_nonaxes(self): | |
# See gh-5897 | |
a = array([3, 2, 1]) | |
b = array([3, 3, 5, 6, 8, 7, 9, 0, 1]) | |
expected = array([24., 31., 41., 43., 49., 25., 12.]) | |
a = np.tile(a, [2, 1]) | |
b = np.tile(b, [1, 1]) | |
expected = np.tile(expected, [2, 1]) | |
out = fftconvolve(a, b, 'valid', axes=1) | |
assert_array_almost_equal(out, expected) | |
def test_empty(self): | |
# Regression test for #1745: crashes with 0-length input. | |
assert_(fftconvolve([], []).size == 0) | |
assert_(fftconvolve([5, 6], []).size == 0) | |
assert_(fftconvolve([], [7]).size == 0) | |
def test_zero_rank(self): | |
a = array(4967) | |
b = array(3920) | |
out = fftconvolve(a, b) | |
assert_equal(out, a * b) | |
def test_single_element(self): | |
a = array([4967]) | |
b = array([3920]) | |
out = fftconvolve(a, b) | |
assert_equal(out, a * b) | |
def test_random_data(self, axes): | |
np.random.seed(1234) | |
a = np.random.rand(1233) + 1j * np.random.rand(1233) | |
b = np.random.rand(1321) + 1j * np.random.rand(1321) | |
expected = np.convolve(a, b, 'full') | |
if axes == '': | |
out = fftconvolve(a, b, 'full') | |
else: | |
out = fftconvolve(a, b, 'full', axes=axes) | |
assert_(np.allclose(out, expected, rtol=1e-10)) | |
def test_random_data_axes(self, axes): | |
np.random.seed(1234) | |
a = np.random.rand(1233) + 1j * np.random.rand(1233) | |
b = np.random.rand(1321) + 1j * np.random.rand(1321) | |
expected = np.convolve(a, b, 'full') | |
a = np.tile(a, [2, 1]) | |
b = np.tile(b, [2, 1]) | |
expected = np.tile(expected, [2, 1]) | |
out = fftconvolve(a, b, 'full', axes=axes) | |
assert_(np.allclose(out, expected, rtol=1e-10)) | |
def test_random_data_multidim_axes(self, axes): | |
a_shape, b_shape = (123, 22), (132, 11) | |
np.random.seed(1234) | |
a = np.random.rand(*a_shape) + 1j * np.random.rand(*a_shape) | |
b = np.random.rand(*b_shape) + 1j * np.random.rand(*b_shape) | |
expected = convolve2d(a, b, 'full') | |
a = a[:, :, None, None, None] | |
b = b[:, :, None, None, None] | |
expected = expected[:, :, None, None, None] | |
a = np.moveaxis(a.swapaxes(0, 2), 1, 4) | |
b = np.moveaxis(b.swapaxes(0, 2), 1, 4) | |
expected = np.moveaxis(expected.swapaxes(0, 2), 1, 4) | |
# use 1 for dimension 2 in a and 3 in b to test broadcasting | |
a = np.tile(a, [2, 1, 3, 1, 1]) | |
b = np.tile(b, [2, 1, 1, 4, 1]) | |
expected = np.tile(expected, [2, 1, 3, 4, 1]) | |
out = fftconvolve(a, b, 'full', axes=axes) | |
assert_allclose(out, expected, rtol=1e-10, atol=1e-10) | |
def test_many_sizes(self, n): | |
a = np.random.rand(n) + 1j * np.random.rand(n) | |
b = np.random.rand(n) + 1j * np.random.rand(n) | |
expected = np.convolve(a, b, 'full') | |
out = fftconvolve(a, b, 'full') | |
assert_allclose(out, expected, atol=1e-10) | |
out = fftconvolve(a, b, 'full', axes=[0]) | |
assert_allclose(out, expected, atol=1e-10) | |
def test_fft_nan(self): | |
n = 1000 | |
rng = np.random.default_rng(43876432987) | |
sig_nan = rng.standard_normal(n) | |
for val in [np.nan, np.inf]: | |
sig_nan[100] = val | |
coeffs = signal.firwin(200, 0.2) | |
msg = "Use of fft convolution.*|invalid value encountered.*" | |
with pytest.warns(RuntimeWarning, match=msg): | |
signal.convolve(sig_nan, coeffs, mode='same', method='fft') | |
def fftconvolve_err(*args, **kwargs): | |
raise RuntimeError('Fell back to fftconvolve') | |
def gen_oa_shapes(sizes): | |
return [(a, b) for a, b in product(sizes, repeat=2) | |
if abs(a - b) > 3] | |
def gen_oa_shapes_2d(sizes): | |
shapes0 = gen_oa_shapes(sizes) | |
shapes1 = gen_oa_shapes(sizes) | |
shapes = [ishapes0+ishapes1 for ishapes0, ishapes1 in | |
zip(shapes0, shapes1)] | |
modes = ['full', 'valid', 'same'] | |
return [ishapes+(imode,) for ishapes, imode in product(shapes, modes) | |
if imode != 'valid' or | |
(ishapes[0] > ishapes[1] and ishapes[2] > ishapes[3]) or | |
(ishapes[0] < ishapes[1] and ishapes[2] < ishapes[3])] | |
def gen_oa_shapes_eq(sizes): | |
return [(a, b) for a, b in product(sizes, repeat=2) | |
if a >= b] | |
class TestOAConvolve: | |
def test_real_manylens(self, shape_a_0, shape_b_0): | |
a = np.random.rand(shape_a_0) | |
b = np.random.rand(shape_b_0) | |
expected = fftconvolve(a, b) | |
out = oaconvolve(a, b) | |
assert_array_almost_equal(out, expected) | |
def test_1d_noaxes(self, shape_a_0, shape_b_0, | |
is_complex, mode, monkeypatch): | |
a = np.random.rand(shape_a_0) | |
b = np.random.rand(shape_b_0) | |
if is_complex: | |
a = a + 1j*np.random.rand(shape_a_0) | |
b = b + 1j*np.random.rand(shape_b_0) | |
expected = fftconvolve(a, b, mode=mode) | |
monkeypatch.setattr(signal._signaltools, 'fftconvolve', | |
fftconvolve_err) | |
out = oaconvolve(a, b, mode=mode) | |
assert_array_almost_equal(out, expected) | |
def test_1d_axes(self, axes, shape_a_0, shape_b_0, | |
shape_a_extra, shape_b_extra, | |
is_complex, mode, monkeypatch): | |
ax_a = [shape_a_extra]*2 | |
ax_b = [shape_b_extra]*2 | |
ax_a[axes] = shape_a_0 | |
ax_b[axes] = shape_b_0 | |
a = np.random.rand(*ax_a) | |
b = np.random.rand(*ax_b) | |
if is_complex: | |
a = a + 1j*np.random.rand(*ax_a) | |
b = b + 1j*np.random.rand(*ax_b) | |
expected = fftconvolve(a, b, mode=mode, axes=axes) | |
monkeypatch.setattr(signal._signaltools, 'fftconvolve', | |
fftconvolve_err) | |
out = oaconvolve(a, b, mode=mode, axes=axes) | |
assert_array_almost_equal(out, expected) | |
def test_2d_noaxes(self, shape_a_0, shape_b_0, | |
shape_a_1, shape_b_1, mode, | |
is_complex, monkeypatch): | |
a = np.random.rand(shape_a_0, shape_a_1) | |
b = np.random.rand(shape_b_0, shape_b_1) | |
if is_complex: | |
a = a + 1j*np.random.rand(shape_a_0, shape_a_1) | |
b = b + 1j*np.random.rand(shape_b_0, shape_b_1) | |
expected = fftconvolve(a, b, mode=mode) | |
monkeypatch.setattr(signal._signaltools, 'fftconvolve', | |
fftconvolve_err) | |
out = oaconvolve(a, b, mode=mode) | |
assert_array_almost_equal(out, expected) | |
def test_2d_axes(self, axes, shape_a_0, shape_b_0, | |
shape_a_1, shape_b_1, mode, | |
shape_a_extra, shape_b_extra, | |
is_complex, monkeypatch): | |
ax_a = [shape_a_extra]*3 | |
ax_b = [shape_b_extra]*3 | |
ax_a[axes[0]] = shape_a_0 | |
ax_b[axes[0]] = shape_b_0 | |
ax_a[axes[1]] = shape_a_1 | |
ax_b[axes[1]] = shape_b_1 | |
a = np.random.rand(*ax_a) | |
b = np.random.rand(*ax_b) | |
if is_complex: | |
a = a + 1j*np.random.rand(*ax_a) | |
b = b + 1j*np.random.rand(*ax_b) | |
expected = fftconvolve(a, b, mode=mode, axes=axes) | |
monkeypatch.setattr(signal._signaltools, 'fftconvolve', | |
fftconvolve_err) | |
out = oaconvolve(a, b, mode=mode, axes=axes) | |
assert_array_almost_equal(out, expected) | |
def test_empty(self): | |
# Regression test for #1745: crashes with 0-length input. | |
assert_(oaconvolve([], []).size == 0) | |
assert_(oaconvolve([5, 6], []).size == 0) | |
assert_(oaconvolve([], [7]).size == 0) | |
def test_zero_rank(self): | |
a = array(4967) | |
b = array(3920) | |
out = oaconvolve(a, b) | |
assert_equal(out, a * b) | |
def test_single_element(self): | |
a = array([4967]) | |
b = array([3920]) | |
out = oaconvolve(a, b) | |
assert_equal(out, a * b) | |
class TestAllFreqConvolves: | |
def test_invalid_shapes(self, convapproach): | |
a = np.arange(1, 7).reshape((2, 3)) | |
b = np.arange(-6, 0).reshape((3, 2)) | |
with assert_raises(ValueError, | |
match="For 'valid' mode, one must be at least " | |
"as large as the other in every dimension"): | |
convapproach(a, b, mode='valid') | |
def test_invalid_shapes_axes(self, convapproach): | |
a = np.zeros([5, 6, 2, 1]) | |
b = np.zeros([5, 6, 3, 1]) | |
with assert_raises(ValueError, | |
match=r"incompatible shapes for in1 and in2:" | |
r" \(5L?, 6L?, 2L?, 1L?\) and" | |
r" \(5L?, 6L?, 3L?, 1L?\)"): | |
convapproach(a, b, axes=[0, 1]) | |
def test_mismatched_dims(self, a, b, convapproach): | |
with assert_raises(ValueError, | |
match="in1 and in2 should have the same" | |
" dimensionality"): | |
convapproach(a, b) | |
def test_invalid_flags(self, convapproach): | |
with assert_raises(ValueError, | |
match="acceptable mode flags are 'valid'," | |
" 'same', or 'full'"): | |
convapproach([1], [2], mode='chips') | |
with assert_raises(ValueError, | |
match="when provided, axes cannot be empty"): | |
convapproach([1], [2], axes=[]) | |
with assert_raises(ValueError, match="axes must be a scalar or " | |
"iterable of integers"): | |
convapproach([1], [2], axes=[[1, 2], [3, 4]]) | |
with assert_raises(ValueError, match="axes must be a scalar or " | |
"iterable of integers"): | |
convapproach([1], [2], axes=[1., 2., 3., 4.]) | |
with assert_raises(ValueError, | |
match="axes exceeds dimensionality of input"): | |
convapproach([1], [2], axes=[1]) | |
with assert_raises(ValueError, | |
match="axes exceeds dimensionality of input"): | |
convapproach([1], [2], axes=[-2]) | |
with assert_raises(ValueError, | |
match="all axes must be unique"): | |
convapproach([1], [2], axes=[0, 0]) | |
def test_longdtype_input(self, dtype): | |
x = np.random.random((27, 27)).astype(dtype) | |
y = np.random.random((4, 4)).astype(dtype) | |
if np.iscomplexobj(dtype()): | |
x += .1j | |
y -= .1j | |
res = fftconvolve(x, y) | |
assert_allclose(res, convolve(x, y, method='direct')) | |
assert res.dtype == dtype | |
class TestMedFilt: | |
IN = [[50, 50, 50, 50, 50, 92, 18, 27, 65, 46], | |
[50, 50, 50, 50, 50, 0, 72, 77, 68, 66], | |
[50, 50, 50, 50, 50, 46, 47, 19, 64, 77], | |
[50, 50, 50, 50, 50, 42, 15, 29, 95, 35], | |
[50, 50, 50, 50, 50, 46, 34, 9, 21, 66], | |
[70, 97, 28, 68, 78, 77, 61, 58, 71, 42], | |
[64, 53, 44, 29, 68, 32, 19, 68, 24, 84], | |
[3, 33, 53, 67, 1, 78, 74, 55, 12, 83], | |
[7, 11, 46, 70, 60, 47, 24, 43, 61, 26], | |
[32, 61, 88, 7, 39, 4, 92, 64, 45, 61]] | |
OUT = [[0, 50, 50, 50, 42, 15, 15, 18, 27, 0], | |
[0, 50, 50, 50, 50, 42, 19, 21, 29, 0], | |
[50, 50, 50, 50, 50, 47, 34, 34, 46, 35], | |
[50, 50, 50, 50, 50, 50, 42, 47, 64, 42], | |
[50, 50, 50, 50, 50, 50, 46, 55, 64, 35], | |
[33, 50, 50, 50, 50, 47, 46, 43, 55, 26], | |
[32, 50, 50, 50, 50, 47, 46, 45, 55, 26], | |
[7, 46, 50, 50, 47, 46, 46, 43, 45, 21], | |
[0, 32, 33, 39, 32, 32, 43, 43, 43, 0], | |
[0, 7, 11, 7, 4, 4, 19, 19, 24, 0]] | |
KERNEL_SIZE = [7,3] | |
def test_basic(self): | |
d = signal.medfilt(self.IN, self.KERNEL_SIZE) | |
e = signal.medfilt2d(np.array(self.IN, float), self.KERNEL_SIZE) | |
assert_array_equal(d, self.OUT) | |
assert_array_equal(d, e) | |
def test_types(self, dtype): | |
# volume input and output types match | |
in_typed = np.array(self.IN, dtype=dtype) | |
assert_equal(signal.medfilt(in_typed).dtype, dtype) | |
assert_equal(signal.medfilt2d(in_typed).dtype, dtype) | |
def test_types_deprecated(self): | |
dtype = np.longdouble | |
in_typed = np.array(self.IN, dtype=dtype) | |
msg = "Using medfilt with arrays of dtype" | |
with pytest.deprecated_call(match=msg): | |
assert_equal(signal.medfilt(in_typed).dtype, dtype) | |
with pytest.deprecated_call(match=msg): | |
assert_equal(signal.medfilt2d(in_typed).dtype, dtype) | |
def test_invalid_dtypes(self, dtype): | |
in_typed = np.array(self.IN, dtype=dtype) | |
with pytest.raises(ValueError, match="not supported"): | |
signal.medfilt(in_typed) | |
with pytest.raises(ValueError, match="not supported"): | |
signal.medfilt2d(in_typed) | |
def test_none(self): | |
# gh-1651, trac #1124. Ensure this does not segfault. | |
msg = "kernel_size exceeds volume.*|Using medfilt with arrays of dtype.*" | |
with pytest.warns((UserWarning, DeprecationWarning), match=msg): | |
assert_raises(TypeError, signal.medfilt, None) | |
def test_odd_strides(self): | |
# Avoid a regression with possible contiguous | |
# numpy arrays that have odd strides. The stride value below gets | |
# us into wrong memory if used (but it does not need to be used) | |
dummy = np.arange(10, dtype=np.float64) | |
a = dummy[5:6] | |
a.strides = 16 | |
assert_(signal.medfilt(a, 1) == 5.) | |
def test_refcounting(self): | |
# Check a refcounting-related crash | |
a = Decimal(123) | |
x = np.array([a, a], dtype=object) | |
if hasattr(sys, 'getrefcount'): | |
n = 2 * sys.getrefcount(a) | |
else: | |
n = 10 | |
# Shouldn't segfault: | |
msg = "kernel_size exceeds volume.*|Using medfilt with arrays of dtype.*" | |
with pytest.warns((UserWarning, DeprecationWarning), match=msg): | |
for j in range(n): | |
signal.medfilt(x) | |
if hasattr(sys, 'getrefcount'): | |
assert_(sys.getrefcount(a) < n) | |
assert_equal(x, [a, a]) | |
def test_object(self,): | |
msg = "Using medfilt with arrays of dtype" | |
with pytest.deprecated_call(match=msg): | |
in_object = np.array(self.IN, dtype=object) | |
out_object = np.array(self.OUT, dtype=object) | |
assert_array_equal(signal.medfilt(in_object, self.KERNEL_SIZE), | |
out_object) | |
def test_medfilt2d_parallel(self, dtype): | |
in_typed = np.array(self.IN, dtype=dtype) | |
expected = np.array(self.OUT, dtype=dtype) | |
# This is used to simplify the indexing calculations. | |
assert in_typed.shape == expected.shape | |
# We'll do the calculation in four chunks. M1 and N1 are the dimensions | |
# of the first output chunk. We have to extend the input by half the | |
# kernel size to be able to calculate the full output chunk. | |
M1 = expected.shape[0] // 2 | |
N1 = expected.shape[1] // 2 | |
offM = self.KERNEL_SIZE[0] // 2 + 1 | |
offN = self.KERNEL_SIZE[1] // 2 + 1 | |
def apply(chunk): | |
# in = slice of in_typed to use. | |
# sel = slice of output to crop it to the correct region. | |
# out = slice of output array to store in. | |
M, N = chunk | |
if M == 0: | |
Min = slice(0, M1 + offM) | |
Msel = slice(0, -offM) | |
Mout = slice(0, M1) | |
else: | |
Min = slice(M1 - offM, None) | |
Msel = slice(offM, None) | |
Mout = slice(M1, None) | |
if N == 0: | |
Nin = slice(0, N1 + offN) | |
Nsel = slice(0, -offN) | |
Nout = slice(0, N1) | |
else: | |
Nin = slice(N1 - offN, None) | |
Nsel = slice(offN, None) | |
Nout = slice(N1, None) | |
# Do the calculation, but do not write to the output in the threads. | |
chunk_data = in_typed[Min, Nin] | |
med = signal.medfilt2d(chunk_data, self.KERNEL_SIZE) | |
return med[Msel, Nsel], Mout, Nout | |
# Give each chunk to a different thread. | |
output = np.zeros_like(expected) | |
with ThreadPoolExecutor(max_workers=4) as pool: | |
chunks = {(0, 0), (0, 1), (1, 0), (1, 1)} | |
futures = {pool.submit(apply, chunk) for chunk in chunks} | |
# Store each result in the output as it arrives. | |
for future in as_completed(futures): | |
data, Mslice, Nslice = future.result() | |
output[Mslice, Nslice] = data | |
assert_array_equal(output, expected) | |
class TestWiener: | |
def test_basic(self): | |
g = array([[5, 6, 4, 3], | |
[3, 5, 6, 2], | |
[2, 3, 5, 6], | |
[1, 6, 9, 7]], 'd') | |
h = array([[2.16374269, 3.2222222222, 2.8888888889, 1.6666666667], | |
[2.666666667, 4.33333333333, 4.44444444444, 2.8888888888], | |
[2.222222222, 4.4444444444, 5.4444444444, 4.801066874837], | |
[1.33333333333, 3.92735042735, 6.0712560386, 5.0404040404]]) | |
assert_array_almost_equal(signal.wiener(g), h, decimal=6) | |
assert_array_almost_equal(signal.wiener(g, mysize=3), h, decimal=6) | |
padtype_options = ["mean", "median", "minimum", "maximum", "line"] | |
padtype_options += _upfirdn_modes | |
class TestResample: | |
def test_basic(self): | |
# Some basic tests | |
# Regression test for issue #3603. | |
# window.shape must equal to sig.shape[0] | |
sig = np.arange(128) | |
num = 256 | |
win = signal.get_window(('kaiser', 8.0), 160) | |
assert_raises(ValueError, signal.resample, sig, num, window=win) | |
# Other degenerate conditions | |
assert_raises(ValueError, signal.resample_poly, sig, 'yo', 1) | |
assert_raises(ValueError, signal.resample_poly, sig, 1, 0) | |
assert_raises(ValueError, signal.resample_poly, sig, 2, 1, padtype='') | |
assert_raises(ValueError, signal.resample_poly, sig, 2, 1, | |
padtype='mean', cval=10) | |
# test for issue #6505 - should not modify window.shape when axis ≠ 0 | |
sig2 = np.tile(np.arange(160), (2, 1)) | |
signal.resample(sig2, num, axis=-1, window=win) | |
assert_(win.shape == (160,)) | |
def test_rfft(self, N, num, window): | |
# Make sure the speed up using rfft gives the same result as the normal | |
# way using fft | |
x = np.linspace(0, 10, N, endpoint=False) | |
y = np.cos(-x**2/6.0) | |
assert_allclose(signal.resample(y, num, window=window), | |
signal.resample(y + 0j, num, window=window).real) | |
y = np.array([np.cos(-x**2/6.0), np.sin(-x**2/6.0)]) | |
y_complex = y + 0j | |
assert_allclose( | |
signal.resample(y, num, axis=1, window=window), | |
signal.resample(y_complex, num, axis=1, window=window).real, | |
atol=1e-9) | |
def test_input_domain(self): | |
# Test if both input domain modes produce the same results. | |
tsig = np.arange(256) + 0j | |
fsig = fft(tsig) | |
num = 256 | |
assert_allclose( | |
signal.resample(fsig, num, domain='freq'), | |
signal.resample(tsig, num, domain='time'), | |
atol=1e-9) | |
def test_dc(self, nx, ny, dtype): | |
x = np.array([1] * nx, dtype) | |
y = signal.resample(x, ny) | |
assert_allclose(y, [1] * ny) | |
def test_mutable_window(self, padtype): | |
# Test that a mutable window is not modified | |
impulse = np.zeros(3) | |
window = np.random.RandomState(0).randn(2) | |
window_orig = window.copy() | |
signal.resample_poly(impulse, 5, 1, window=window, padtype=padtype) | |
assert_array_equal(window, window_orig) | |
def test_output_float32(self, padtype): | |
# Test that float32 inputs yield a float32 output | |
x = np.arange(10, dtype=np.float32) | |
h = np.array([1, 1, 1], dtype=np.float32) | |
y = signal.resample_poly(x, 1, 2, window=h, padtype=padtype) | |
assert y.dtype == np.float32 | |
def test_output_match_dtype(self, padtype, dtype): | |
# Test that the dtype of x is preserved per issue #14733 | |
x = np.arange(10, dtype=dtype) | |
y = signal.resample_poly(x, 1, 2, padtype=padtype) | |
assert y.dtype == x.dtype | |
def test_resample_methods(self, method, ext, padtype): | |
# Test resampling of sinusoids and random noise (1-sec) | |
rate = 100 | |
rates_to = [49, 50, 51, 99, 100, 101, 199, 200, 201] | |
# Sinusoids, windowed to avoid edge artifacts | |
t = np.arange(rate) / float(rate) | |
freqs = np.array((1., 10., 40.))[:, np.newaxis] | |
x = np.sin(2 * np.pi * freqs * t) * hann(rate) | |
for rate_to in rates_to: | |
t_to = np.arange(rate_to) / float(rate_to) | |
y_tos = np.sin(2 * np.pi * freqs * t_to) * hann(rate_to) | |
if method == 'fft': | |
y_resamps = signal.resample(x, rate_to, axis=-1) | |
else: | |
if ext and rate_to != rate: | |
# Match default window design | |
g = gcd(rate_to, rate) | |
up = rate_to // g | |
down = rate // g | |
max_rate = max(up, down) | |
f_c = 1. / max_rate | |
half_len = 10 * max_rate | |
window = signal.firwin(2 * half_len + 1, f_c, | |
window=('kaiser', 5.0)) | |
polyargs = {'window': window, 'padtype': padtype} | |
else: | |
polyargs = {'padtype': padtype} | |
y_resamps = signal.resample_poly(x, rate_to, rate, axis=-1, | |
**polyargs) | |
for y_to, y_resamp, freq in zip(y_tos, y_resamps, freqs): | |
if freq >= 0.5 * rate_to: | |
y_to.fill(0.) # mostly low-passed away | |
if padtype in ['minimum', 'maximum']: | |
assert_allclose(y_resamp, y_to, atol=3e-1) | |
else: | |
assert_allclose(y_resamp, y_to, atol=1e-3) | |
else: | |
assert_array_equal(y_to.shape, y_resamp.shape) | |
corr = np.corrcoef(y_to, y_resamp)[0, 1] | |
assert_(corr > 0.99, msg=(corr, rate, rate_to)) | |
# Random data | |
rng = np.random.RandomState(0) | |
x = hann(rate) * np.cumsum(rng.randn(rate)) # low-pass, wind | |
for rate_to in rates_to: | |
# random data | |
t_to = np.arange(rate_to) / float(rate_to) | |
y_to = np.interp(t_to, t, x) | |
if method == 'fft': | |
y_resamp = signal.resample(x, rate_to) | |
else: | |
y_resamp = signal.resample_poly(x, rate_to, rate, | |
padtype=padtype) | |
assert_array_equal(y_to.shape, y_resamp.shape) | |
corr = np.corrcoef(y_to, y_resamp)[0, 1] | |
assert_(corr > 0.99, msg=corr) | |
# More tests of fft method (Master 0.18.1 fails these) | |
if method == 'fft': | |
x1 = np.array([1.+0.j, 0.+0.j]) | |
y1_test = signal.resample(x1, 4) | |
# upsampling a complex array | |
y1_true = np.array([1.+0.j, 0.5+0.j, 0.+0.j, 0.5+0.j]) | |
assert_allclose(y1_test, y1_true, atol=1e-12) | |
x2 = np.array([1., 0.5, 0., 0.5]) | |
y2_test = signal.resample(x2, 2) # downsampling a real array | |
y2_true = np.array([1., 0.]) | |
assert_allclose(y2_test, y2_true, atol=1e-12) | |
def test_poly_vs_filtfilt(self): | |
# Check that up=1.0 gives same answer as filtfilt + slicing | |
random_state = np.random.RandomState(17) | |
try_types = (int, np.float32, np.complex64, float, complex) | |
size = 10000 | |
down_factors = [2, 11, 79] | |
for dtype in try_types: | |
x = random_state.randn(size).astype(dtype) | |
if dtype in (np.complex64, np.complex128): | |
x += 1j * random_state.randn(size) | |
# resample_poly assumes zeros outside of signl, whereas filtfilt | |
# can only constant-pad. Make them equivalent: | |
x[0] = 0 | |
x[-1] = 0 | |
for down in down_factors: | |
h = signal.firwin(31, 1. / down, window='hamming') | |
yf = filtfilt(h, 1.0, x, padtype='constant')[::down] | |
# Need to pass convolved version of filter to resample_poly, | |
# since filtfilt does forward and backward, but resample_poly | |
# only goes forward | |
hc = convolve(h, h[::-1]) | |
y = signal.resample_poly(x, 1, down, window=hc) | |
assert_allclose(yf, y, atol=1e-7, rtol=1e-7) | |
def test_correlate1d(self): | |
for down in [2, 4]: | |
for nx in range(1, 40, down): | |
for nweights in (32, 33): | |
x = np.random.random((nx,)) | |
weights = np.random.random((nweights,)) | |
y_g = correlate1d(x, weights[::-1], mode='constant') | |
y_s = signal.resample_poly( | |
x, up=1, down=down, window=weights) | |
assert_allclose(y_g[::down], y_s) | |
class TestCSpline1DEval: | |
def test_basic(self): | |
y = array([1, 2, 3, 4, 3, 2, 1, 2, 3.0]) | |
x = arange(len(y)) | |
dx = x[1] - x[0] | |
cj = signal.cspline1d(y) | |
x2 = arange(len(y) * 10.0) / 10.0 | |
y2 = signal.cspline1d_eval(cj, x2, dx=dx, x0=x[0]) | |
# make sure interpolated values are on knot points | |
assert_array_almost_equal(y2[::10], y, decimal=5) | |
def test_complex(self): | |
# create some smoothly varying complex signal to interpolate | |
x = np.arange(2) | |
y = np.zeros(x.shape, dtype=np.complex64) | |
T = 10.0 | |
f = 1.0 / T | |
y = np.exp(2.0J * np.pi * f * x) | |
# get the cspline transform | |
cy = signal.cspline1d(y) | |
# determine new test x value and interpolate | |
xnew = np.array([0.5]) | |
ynew = signal.cspline1d_eval(cy, xnew) | |
assert_equal(ynew.dtype, y.dtype) | |
class TestOrderFilt: | |
def test_basic(self): | |
assert_array_equal(signal.order_filter([1, 2, 3], [1, 0, 1], 1), | |
[2, 3, 2]) | |
class _TestLinearFilter: | |
def generate(self, shape): | |
x = np.linspace(0, np.prod(shape) - 1, np.prod(shape)).reshape(shape) | |
return self.convert_dtype(x) | |
def convert_dtype(self, arr): | |
if self.dtype == np.dtype('O'): | |
arr = np.asarray(arr) | |
out = np.empty(arr.shape, self.dtype) | |
iter = np.nditer([arr, out], ['refs_ok','zerosize_ok'], | |
[['readonly'],['writeonly']]) | |
for x, y in iter: | |
y[...] = self.type(x[()]) | |
return out | |
else: | |
return np.asarray(arr, dtype=self.dtype) | |
def test_rank_1_IIR(self): | |
x = self.generate((6,)) | |
b = self.convert_dtype([1, -1]) | |
a = self.convert_dtype([0.5, -0.5]) | |
y_r = self.convert_dtype([0, 2, 4, 6, 8, 10.]) | |
assert_array_almost_equal(lfilter(b, a, x), y_r) | |
def test_rank_1_FIR(self): | |
x = self.generate((6,)) | |
b = self.convert_dtype([1, 1]) | |
a = self.convert_dtype([1]) | |
y_r = self.convert_dtype([0, 1, 3, 5, 7, 9.]) | |
assert_array_almost_equal(lfilter(b, a, x), y_r) | |
def test_rank_1_IIR_init_cond(self): | |
x = self.generate((6,)) | |
b = self.convert_dtype([1, 0, -1]) | |
a = self.convert_dtype([0.5, -0.5]) | |
zi = self.convert_dtype([1, 2]) | |
y_r = self.convert_dtype([1, 5, 9, 13, 17, 21]) | |
zf_r = self.convert_dtype([13, -10]) | |
y, zf = lfilter(b, a, x, zi=zi) | |
assert_array_almost_equal(y, y_r) | |
assert_array_almost_equal(zf, zf_r) | |
def test_rank_1_FIR_init_cond(self): | |
x = self.generate((6,)) | |
b = self.convert_dtype([1, 1, 1]) | |
a = self.convert_dtype([1]) | |
zi = self.convert_dtype([1, 1]) | |
y_r = self.convert_dtype([1, 2, 3, 6, 9, 12.]) | |
zf_r = self.convert_dtype([9, 5]) | |
y, zf = lfilter(b, a, x, zi=zi) | |
assert_array_almost_equal(y, y_r) | |
assert_array_almost_equal(zf, zf_r) | |
def test_rank_2_IIR_axis_0(self): | |
x = self.generate((4, 3)) | |
b = self.convert_dtype([1, -1]) | |
a = self.convert_dtype([0.5, 0.5]) | |
y_r2_a0 = self.convert_dtype([[0, 2, 4], [6, 4, 2], [0, 2, 4], | |
[6, 4, 2]]) | |
y = lfilter(b, a, x, axis=0) | |
assert_array_almost_equal(y_r2_a0, y) | |
def test_rank_2_IIR_axis_1(self): | |
x = self.generate((4, 3)) | |
b = self.convert_dtype([1, -1]) | |
a = self.convert_dtype([0.5, 0.5]) | |
y_r2_a1 = self.convert_dtype([[0, 2, 0], [6, -4, 6], [12, -10, 12], | |
[18, -16, 18]]) | |
y = lfilter(b, a, x, axis=1) | |
assert_array_almost_equal(y_r2_a1, y) | |
def test_rank_2_IIR_axis_0_init_cond(self): | |
x = self.generate((4, 3)) | |
b = self.convert_dtype([1, -1]) | |
a = self.convert_dtype([0.5, 0.5]) | |
zi = self.convert_dtype(np.ones((4,1))) | |
y_r2_a0_1 = self.convert_dtype([[1, 1, 1], [7, -5, 7], [13, -11, 13], | |
[19, -17, 19]]) | |
zf_r = self.convert_dtype([-5, -17, -29, -41])[:, np.newaxis] | |
y, zf = lfilter(b, a, x, axis=1, zi=zi) | |
assert_array_almost_equal(y_r2_a0_1, y) | |
assert_array_almost_equal(zf, zf_r) | |
def test_rank_2_IIR_axis_1_init_cond(self): | |
x = self.generate((4,3)) | |
b = self.convert_dtype([1, -1]) | |
a = self.convert_dtype([0.5, 0.5]) | |
zi = self.convert_dtype(np.ones((1,3))) | |
y_r2_a0_0 = self.convert_dtype([[1, 3, 5], [5, 3, 1], | |
[1, 3, 5], [5, 3, 1]]) | |
zf_r = self.convert_dtype([[-23, -23, -23]]) | |
y, zf = lfilter(b, a, x, axis=0, zi=zi) | |
assert_array_almost_equal(y_r2_a0_0, y) | |
assert_array_almost_equal(zf, zf_r) | |
def test_rank_3_IIR(self): | |
x = self.generate((4, 3, 2)) | |
b = self.convert_dtype([1, -1]) | |
a = self.convert_dtype([0.5, 0.5]) | |
for axis in range(x.ndim): | |
y = lfilter(b, a, x, axis) | |
y_r = np.apply_along_axis(lambda w: lfilter(b, a, w), axis, x) | |
assert_array_almost_equal(y, y_r) | |
def test_rank_3_IIR_init_cond(self): | |
x = self.generate((4, 3, 2)) | |
b = self.convert_dtype([1, -1]) | |
a = self.convert_dtype([0.5, 0.5]) | |
for axis in range(x.ndim): | |
zi_shape = list(x.shape) | |
zi_shape[axis] = 1 | |
zi = self.convert_dtype(np.ones(zi_shape)) | |
zi1 = self.convert_dtype([1]) | |
y, zf = lfilter(b, a, x, axis, zi) | |
def lf0(w): | |
return lfilter(b, a, w, zi=zi1)[0] | |
def lf1(w): | |
return lfilter(b, a, w, zi=zi1)[1] | |
y_r = np.apply_along_axis(lf0, axis, x) | |
zf_r = np.apply_along_axis(lf1, axis, x) | |
assert_array_almost_equal(y, y_r) | |
assert_array_almost_equal(zf, zf_r) | |
def test_rank_3_FIR(self): | |
x = self.generate((4, 3, 2)) | |
b = self.convert_dtype([1, 0, -1]) | |
a = self.convert_dtype([1]) | |
for axis in range(x.ndim): | |
y = lfilter(b, a, x, axis) | |
y_r = np.apply_along_axis(lambda w: lfilter(b, a, w), axis, x) | |
assert_array_almost_equal(y, y_r) | |
def test_rank_3_FIR_init_cond(self): | |
x = self.generate((4, 3, 2)) | |
b = self.convert_dtype([1, 0, -1]) | |
a = self.convert_dtype([1]) | |
for axis in range(x.ndim): | |
zi_shape = list(x.shape) | |
zi_shape[axis] = 2 | |
zi = self.convert_dtype(np.ones(zi_shape)) | |
zi1 = self.convert_dtype([1, 1]) | |
y, zf = lfilter(b, a, x, axis, zi) | |
def lf0(w): | |
return lfilter(b, a, w, zi=zi1)[0] | |
def lf1(w): | |
return lfilter(b, a, w, zi=zi1)[1] | |
y_r = np.apply_along_axis(lf0, axis, x) | |
zf_r = np.apply_along_axis(lf1, axis, x) | |
assert_array_almost_equal(y, y_r) | |
assert_array_almost_equal(zf, zf_r) | |
def test_zi_pseudobroadcast(self): | |
x = self.generate((4, 5, 20)) | |
b,a = signal.butter(8, 0.2, output='ba') | |
b = self.convert_dtype(b) | |
a = self.convert_dtype(a) | |
zi_size = b.shape[0] - 1 | |
# lfilter requires x.ndim == zi.ndim exactly. However, zi can have | |
# length 1 dimensions. | |
zi_full = self.convert_dtype(np.ones((4, 5, zi_size))) | |
zi_sing = self.convert_dtype(np.ones((1, 1, zi_size))) | |
y_full, zf_full = lfilter(b, a, x, zi=zi_full) | |
y_sing, zf_sing = lfilter(b, a, x, zi=zi_sing) | |
assert_array_almost_equal(y_sing, y_full) | |
assert_array_almost_equal(zf_full, zf_sing) | |
# lfilter does not prepend ones | |
assert_raises(ValueError, lfilter, b, a, x, -1, np.ones(zi_size)) | |
def test_scalar_a(self): | |
# a can be a scalar. | |
x = self.generate(6) | |
b = self.convert_dtype([1, 0, -1]) | |
a = self.convert_dtype([1]) | |
y_r = self.convert_dtype([0, 1, 2, 2, 2, 2]) | |
y = lfilter(b, a[0], x) | |
assert_array_almost_equal(y, y_r) | |
def test_zi_some_singleton_dims(self): | |
# lfilter doesn't really broadcast (no prepending of 1's). But does | |
# do singleton expansion if x and zi have the same ndim. This was | |
# broken only if a subset of the axes were singletons (gh-4681). | |
x = self.convert_dtype(np.zeros((3,2,5), 'l')) | |
b = self.convert_dtype(np.ones(5, 'l')) | |
a = self.convert_dtype(np.array([1,0,0])) | |
zi = np.ones((3,1,4), 'l') | |
zi[1,:,:] *= 2 | |
zi[2,:,:] *= 3 | |
zi = self.convert_dtype(zi) | |
zf_expected = self.convert_dtype(np.zeros((3,2,4), 'l')) | |
y_expected = np.zeros((3,2,5), 'l') | |
y_expected[:,:,:4] = [[[1]], [[2]], [[3]]] | |
y_expected = self.convert_dtype(y_expected) | |
# IIR | |
y_iir, zf_iir = lfilter(b, a, x, -1, zi) | |
assert_array_almost_equal(y_iir, y_expected) | |
assert_array_almost_equal(zf_iir, zf_expected) | |
# FIR | |
y_fir, zf_fir = lfilter(b, a[0], x, -1, zi) | |
assert_array_almost_equal(y_fir, y_expected) | |
assert_array_almost_equal(zf_fir, zf_expected) | |
def base_bad_size_zi(self, b, a, x, axis, zi): | |
b = self.convert_dtype(b) | |
a = self.convert_dtype(a) | |
x = self.convert_dtype(x) | |
zi = self.convert_dtype(zi) | |
assert_raises(ValueError, lfilter, b, a, x, axis, zi) | |
def test_bad_size_zi(self): | |
# rank 1 | |
x1 = np.arange(6) | |
self.base_bad_size_zi([1], [1], x1, -1, [1]) | |
self.base_bad_size_zi([1, 1], [1], x1, -1, [0, 1]) | |
self.base_bad_size_zi([1, 1], [1], x1, -1, [[0]]) | |
self.base_bad_size_zi([1, 1], [1], x1, -1, [0, 1, 2]) | |
self.base_bad_size_zi([1, 1, 1], [1], x1, -1, [[0]]) | |
self.base_bad_size_zi([1, 1, 1], [1], x1, -1, [0, 1, 2]) | |
self.base_bad_size_zi([1], [1, 1], x1, -1, [0, 1]) | |
self.base_bad_size_zi([1], [1, 1], x1, -1, [[0]]) | |
self.base_bad_size_zi([1], [1, 1], x1, -1, [0, 1, 2]) | |
self.base_bad_size_zi([1, 1, 1], [1, 1], x1, -1, [0]) | |
self.base_bad_size_zi([1, 1, 1], [1, 1], x1, -1, [[0], [1]]) | |
self.base_bad_size_zi([1, 1, 1], [1, 1], x1, -1, [0, 1, 2]) | |
self.base_bad_size_zi([1, 1, 1], [1, 1], x1, -1, [0, 1, 2, 3]) | |
self.base_bad_size_zi([1, 1], [1, 1, 1], x1, -1, [0]) | |
self.base_bad_size_zi([1, 1], [1, 1, 1], x1, -1, [[0], [1]]) | |
self.base_bad_size_zi([1, 1], [1, 1, 1], x1, -1, [0, 1, 2]) | |
self.base_bad_size_zi([1, 1], [1, 1, 1], x1, -1, [0, 1, 2, 3]) | |
# rank 2 | |
x2 = np.arange(12).reshape((4,3)) | |
# for axis=0 zi.shape should == (max(len(a),len(b))-1, 3) | |
self.base_bad_size_zi([1], [1], x2, 0, [0]) | |
# for each of these there are 5 cases tested (in this order): | |
# 1. not deep enough, right # elements | |
# 2. too deep, right # elements | |
# 3. right depth, right # elements, transposed | |
# 4. right depth, too few elements | |
# 5. right depth, too many elements | |
self.base_bad_size_zi([1, 1], [1], x2, 0, [0,1,2]) | |
self.base_bad_size_zi([1, 1], [1], x2, 0, [[[0,1,2]]]) | |
self.base_bad_size_zi([1, 1], [1], x2, 0, [[0], [1], [2]]) | |
self.base_bad_size_zi([1, 1], [1], x2, 0, [[0,1]]) | |
self.base_bad_size_zi([1, 1], [1], x2, 0, [[0,1,2,3]]) | |
self.base_bad_size_zi([1, 1, 1], [1], x2, 0, [0,1,2,3,4,5]) | |
self.base_bad_size_zi([1, 1, 1], [1], x2, 0, [[[0,1,2],[3,4,5]]]) | |
self.base_bad_size_zi([1, 1, 1], [1], x2, 0, [[0,1],[2,3],[4,5]]) | |
self.base_bad_size_zi([1, 1, 1], [1], x2, 0, [[0,1],[2,3]]) | |
self.base_bad_size_zi([1, 1, 1], [1], x2, 0, [[0,1,2,3],[4,5,6,7]]) | |
self.base_bad_size_zi([1], [1, 1], x2, 0, [0,1,2]) | |
self.base_bad_size_zi([1], [1, 1], x2, 0, [[[0,1,2]]]) | |
self.base_bad_size_zi([1], [1, 1], x2, 0, [[0], [1], [2]]) | |
self.base_bad_size_zi([1], [1, 1], x2, 0, [[0,1]]) | |
self.base_bad_size_zi([1], [1, 1], x2, 0, [[0,1,2,3]]) | |
self.base_bad_size_zi([1], [1, 1, 1], x2, 0, [0,1,2,3,4,5]) | |
self.base_bad_size_zi([1], [1, 1, 1], x2, 0, [[[0,1,2],[3,4,5]]]) | |
self.base_bad_size_zi([1], [1, 1, 1], x2, 0, [[0,1],[2,3],[4,5]]) | |
self.base_bad_size_zi([1], [1, 1, 1], x2, 0, [[0,1],[2,3]]) | |
self.base_bad_size_zi([1], [1, 1, 1], x2, 0, [[0,1,2,3],[4,5,6,7]]) | |
self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 0, [0,1,2,3,4,5]) | |
self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 0, [[[0,1,2],[3,4,5]]]) | |
self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 0, [[0,1],[2,3],[4,5]]) | |
self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 0, [[0,1],[2,3]]) | |
self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 0, [[0,1,2,3],[4,5,6,7]]) | |
# for axis=1 zi.shape should == (4, max(len(a),len(b))-1) | |
self.base_bad_size_zi([1], [1], x2, 1, [0]) | |
self.base_bad_size_zi([1, 1], [1], x2, 1, [0,1,2,3]) | |
self.base_bad_size_zi([1, 1], [1], x2, 1, [[[0],[1],[2],[3]]]) | |
self.base_bad_size_zi([1, 1], [1], x2, 1, [[0, 1, 2, 3]]) | |
self.base_bad_size_zi([1, 1], [1], x2, 1, [[0],[1],[2]]) | |
self.base_bad_size_zi([1, 1], [1], x2, 1, [[0],[1],[2],[3],[4]]) | |
self.base_bad_size_zi([1, 1, 1], [1], x2, 1, [0,1,2,3,4,5,6,7]) | |
self.base_bad_size_zi([1, 1, 1], [1], x2, 1, [[[0,1],[2,3],[4,5],[6,7]]]) | |
self.base_bad_size_zi([1, 1, 1], [1], x2, 1, [[0,1,2,3],[4,5,6,7]]) | |
self.base_bad_size_zi([1, 1, 1], [1], x2, 1, [[0,1],[2,3],[4,5]]) | |
self.base_bad_size_zi([1, 1, 1], [1], x2, 1, [[0,1],[2,3],[4,5],[6,7],[8,9]]) | |
self.base_bad_size_zi([1], [1, 1], x2, 1, [0,1,2,3]) | |
self.base_bad_size_zi([1], [1, 1], x2, 1, [[[0],[1],[2],[3]]]) | |
self.base_bad_size_zi([1], [1, 1], x2, 1, [[0, 1, 2, 3]]) | |
self.base_bad_size_zi([1], [1, 1], x2, 1, [[0],[1],[2]]) | |
self.base_bad_size_zi([1], [1, 1], x2, 1, [[0],[1],[2],[3],[4]]) | |
self.base_bad_size_zi([1], [1, 1, 1], x2, 1, [0,1,2,3,4,5,6,7]) | |
self.base_bad_size_zi([1], [1, 1, 1], x2, 1, [[[0,1],[2,3],[4,5],[6,7]]]) | |
self.base_bad_size_zi([1], [1, 1, 1], x2, 1, [[0,1,2,3],[4,5,6,7]]) | |
self.base_bad_size_zi([1], [1, 1, 1], x2, 1, [[0,1],[2,3],[4,5]]) | |
self.base_bad_size_zi([1], [1, 1, 1], x2, 1, [[0,1],[2,3],[4,5],[6,7],[8,9]]) | |
self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 1, [0,1,2,3,4,5,6,7]) | |
self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 1, [[[0,1],[2,3],[4,5],[6,7]]]) | |
self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 1, [[0,1,2,3],[4,5,6,7]]) | |
self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 1, [[0,1],[2,3],[4,5]]) | |
self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 1, [[0,1],[2,3],[4,5],[6,7],[8,9]]) | |
def test_empty_zi(self): | |
# Regression test for #880: empty array for zi crashes. | |
x = self.generate((5,)) | |
a = self.convert_dtype([1]) | |
b = self.convert_dtype([1]) | |
zi = self.convert_dtype([]) | |
y, zf = lfilter(b, a, x, zi=zi) | |
assert_array_almost_equal(y, x) | |
assert_equal(zf.dtype, self.dtype) | |
assert_equal(zf.size, 0) | |
def test_lfiltic_bad_zi(self): | |
# Regression test for #3699: bad initial conditions | |
a = self.convert_dtype([1]) | |
b = self.convert_dtype([1]) | |
# "y" sets the datatype of zi, so it truncates if int | |
zi = lfiltic(b, a, [1., 0]) | |
zi_1 = lfiltic(b, a, [1, 0]) | |
zi_2 = lfiltic(b, a, [True, False]) | |
assert_array_equal(zi, zi_1) | |
assert_array_equal(zi, zi_2) | |
def test_short_x_FIR(self): | |
# regression test for #5116 | |
# x shorter than b, with non None zi fails | |
a = self.convert_dtype([1]) | |
b = self.convert_dtype([1, 0, -1]) | |
zi = self.convert_dtype([2, 7]) | |
x = self.convert_dtype([72]) | |
ye = self.convert_dtype([74]) | |
zfe = self.convert_dtype([7, -72]) | |
y, zf = lfilter(b, a, x, zi=zi) | |
assert_array_almost_equal(y, ye) | |
assert_array_almost_equal(zf, zfe) | |
def test_short_x_IIR(self): | |
# regression test for #5116 | |
# x shorter than b, with non None zi fails | |
a = self.convert_dtype([1, 1]) | |
b = self.convert_dtype([1, 0, -1]) | |
zi = self.convert_dtype([2, 7]) | |
x = self.convert_dtype([72]) | |
ye = self.convert_dtype([74]) | |
zfe = self.convert_dtype([-67, -72]) | |
y, zf = lfilter(b, a, x, zi=zi) | |
assert_array_almost_equal(y, ye) | |
assert_array_almost_equal(zf, zfe) | |
def test_do_not_modify_a_b_IIR(self): | |
x = self.generate((6,)) | |
b = self.convert_dtype([1, -1]) | |
b0 = b.copy() | |
a = self.convert_dtype([0.5, -0.5]) | |
a0 = a.copy() | |
y_r = self.convert_dtype([0, 2, 4, 6, 8, 10.]) | |
y_f = lfilter(b, a, x) | |
assert_array_almost_equal(y_f, y_r) | |
assert_equal(b, b0) | |
assert_equal(a, a0) | |
def test_do_not_modify_a_b_FIR(self): | |
x = self.generate((6,)) | |
b = self.convert_dtype([1, 0, 1]) | |
b0 = b.copy() | |
a = self.convert_dtype([2]) | |
a0 = a.copy() | |
y_r = self.convert_dtype([0, 0.5, 1, 2, 3, 4.]) | |
y_f = lfilter(b, a, x) | |
assert_array_almost_equal(y_f, y_r) | |
assert_equal(b, b0) | |
assert_equal(a, a0) | |
def test_scalar_input(self, a, b): | |
data = np.random.randn(10) | |
assert_allclose( | |
lfilter(np.array([1.0]), np.array([1.0]), data), | |
lfilter(b, a, data)) | |
class TestLinearFilterFloat32(_TestLinearFilter): | |
dtype = np.dtype('f') | |
class TestLinearFilterFloat64(_TestLinearFilter): | |
dtype = np.dtype('d') | |
class TestLinearFilterFloatExtended(_TestLinearFilter): | |
dtype = np.dtype('g') | |
class TestLinearFilterComplex64(_TestLinearFilter): | |
dtype = np.dtype('F') | |
class TestLinearFilterComplex128(_TestLinearFilter): | |
dtype = np.dtype('D') | |
class TestLinearFilterComplexExtended(_TestLinearFilter): | |
dtype = np.dtype('G') | |
class TestLinearFilterDecimal(_TestLinearFilter): | |
dtype = np.dtype('O') | |
def type(self, x): | |
return Decimal(str(x)) | |
class TestLinearFilterObject(_TestLinearFilter): | |
dtype = np.dtype('O') | |
type = float | |
def test_lfilter_bad_object(): | |
# lfilter: object arrays with non-numeric objects raise TypeError. | |
# Regression test for ticket #1452. | |
if hasattr(sys, 'abiflags') and 'd' in sys.abiflags: | |
pytest.skip('test is flaky when run with python3-dbg') | |
assert_raises(TypeError, lfilter, [1.0], [1.0], [1.0, None, 2.0]) | |
assert_raises(TypeError, lfilter, [1.0], [None], [1.0, 2.0, 3.0]) | |
assert_raises(TypeError, lfilter, [None], [1.0], [1.0, 2.0, 3.0]) | |
def test_lfilter_notimplemented_input(): | |
# Should not crash, gh-7991 | |
assert_raises(NotImplementedError, lfilter, [2,3], [4,5], [1,2,3,4,5]) | |
class TestCorrelateReal: | |
def _setup_rank1(self, dt): | |
a = np.linspace(0, 3, 4).astype(dt) | |
b = np.linspace(1, 2, 2).astype(dt) | |
y_r = np.array([0, 2, 5, 8, 3]).astype(dt) | |
return a, b, y_r | |
def equal_tolerance(self, res_dt): | |
# default value of keyword | |
decimal = 6 | |
try: | |
dt_info = np.finfo(res_dt) | |
if hasattr(dt_info, 'resolution'): | |
decimal = int(-0.5*np.log10(dt_info.resolution)) | |
except Exception: | |
pass | |
return decimal | |
def equal_tolerance_fft(self, res_dt): | |
# FFT implementations convert longdouble arguments down to | |
# double so don't expect better precision, see gh-9520 | |
if res_dt == np.longdouble: | |
return self.equal_tolerance(np.float64) | |
else: | |
return self.equal_tolerance(res_dt) | |
def test_method(self, dt): | |
if dt == Decimal: | |
method = choose_conv_method([Decimal(4)], [Decimal(3)]) | |
assert_equal(method, 'direct') | |
else: | |
a, b, y_r = self._setup_rank3(dt) | |
y_fft = correlate(a, b, method='fft') | |
y_direct = correlate(a, b, method='direct') | |
assert_array_almost_equal(y_r, | |
y_fft, | |
decimal=self.equal_tolerance_fft(y_fft.dtype),) | |
assert_array_almost_equal(y_r, | |
y_direct, | |
decimal=self.equal_tolerance(y_direct.dtype),) | |
assert_equal(y_fft.dtype, dt) | |
assert_equal(y_direct.dtype, dt) | |
def test_rank1_valid(self, dt): | |
a, b, y_r = self._setup_rank1(dt) | |
y = correlate(a, b, 'valid') | |
assert_array_almost_equal(y, y_r[1:4]) | |
assert_equal(y.dtype, dt) | |
# See gh-5897 | |
y = correlate(b, a, 'valid') | |
assert_array_almost_equal(y, y_r[1:4][::-1]) | |
assert_equal(y.dtype, dt) | |
def test_rank1_same(self, dt): | |
a, b, y_r = self._setup_rank1(dt) | |
y = correlate(a, b, 'same') | |
assert_array_almost_equal(y, y_r[:-1]) | |
assert_equal(y.dtype, dt) | |
def test_rank1_full(self, dt): | |
a, b, y_r = self._setup_rank1(dt) | |
y = correlate(a, b, 'full') | |
assert_array_almost_equal(y, y_r) | |
assert_equal(y.dtype, dt) | |
def _setup_rank3(self, dt): | |
a = np.linspace(0, 39, 40).reshape((2, 4, 5), order='F').astype( | |
dt) | |
b = np.linspace(0, 23, 24).reshape((2, 3, 4), order='F').astype( | |
dt) | |
y_r = array([[[0., 184., 504., 912., 1360., 888., 472., 160.], | |
[46., 432., 1062., 1840., 2672., 1698., 864., 266.], | |
[134., 736., 1662., 2768., 3920., 2418., 1168., 314.], | |
[260., 952., 1932., 3056., 4208., 2580., 1240., 332.], | |
[202., 664., 1290., 1984., 2688., 1590., 712., 150.], | |
[114., 344., 642., 960., 1280., 726., 296., 38.]], | |
[[23., 400., 1035., 1832., 2696., 1737., 904., 293.], | |
[134., 920., 2166., 3680., 5280., 3306., 1640., 474.], | |
[325., 1544., 3369., 5512., 7720., 4683., 2192., 535.], | |
[571., 1964., 3891., 6064., 8272., 4989., 2324., 565.], | |
[434., 1360., 2586., 3920., 5264., 3054., 1312., 230.], | |
[241., 700., 1281., 1888., 2496., 1383., 532., 39.]], | |
[[22., 214., 528., 916., 1332., 846., 430., 132.], | |
[86., 484., 1098., 1832., 2600., 1602., 772., 206.], | |
[188., 802., 1698., 2732., 3788., 2256., 1018., 218.], | |
[308., 1006., 1950., 2996., 4052., 2400., 1078., 230.], | |
[230., 692., 1290., 1928., 2568., 1458., 596., 78.], | |
[126., 354., 636., 924., 1212., 654., 234., 0.]]], | |
dtype=np.float64).astype(dt) | |
return a, b, y_r | |
def test_rank3_valid(self, dt): | |
a, b, y_r = self._setup_rank3(dt) | |
y = correlate(a, b, "valid") | |
assert_array_almost_equal(y, y_r[1:2, 2:4, 3:5]) | |
assert_equal(y.dtype, dt) | |
# See gh-5897 | |
y = correlate(b, a, "valid") | |
assert_array_almost_equal(y, y_r[1:2, 2:4, 3:5][::-1, ::-1, ::-1]) | |
assert_equal(y.dtype, dt) | |
def test_rank3_same(self, dt): | |
a, b, y_r = self._setup_rank3(dt) | |
y = correlate(a, b, "same") | |
assert_array_almost_equal(y, y_r[0:-1, 1:-1, 1:-2]) | |
assert_equal(y.dtype, dt) | |
def test_rank3_all(self, dt): | |
a, b, y_r = self._setup_rank3(dt) | |
y = correlate(a, b) | |
assert_array_almost_equal(y, y_r) | |
assert_equal(y.dtype, dt) | |
class TestCorrelate: | |
# Tests that don't depend on dtype | |
def test_invalid_shapes(self): | |
# By "invalid," we mean that no one | |
# array has dimensions that are all at | |
# least as large as the corresponding | |
# dimensions of the other array. This | |
# setup should throw a ValueError. | |
a = np.arange(1, 7).reshape((2, 3)) | |
b = np.arange(-6, 0).reshape((3, 2)) | |
assert_raises(ValueError, correlate, *(a, b), **{'mode': 'valid'}) | |
assert_raises(ValueError, correlate, *(b, a), **{'mode': 'valid'}) | |
def test_invalid_params(self): | |
a = [3, 4, 5] | |
b = [1, 2, 3] | |
assert_raises(ValueError, correlate, a, b, mode='spam') | |
assert_raises(ValueError, correlate, a, b, mode='eggs', method='fft') | |
assert_raises(ValueError, correlate, a, b, mode='ham', method='direct') | |
assert_raises(ValueError, correlate, a, b, mode='full', method='bacon') | |
assert_raises(ValueError, correlate, a, b, mode='same', method='bacon') | |
def test_mismatched_dims(self): | |
# Input arrays should have the same number of dimensions | |
assert_raises(ValueError, correlate, [1], 2, method='direct') | |
assert_raises(ValueError, correlate, 1, [2], method='direct') | |
assert_raises(ValueError, correlate, [1], 2, method='fft') | |
assert_raises(ValueError, correlate, 1, [2], method='fft') | |
assert_raises(ValueError, correlate, [1], [[2]]) | |
assert_raises(ValueError, correlate, [3], 2) | |
def test_numpy_fastpath(self): | |
a = [1, 2, 3] | |
b = [4, 5] | |
assert_allclose(correlate(a, b, mode='same'), [5, 14, 23]) | |
a = [1, 2, 3] | |
b = [4, 5, 6] | |
assert_allclose(correlate(a, b, mode='same'), [17, 32, 23]) | |
assert_allclose(correlate(a, b, mode='full'), [6, 17, 32, 23, 12]) | |
assert_allclose(correlate(a, b, mode='valid'), [32]) | |
def test_correlation_lags(mode, behind, input_size): | |
# generate random data | |
rng = np.random.RandomState(0) | |
in1 = rng.standard_normal(input_size) | |
offset = int(input_size/10) | |
# generate offset version of array to correlate with | |
if behind: | |
# y is behind x | |
in2 = np.concatenate([rng.standard_normal(offset), in1]) | |
expected = -offset | |
else: | |
# y is ahead of x | |
in2 = in1[offset:] | |
expected = offset | |
# cross correlate, returning lag information | |
correlation = correlate(in1, in2, mode=mode) | |
lags = correlation_lags(in1.size, in2.size, mode=mode) | |
# identify the peak | |
lag_index = np.argmax(correlation) | |
# Check as expected | |
assert_equal(lags[lag_index], expected) | |
# Correlation and lags shape should match | |
assert_equal(lags.shape, correlation.shape) | |
class TestCorrelateComplex: | |
# The decimal precision to be used for comparing results. | |
# This value will be passed as the 'decimal' keyword argument of | |
# assert_array_almost_equal(). | |
# Since correlate may chose to use FFT method which converts | |
# longdoubles to doubles internally don't expect better precision | |
# for longdouble than for double (see gh-9520). | |
def decimal(self, dt): | |
if dt == np.clongdouble: | |
dt = np.cdouble | |
return int(2 * np.finfo(dt).precision / 3) | |
def _setup_rank1(self, dt, mode): | |
np.random.seed(9) | |
a = np.random.randn(10).astype(dt) | |
a += 1j * np.random.randn(10).astype(dt) | |
b = np.random.randn(8).astype(dt) | |
b += 1j * np.random.randn(8).astype(dt) | |
y_r = (correlate(a.real, b.real, mode=mode) + | |
correlate(a.imag, b.imag, mode=mode)).astype(dt) | |
y_r += 1j * (-correlate(a.real, b.imag, mode=mode) + | |
correlate(a.imag, b.real, mode=mode)) | |
return a, b, y_r | |
def test_rank1_valid(self, dt): | |
a, b, y_r = self._setup_rank1(dt, 'valid') | |
y = correlate(a, b, 'valid') | |
assert_array_almost_equal(y, y_r, decimal=self.decimal(dt)) | |
assert_equal(y.dtype, dt) | |
# See gh-5897 | |
y = correlate(b, a, 'valid') | |
assert_array_almost_equal(y, y_r[::-1].conj(), decimal=self.decimal(dt)) | |
assert_equal(y.dtype, dt) | |
def test_rank1_same(self, dt): | |
a, b, y_r = self._setup_rank1(dt, 'same') | |
y = correlate(a, b, 'same') | |
assert_array_almost_equal(y, y_r, decimal=self.decimal(dt)) | |
assert_equal(y.dtype, dt) | |
def test_rank1_full(self, dt): | |
a, b, y_r = self._setup_rank1(dt, 'full') | |
y = correlate(a, b, 'full') | |
assert_array_almost_equal(y, y_r, decimal=self.decimal(dt)) | |
assert_equal(y.dtype, dt) | |
def test_swap_full(self, dt): | |
d = np.array([0.+0.j, 1.+1.j, 2.+2.j], dtype=dt) | |
k = np.array([1.+3.j, 2.+4.j, 3.+5.j, 4.+6.j], dtype=dt) | |
y = correlate(d, k) | |
assert_equal(y, [0.+0.j, 10.-2.j, 28.-6.j, 22.-6.j, 16.-6.j, 8.-4.j]) | |
def test_swap_same(self, dt): | |
d = [0.+0.j, 1.+1.j, 2.+2.j] | |
k = [1.+3.j, 2.+4.j, 3.+5.j, 4.+6.j] | |
y = correlate(d, k, mode="same") | |
assert_equal(y, [10.-2.j, 28.-6.j, 22.-6.j]) | |
def test_rank3(self, dt): | |
a = np.random.randn(10, 8, 6).astype(dt) | |
a += 1j * np.random.randn(10, 8, 6).astype(dt) | |
b = np.random.randn(8, 6, 4).astype(dt) | |
b += 1j * np.random.randn(8, 6, 4).astype(dt) | |
y_r = (correlate(a.real, b.real) | |
+ correlate(a.imag, b.imag)).astype(dt) | |
y_r += 1j * (-correlate(a.real, b.imag) + correlate(a.imag, b.real)) | |
y = correlate(a, b, 'full') | |
assert_array_almost_equal(y, y_r, decimal=self.decimal(dt) - 1) | |
assert_equal(y.dtype, dt) | |
def test_rank0(self, dt): | |
a = np.array(np.random.randn()).astype(dt) | |
a += 1j * np.array(np.random.randn()).astype(dt) | |
b = np.array(np.random.randn()).astype(dt) | |
b += 1j * np.array(np.random.randn()).astype(dt) | |
y_r = (correlate(a.real, b.real) | |
+ correlate(a.imag, b.imag)).astype(dt) | |
y_r += 1j * np.array(-correlate(a.real, b.imag) + | |
correlate(a.imag, b.real)) | |
y = correlate(a, b, 'full') | |
assert_array_almost_equal(y, y_r, decimal=self.decimal(dt) - 1) | |
assert_equal(y.dtype, dt) | |
assert_equal(correlate([1], [2j]), correlate(1, 2j)) | |
assert_equal(correlate([2j], [3j]), correlate(2j, 3j)) | |
assert_equal(correlate([3j], [4]), correlate(3j, 4)) | |
class TestCorrelate2d: | |
def test_consistency_correlate_funcs(self): | |
# Compare np.correlate, signal.correlate, signal.correlate2d | |
a = np.arange(5) | |
b = np.array([3.2, 1.4, 3]) | |
for mode in ['full', 'valid', 'same']: | |
assert_almost_equal(np.correlate(a, b, mode=mode), | |
signal.correlate(a, b, mode=mode)) | |
assert_almost_equal(np.squeeze(signal.correlate2d([a], [b], | |
mode=mode)), | |
signal.correlate(a, b, mode=mode)) | |
# See gh-5897 | |
if mode == 'valid': | |
assert_almost_equal(np.correlate(b, a, mode=mode), | |
signal.correlate(b, a, mode=mode)) | |
assert_almost_equal(np.squeeze(signal.correlate2d([b], [a], | |
mode=mode)), | |
signal.correlate(b, a, mode=mode)) | |
def test_invalid_shapes(self): | |
# By "invalid," we mean that no one | |
# array has dimensions that are all at | |
# least as large as the corresponding | |
# dimensions of the other array. This | |
# setup should throw a ValueError. | |
a = np.arange(1, 7).reshape((2, 3)) | |
b = np.arange(-6, 0).reshape((3, 2)) | |
assert_raises(ValueError, signal.correlate2d, *(a, b), **{'mode': 'valid'}) | |
assert_raises(ValueError, signal.correlate2d, *(b, a), **{'mode': 'valid'}) | |
def test_complex_input(self): | |
assert_equal(signal.correlate2d([[1]], [[2j]]), -2j) | |
assert_equal(signal.correlate2d([[2j]], [[3j]]), 6) | |
assert_equal(signal.correlate2d([[3j]], [[4]]), 12j) | |
class TestLFilterZI: | |
def test_basic(self): | |
a = np.array([1.0, -1.0, 0.5]) | |
b = np.array([1.0, 0.0, 2.0]) | |
zi_expected = np.array([5.0, -1.0]) | |
zi = lfilter_zi(b, a) | |
assert_array_almost_equal(zi, zi_expected) | |
def test_scale_invariance(self): | |
# Regression test. There was a bug in which b was not correctly | |
# rescaled when a[0] was nonzero. | |
b = np.array([2, 8, 5]) | |
a = np.array([1, 1, 8]) | |
zi1 = lfilter_zi(b, a) | |
zi2 = lfilter_zi(2*b, 2*a) | |
assert_allclose(zi2, zi1, rtol=1e-12) | |
def test_types(self, dtype): | |
b = np.zeros((8), dtype=dtype) | |
a = np.array([1], dtype=dtype) | |
assert_equal(np.real(signal.lfilter_zi(b, a)).dtype, dtype) | |
class TestFiltFilt: | |
filtfilt_kind = 'tf' | |
def filtfilt(self, zpk, x, axis=-1, padtype='odd', padlen=None, | |
method='pad', irlen=None): | |
if self.filtfilt_kind == 'tf': | |
b, a = zpk2tf(*zpk) | |
return filtfilt(b, a, x, axis, padtype, padlen, method, irlen) | |
elif self.filtfilt_kind == 'sos': | |
sos = zpk2sos(*zpk) | |
return sosfiltfilt(sos, x, axis, padtype, padlen) | |
def test_basic(self): | |
zpk = tf2zpk([1, 2, 3], [1, 2, 3]) | |
out = self.filtfilt(zpk, np.arange(12)) | |
assert_allclose(out, arange(12), atol=5.28e-11) | |
def test_sine(self): | |
rate = 2000 | |
t = np.linspace(0, 1.0, rate + 1) | |
# A signal with low frequency and a high frequency. | |
xlow = np.sin(5 * 2 * np.pi * t) | |
xhigh = np.sin(250 * 2 * np.pi * t) | |
x = xlow + xhigh | |
zpk = butter(8, 0.125, output='zpk') | |
# r is the magnitude of the largest pole. | |
r = np.abs(zpk[1]).max() | |
eps = 1e-5 | |
# n estimates the number of steps for the | |
# transient to decay by a factor of eps. | |
n = int(np.ceil(np.log(eps) / np.log(r))) | |
# High order lowpass filter... | |
y = self.filtfilt(zpk, x, padlen=n) | |
# Result should be just xlow. | |
err = np.abs(y - xlow).max() | |
assert_(err < 1e-4) | |
# A 2D case. | |
x2d = np.vstack([xlow, xlow + xhigh]) | |
y2d = self.filtfilt(zpk, x2d, padlen=n, axis=1) | |
assert_equal(y2d.shape, x2d.shape) | |
err = np.abs(y2d - xlow).max() | |
assert_(err < 1e-4) | |
# Use the previous result to check the use of the axis keyword. | |
# (Regression test for ticket #1620) | |
y2dt = self.filtfilt(zpk, x2d.T, padlen=n, axis=0) | |
assert_equal(y2d, y2dt.T) | |
def test_axis(self): | |
# Test the 'axis' keyword on a 3D array. | |
x = np.arange(10.0 * 11.0 * 12.0).reshape(10, 11, 12) | |
zpk = butter(3, 0.125, output='zpk') | |
y0 = self.filtfilt(zpk, x, padlen=0, axis=0) | |
y1 = self.filtfilt(zpk, np.swapaxes(x, 0, 1), padlen=0, axis=1) | |
assert_array_equal(y0, np.swapaxes(y1, 0, 1)) | |
y2 = self.filtfilt(zpk, np.swapaxes(x, 0, 2), padlen=0, axis=2) | |
assert_array_equal(y0, np.swapaxes(y2, 0, 2)) | |
def test_acoeff(self): | |
if self.filtfilt_kind != 'tf': | |
return # only necessary for TF | |
# test for 'a' coefficient as single number | |
out = signal.filtfilt([.5, .5], 1, np.arange(10)) | |
assert_allclose(out, np.arange(10), rtol=1e-14, atol=1e-14) | |
def test_gust_simple(self): | |
if self.filtfilt_kind != 'tf': | |
pytest.skip('gust only implemented for TF systems') | |
# The input array has length 2. The exact solution for this case | |
# was computed "by hand". | |
x = np.array([1.0, 2.0]) | |
b = np.array([0.5]) | |
a = np.array([1.0, -0.5]) | |
y, z1, z2 = _filtfilt_gust(b, a, x) | |
assert_allclose([z1[0], z2[0]], | |
[0.3*x[0] + 0.2*x[1], 0.2*x[0] + 0.3*x[1]]) | |
assert_allclose(y, [z1[0] + 0.25*z2[0] + 0.25*x[0] + 0.125*x[1], | |
0.25*z1[0] + z2[0] + 0.125*x[0] + 0.25*x[1]]) | |
def test_gust_scalars(self): | |
if self.filtfilt_kind != 'tf': | |
pytest.skip('gust only implemented for TF systems') | |
# The filter coefficients are both scalars, so the filter simply | |
# multiplies its input by b/a. When it is used in filtfilt, the | |
# factor is (b/a)**2. | |
x = np.arange(12) | |
b = 3.0 | |
a = 2.0 | |
y = filtfilt(b, a, x, method="gust") | |
expected = (b/a)**2 * x | |
assert_allclose(y, expected) | |
class TestSOSFiltFilt(TestFiltFilt): | |
filtfilt_kind = 'sos' | |
def test_equivalence(self): | |
"""Test equivalence between sosfiltfilt and filtfilt""" | |
x = np.random.RandomState(0).randn(1000) | |
for order in range(1, 6): | |
zpk = signal.butter(order, 0.35, output='zpk') | |
b, a = zpk2tf(*zpk) | |
sos = zpk2sos(*zpk) | |
y = filtfilt(b, a, x) | |
y_sos = sosfiltfilt(sos, x) | |
assert_allclose(y, y_sos, atol=1e-12, err_msg='order=%s' % order) | |
def filtfilt_gust_opt(b, a, x): | |
""" | |
An alternative implementation of filtfilt with Gustafsson edges. | |
This function computes the same result as | |
`scipy.signal._signaltools._filtfilt_gust`, but only 1-d arrays | |
are accepted. The problem is solved using `fmin` from `scipy.optimize`. | |
`_filtfilt_gust` is significantly faster than this implementation. | |
""" | |
def filtfilt_gust_opt_func(ics, b, a, x): | |
"""Objective function used in filtfilt_gust_opt.""" | |
m = max(len(a), len(b)) - 1 | |
z0f = ics[:m] | |
z0b = ics[m:] | |
y_f = lfilter(b, a, x, zi=z0f)[0] | |
y_fb = lfilter(b, a, y_f[::-1], zi=z0b)[0][::-1] | |
y_b = lfilter(b, a, x[::-1], zi=z0b)[0][::-1] | |
y_bf = lfilter(b, a, y_b, zi=z0f)[0] | |
value = np.sum((y_fb - y_bf)**2) | |
return value | |
m = max(len(a), len(b)) - 1 | |
zi = lfilter_zi(b, a) | |
ics = np.concatenate((x[:m].mean()*zi, x[-m:].mean()*zi)) | |
result = fmin(filtfilt_gust_opt_func, ics, args=(b, a, x), | |
xtol=1e-10, ftol=1e-12, | |
maxfun=10000, maxiter=10000, | |
full_output=True, disp=False) | |
opt, fopt, niter, funcalls, warnflag = result | |
if warnflag > 0: | |
raise RuntimeError("minimization failed in filtfilt_gust_opt: " | |
"warnflag=%d" % warnflag) | |
z0f = opt[:m] | |
z0b = opt[m:] | |
# Apply the forward-backward filter using the computed initial | |
# conditions. | |
y_b = lfilter(b, a, x[::-1], zi=z0b)[0][::-1] | |
y = lfilter(b, a, y_b, zi=z0f)[0] | |
return y, z0f, z0b | |
def check_filtfilt_gust(b, a, shape, axis, irlen=None): | |
# Generate x, the data to be filtered. | |
np.random.seed(123) | |
x = np.random.randn(*shape) | |
# Apply filtfilt to x. This is the main calculation to be checked. | |
y = filtfilt(b, a, x, axis=axis, method="gust", irlen=irlen) | |
# Also call the private function so we can test the ICs. | |
yg, zg1, zg2 = _filtfilt_gust(b, a, x, axis=axis, irlen=irlen) | |
# filtfilt_gust_opt is an independent implementation that gives the | |
# expected result, but it only handles 1-D arrays, so use some looping | |
# and reshaping shenanigans to create the expected output arrays. | |
xx = np.swapaxes(x, axis, -1) | |
out_shape = xx.shape[:-1] | |
yo = np.empty_like(xx) | |
m = max(len(a), len(b)) - 1 | |
zo1 = np.empty(out_shape + (m,)) | |
zo2 = np.empty(out_shape + (m,)) | |
for indx in product(*[range(d) for d in out_shape]): | |
yo[indx], zo1[indx], zo2[indx] = filtfilt_gust_opt(b, a, xx[indx]) | |
yo = np.swapaxes(yo, -1, axis) | |
zo1 = np.swapaxes(zo1, -1, axis) | |
zo2 = np.swapaxes(zo2, -1, axis) | |
assert_allclose(y, yo, rtol=1e-8, atol=1e-9) | |
assert_allclose(yg, yo, rtol=1e-8, atol=1e-9) | |
assert_allclose(zg1, zo1, rtol=1e-8, atol=1e-9) | |
assert_allclose(zg2, zo2, rtol=1e-8, atol=1e-9) | |
def test_choose_conv_method(): | |
for mode in ['valid', 'same', 'full']: | |
for ndim in [1, 2]: | |
n, k, true_method = 8, 6, 'direct' | |
x = np.random.randn(*((n,) * ndim)) | |
h = np.random.randn(*((k,) * ndim)) | |
method = choose_conv_method(x, h, mode=mode) | |
assert_equal(method, true_method) | |
method_try, times = choose_conv_method(x, h, mode=mode, measure=True) | |
assert_(method_try in {'fft', 'direct'}) | |
assert_(isinstance(times, dict)) | |
assert_('fft' in times.keys() and 'direct' in times.keys()) | |
n = 10 | |
for not_fft_conv_supp in ["complex256", "complex192"]: | |
if hasattr(np, not_fft_conv_supp): | |
x = np.ones(n, dtype=not_fft_conv_supp) | |
h = x.copy() | |
assert_equal(choose_conv_method(x, h, mode=mode), 'direct') | |
x = np.array([2**51], dtype=np.int64) | |
h = x.copy() | |
assert_equal(choose_conv_method(x, h, mode=mode), 'direct') | |
x = [Decimal(3), Decimal(2)] | |
h = [Decimal(1), Decimal(4)] | |
assert_equal(choose_conv_method(x, h, mode=mode), 'direct') | |
def test_filtfilt_gust(): | |
# Design a filter. | |
z, p, k = signal.ellip(3, 0.01, 120, 0.0875, output='zpk') | |
# Find the approximate impulse response length of the filter. | |
eps = 1e-10 | |
r = np.max(np.abs(p)) | |
approx_impulse_len = int(np.ceil(np.log(eps) / np.log(r))) | |
np.random.seed(123) | |
b, a = zpk2tf(z, p, k) | |
for irlen in [None, approx_impulse_len]: | |
signal_len = 5 * approx_impulse_len | |
# 1-d test case | |
check_filtfilt_gust(b, a, (signal_len,), 0, irlen) | |
# 3-d test case; test each axis. | |
for axis in range(3): | |
shape = [2, 2, 2] | |
shape[axis] = signal_len | |
check_filtfilt_gust(b, a, shape, axis, irlen) | |
# Test case with length less than 2*approx_impulse_len. | |
# In this case, `filtfilt_gust` should behave the same as if | |
# `irlen=None` was given. | |
length = 2*approx_impulse_len - 50 | |
check_filtfilt_gust(b, a, (length,), 0, approx_impulse_len) | |
class TestDecimate: | |
def test_bad_args(self): | |
x = np.arange(12) | |
assert_raises(TypeError, signal.decimate, x, q=0.5, n=1) | |
assert_raises(TypeError, signal.decimate, x, q=2, n=0.5) | |
def test_basic_IIR(self): | |
x = np.arange(12) | |
y = signal.decimate(x, 2, n=1, ftype='iir', zero_phase=False).round() | |
assert_array_equal(y, x[::2]) | |
def test_basic_FIR(self): | |
x = np.arange(12) | |
y = signal.decimate(x, 2, n=1, ftype='fir', zero_phase=False).round() | |
assert_array_equal(y, x[::2]) | |
def test_shape(self): | |
# Regression test for ticket #1480. | |
z = np.zeros((30, 30)) | |
d0 = signal.decimate(z, 2, axis=0, zero_phase=False) | |
assert_equal(d0.shape, (15, 30)) | |
d1 = signal.decimate(z, 2, axis=1, zero_phase=False) | |
assert_equal(d1.shape, (30, 15)) | |
def test_phaseshift_FIR(self): | |
with suppress_warnings() as sup: | |
sup.filter(BadCoefficients, "Badly conditioned filter") | |
self._test_phaseshift(method='fir', zero_phase=False) | |
def test_zero_phase_FIR(self): | |
with suppress_warnings() as sup: | |
sup.filter(BadCoefficients, "Badly conditioned filter") | |
self._test_phaseshift(method='fir', zero_phase=True) | |
def test_phaseshift_IIR(self): | |
self._test_phaseshift(method='iir', zero_phase=False) | |
def test_zero_phase_IIR(self): | |
self._test_phaseshift(method='iir', zero_phase=True) | |
def _test_phaseshift(self, method, zero_phase): | |
rate = 120 | |
rates_to = [15, 20, 30, 40] # q = 8, 6, 4, 3 | |
t_tot = 100 # Need to let antialiasing filters settle | |
t = np.arange(rate*t_tot+1) / float(rate) | |
# Sinusoids at 0.8*nyquist, windowed to avoid edge artifacts | |
freqs = np.array(rates_to) * 0.8 / 2 | |
d = (np.exp(1j * 2 * np.pi * freqs[:, np.newaxis] * t) | |
* signal.windows.tukey(t.size, 0.1)) | |
for rate_to in rates_to: | |
q = rate // rate_to | |
t_to = np.arange(rate_to*t_tot+1) / float(rate_to) | |
d_tos = (np.exp(1j * 2 * np.pi * freqs[:, np.newaxis] * t_to) | |
* signal.windows.tukey(t_to.size, 0.1)) | |
# Set up downsampling filters, match v0.17 defaults | |
if method == 'fir': | |
n = 30 | |
system = signal.dlti(signal.firwin(n + 1, 1. / q, | |
window='hamming'), 1.) | |
elif method == 'iir': | |
n = 8 | |
wc = 0.8*np.pi/q | |
system = signal.dlti(*signal.cheby1(n, 0.05, wc/np.pi)) | |
# Calculate expected phase response, as unit complex vector | |
if zero_phase is False: | |
_, h_resps = signal.freqz(system.num, system.den, | |
freqs/rate*2*np.pi) | |
h_resps /= np.abs(h_resps) | |
else: | |
h_resps = np.ones_like(freqs) | |
y_resamps = signal.decimate(d.real, q, n, ftype=system, | |
zero_phase=zero_phase) | |
# Get phase from complex inner product, like CSD | |
h_resamps = np.sum(d_tos.conj() * y_resamps, axis=-1) | |
h_resamps /= np.abs(h_resamps) | |
subnyq = freqs < 0.5*rate_to | |
# Complex vectors should be aligned, only compare below nyquist | |
assert_allclose(np.angle(h_resps.conj()*h_resamps)[subnyq], 0, | |
atol=1e-3, rtol=1e-3) | |
def test_auto_n(self): | |
# Test that our value of n is a reasonable choice (depends on | |
# the downsampling factor) | |
sfreq = 100. | |
n = 1000 | |
t = np.arange(n) / sfreq | |
# will alias for decimations (>= 15) | |
x = np.sqrt(2. / n) * np.sin(2 * np.pi * (sfreq / 30.) * t) | |
assert_allclose(np.linalg.norm(x), 1., rtol=1e-3) | |
x_out = signal.decimate(x, 30, ftype='fir') | |
assert_array_less(np.linalg.norm(x_out), 0.01) | |
def test_long_float32(self): | |
# regression: gh-15072. With 32-bit float and either lfilter | |
# or filtfilt, this is numerically unstable | |
x = signal.decimate(np.ones(10_000, dtype=np.float32), 10) | |
assert not any(np.isnan(x)) | |
def test_float16_upcast(self): | |
# float16 must be upcast to float64 | |
x = signal.decimate(np.ones(100, dtype=np.float16), 10) | |
assert x.dtype.type == np.float64 | |
def test_complex_iir_dlti(self): | |
# regression: gh-17845 | |
# centre frequency for filter [Hz] | |
fcentre = 50 | |
# filter passband width [Hz] | |
fwidth = 5 | |
# sample rate [Hz] | |
fs = 1e3 | |
z, p, k = signal.butter(2, 2*np.pi*fwidth/2, output='zpk', fs=fs) | |
z = z.astype(complex) * np.exp(2j * np.pi * fcentre/fs) | |
p = p.astype(complex) * np.exp(2j * np.pi * fcentre/fs) | |
system = signal.dlti(z, p, k) | |
t = np.arange(200) / fs | |
# input | |
u = (np.exp(2j * np.pi * fcentre * t) | |
+ 0.5 * np.exp(-2j * np.pi * fcentre * t)) | |
ynzp = signal.decimate(u, 2, ftype=system, zero_phase=False) | |
ynzpref = signal.lfilter(*signal.zpk2tf(z, p, k), | |
u)[::2] | |
assert_equal(ynzp, ynzpref) | |
yzp = signal.decimate(u, 2, ftype=system, zero_phase=True) | |
yzpref = signal.filtfilt(*signal.zpk2tf(z, p, k), | |
u)[::2] | |
assert_allclose(yzp, yzpref, rtol=1e-10, atol=1e-13) | |
def test_complex_fir_dlti(self): | |
# centre frequency for filter [Hz] | |
fcentre = 50 | |
# filter passband width [Hz] | |
fwidth = 5 | |
# sample rate [Hz] | |
fs = 1e3 | |
numtaps = 20 | |
# FIR filter about 0Hz | |
bbase = signal.firwin(numtaps, fwidth/2, fs=fs) | |
# rotate these to desired frequency | |
zbase = np.roots(bbase) | |
zrot = zbase * np.exp(2j * np.pi * fcentre/fs) | |
# FIR filter about 50Hz, maintaining passband gain of 0dB | |
bz = bbase[0] * np.poly(zrot) | |
system = signal.dlti(bz, 1) | |
t = np.arange(200) / fs | |
# input | |
u = (np.exp(2j * np.pi * fcentre * t) | |
+ 0.5 * np.exp(-2j * np.pi * fcentre * t)) | |
ynzp = signal.decimate(u, 2, ftype=system, zero_phase=False) | |
ynzpref = signal.upfirdn(bz, u, up=1, down=2)[:100] | |
assert_equal(ynzp, ynzpref) | |
yzp = signal.decimate(u, 2, ftype=system, zero_phase=True) | |
yzpref = signal.resample_poly(u, 1, 2, window=bz) | |
assert_equal(yzp, yzpref) | |
class TestHilbert: | |
def test_bad_args(self): | |
x = np.array([1.0 + 0.0j]) | |
assert_raises(ValueError, hilbert, x) | |
x = np.arange(8.0) | |
assert_raises(ValueError, hilbert, x, N=0) | |
def test_hilbert_theoretical(self): | |
# test cases by Ariel Rokem | |
decimal = 14 | |
pi = np.pi | |
t = np.arange(0, 2 * pi, pi / 256) | |
a0 = np.sin(t) | |
a1 = np.cos(t) | |
a2 = np.sin(2 * t) | |
a3 = np.cos(2 * t) | |
a = np.vstack([a0, a1, a2, a3]) | |
h = hilbert(a) | |
h_abs = np.abs(h) | |
h_angle = np.angle(h) | |
h_real = np.real(h) | |
# The real part should be equal to the original signals: | |
assert_almost_equal(h_real, a, decimal) | |
# The absolute value should be one everywhere, for this input: | |
assert_almost_equal(h_abs, np.ones(a.shape), decimal) | |
# For the 'slow' sine - the phase should go from -pi/2 to pi/2 in | |
# the first 256 bins: | |
assert_almost_equal(h_angle[0, :256], | |
np.arange(-pi / 2, pi / 2, pi / 256), | |
decimal) | |
# For the 'slow' cosine - the phase should go from 0 to pi in the | |
# same interval: | |
assert_almost_equal( | |
h_angle[1, :256], np.arange(0, pi, pi / 256), decimal) | |
# The 'fast' sine should make this phase transition in half the time: | |
assert_almost_equal(h_angle[2, :128], | |
np.arange(-pi / 2, pi / 2, pi / 128), | |
decimal) | |
# Ditto for the 'fast' cosine: | |
assert_almost_equal( | |
h_angle[3, :128], np.arange(0, pi, pi / 128), decimal) | |
# The imaginary part of hilbert(cos(t)) = sin(t) Wikipedia | |
assert_almost_equal(h[1].imag, a0, decimal) | |
def test_hilbert_axisN(self): | |
# tests for axis and N arguments | |
a = np.arange(18).reshape(3, 6) | |
# test axis | |
aa = hilbert(a, axis=-1) | |
assert_equal(hilbert(a.T, axis=0), aa.T) | |
# test 1d | |
assert_almost_equal(hilbert(a[0]), aa[0], 14) | |
# test N | |
aan = hilbert(a, N=20, axis=-1) | |
assert_equal(aan.shape, [3, 20]) | |
assert_equal(hilbert(a.T, N=20, axis=0).shape, [20, 3]) | |
# the next test is just a regression test, | |
# no idea whether numbers make sense | |
a0hilb = np.array([0.000000000000000e+00 - 1.72015830311905j, | |
1.000000000000000e+00 - 2.047794505137069j, | |
1.999999999999999e+00 - 2.244055555687583j, | |
3.000000000000000e+00 - 1.262750302935009j, | |
4.000000000000000e+00 - 1.066489252384493j, | |
5.000000000000000e+00 + 2.918022706971047j, | |
8.881784197001253e-17 + 3.845658908989067j, | |
-9.444121133484362e-17 + 0.985044202202061j, | |
-1.776356839400251e-16 + 1.332257797702019j, | |
-3.996802888650564e-16 + 0.501905089898885j, | |
1.332267629550188e-16 + 0.668696078880782j, | |
-1.192678053963799e-16 + 0.235487067862679j, | |
-1.776356839400251e-16 + 0.286439612812121j, | |
3.108624468950438e-16 + 0.031676888064907j, | |
1.332267629550188e-16 - 0.019275656884536j, | |
-2.360035624836702e-16 - 0.1652588660287j, | |
0.000000000000000e+00 - 0.332049855010597j, | |
3.552713678800501e-16 - 0.403810179797771j, | |
8.881784197001253e-17 - 0.751023775297729j, | |
9.444121133484362e-17 - 0.79252210110103j]) | |
assert_almost_equal(aan[0], a0hilb, 14, 'N regression') | |
def test_hilbert_types(self, dtype): | |
in_typed = np.zeros(8, dtype=dtype) | |
assert_equal(np.real(signal.hilbert(in_typed)).dtype, dtype) | |
class TestHilbert2: | |
def test_bad_args(self): | |
# x must be real. | |
x = np.array([[1.0 + 0.0j]]) | |
assert_raises(ValueError, hilbert2, x) | |
# x must be rank 2. | |
x = np.arange(24).reshape(2, 3, 4) | |
assert_raises(ValueError, hilbert2, x) | |
# Bad value for N. | |
x = np.arange(16).reshape(4, 4) | |
assert_raises(ValueError, hilbert2, x, N=0) | |
assert_raises(ValueError, hilbert2, x, N=(2, 0)) | |
assert_raises(ValueError, hilbert2, x, N=(2,)) | |
def test_hilbert2_types(self, dtype): | |
in_typed = np.zeros((2, 32), dtype=dtype) | |
assert_equal(np.real(signal.hilbert2(in_typed)).dtype, dtype) | |
class TestPartialFractionExpansion: | |
def assert_rp_almost_equal(r, p, r_true, p_true, decimal=7): | |
r_true = np.asarray(r_true) | |
p_true = np.asarray(p_true) | |
distance = np.hypot(abs(p[:, None] - p_true), | |
abs(r[:, None] - r_true)) | |
rows, cols = linear_sum_assignment(distance) | |
assert_almost_equal(p[rows], p_true[cols], decimal=decimal) | |
assert_almost_equal(r[rows], r_true[cols], decimal=decimal) | |
def test_compute_factors(self): | |
factors, poly = _compute_factors([1, 2, 3], [3, 2, 1]) | |
assert_equal(len(factors), 3) | |
assert_almost_equal(factors[0], np.poly([2, 2, 3])) | |
assert_almost_equal(factors[1], np.poly([1, 1, 1, 3])) | |
assert_almost_equal(factors[2], np.poly([1, 1, 1, 2, 2])) | |
assert_almost_equal(poly, np.poly([1, 1, 1, 2, 2, 3])) | |
factors, poly = _compute_factors([1, 2, 3], [3, 2, 1], | |
include_powers=True) | |
assert_equal(len(factors), 6) | |
assert_almost_equal(factors[0], np.poly([1, 1, 2, 2, 3])) | |
assert_almost_equal(factors[1], np.poly([1, 2, 2, 3])) | |
assert_almost_equal(factors[2], np.poly([2, 2, 3])) | |
assert_almost_equal(factors[3], np.poly([1, 1, 1, 2, 3])) | |
assert_almost_equal(factors[4], np.poly([1, 1, 1, 3])) | |
assert_almost_equal(factors[5], np.poly([1, 1, 1, 2, 2])) | |
assert_almost_equal(poly, np.poly([1, 1, 1, 2, 2, 3])) | |
def test_group_poles(self): | |
unique, multiplicity = _group_poles( | |
[1.0, 1.001, 1.003, 2.0, 2.003, 3.0], 0.1, 'min') | |
assert_equal(unique, [1.0, 2.0, 3.0]) | |
assert_equal(multiplicity, [3, 2, 1]) | |
def test_residue_general(self): | |
# Test are taken from issue #4464, note that poles in scipy are | |
# in increasing by absolute value order, opposite to MATLAB. | |
r, p, k = residue([5, 3, -2, 7], [-4, 0, 8, 3]) | |
assert_almost_equal(r, [1.3320, -0.6653, -1.4167], decimal=4) | |
assert_almost_equal(p, [-0.4093, -1.1644, 1.5737], decimal=4) | |
assert_almost_equal(k, [-1.2500], decimal=4) | |
r, p, k = residue([-4, 8], [1, 6, 8]) | |
assert_almost_equal(r, [8, -12]) | |
assert_almost_equal(p, [-2, -4]) | |
assert_equal(k.size, 0) | |
r, p, k = residue([4, 1], [1, -1, -2]) | |
assert_almost_equal(r, [1, 3]) | |
assert_almost_equal(p, [-1, 2]) | |
assert_equal(k.size, 0) | |
r, p, k = residue([4, 3], [2, -3.4, 1.98, -0.406]) | |
self.assert_rp_almost_equal( | |
r, p, [-18.125 - 13.125j, -18.125 + 13.125j, 36.25], | |
[0.5 - 0.2j, 0.5 + 0.2j, 0.7]) | |
assert_equal(k.size, 0) | |
r, p, k = residue([2, 1], [1, 5, 8, 4]) | |
self.assert_rp_almost_equal(r, p, [-1, 1, 3], [-1, -2, -2]) | |
assert_equal(k.size, 0) | |
r, p, k = residue([3, -1.1, 0.88, -2.396, 1.348], | |
[1, -0.7, -0.14, 0.048]) | |
assert_almost_equal(r, [-3, 4, 1]) | |
assert_almost_equal(p, [0.2, -0.3, 0.8]) | |
assert_almost_equal(k, [3, 1]) | |
r, p, k = residue([1], [1, 2, -3]) | |
assert_almost_equal(r, [0.25, -0.25]) | |
assert_almost_equal(p, [1, -3]) | |
assert_equal(k.size, 0) | |
r, p, k = residue([1, 0, -5], [1, 0, 0, 0, -1]) | |
self.assert_rp_almost_equal(r, p, | |
[1, 1.5j, -1.5j, -1], [-1, -1j, 1j, 1]) | |
assert_equal(k.size, 0) | |
r, p, k = residue([3, 8, 6], [1, 3, 3, 1]) | |
self.assert_rp_almost_equal(r, p, [1, 2, 3], [-1, -1, -1]) | |
assert_equal(k.size, 0) | |
r, p, k = residue([3, -1], [1, -3, 2]) | |
assert_almost_equal(r, [-2, 5]) | |
assert_almost_equal(p, [1, 2]) | |
assert_equal(k.size, 0) | |
r, p, k = residue([2, 3, -1], [1, -3, 2]) | |
assert_almost_equal(r, [-4, 13]) | |
assert_almost_equal(p, [1, 2]) | |
assert_almost_equal(k, [2]) | |
r, p, k = residue([7, 2, 3, -1], [1, -3, 2]) | |
assert_almost_equal(r, [-11, 69]) | |
assert_almost_equal(p, [1, 2]) | |
assert_almost_equal(k, [7, 23]) | |
r, p, k = residue([2, 3, -1], [1, -3, 4, -2]) | |
self.assert_rp_almost_equal(r, p, [4, -1 + 3.5j, -1 - 3.5j], | |
[1, 1 - 1j, 1 + 1j]) | |
assert_almost_equal(k.size, 0) | |
def test_residue_leading_zeros(self): | |
# Leading zeros in numerator or denominator must not affect the answer. | |
r0, p0, k0 = residue([5, 3, -2, 7], [-4, 0, 8, 3]) | |
r1, p1, k1 = residue([0, 5, 3, -2, 7], [-4, 0, 8, 3]) | |
r2, p2, k2 = residue([5, 3, -2, 7], [0, -4, 0, 8, 3]) | |
r3, p3, k3 = residue([0, 0, 5, 3, -2, 7], [0, 0, 0, -4, 0, 8, 3]) | |
assert_almost_equal(r0, r1) | |
assert_almost_equal(r0, r2) | |
assert_almost_equal(r0, r3) | |
assert_almost_equal(p0, p1) | |
assert_almost_equal(p0, p2) | |
assert_almost_equal(p0, p3) | |
assert_almost_equal(k0, k1) | |
assert_almost_equal(k0, k2) | |
assert_almost_equal(k0, k3) | |
def test_resiude_degenerate(self): | |
# Several tests for zero numerator and denominator. | |
r, p, k = residue([0, 0], [1, 6, 8]) | |
assert_almost_equal(r, [0, 0]) | |
assert_almost_equal(p, [-2, -4]) | |
assert_equal(k.size, 0) | |
r, p, k = residue(0, 1) | |
assert_equal(r.size, 0) | |
assert_equal(p.size, 0) | |
assert_equal(k.size, 0) | |
with pytest.raises(ValueError, match="Denominator `a` is zero."): | |
residue(1, 0) | |
def test_residuez_general(self): | |
r, p, k = residuez([1, 6, 6, 2], [1, -(2 + 1j), (1 + 2j), -1j]) | |
self.assert_rp_almost_equal(r, p, [-2+2.5j, 7.5+7.5j, -4.5-12j], | |
[1j, 1, 1]) | |
assert_almost_equal(k, [2j]) | |
r, p, k = residuez([1, 2, 1], [1, -1, 0.3561]) | |
self.assert_rp_almost_equal(r, p, | |
[-0.9041 - 5.9928j, -0.9041 + 5.9928j], | |
[0.5 + 0.3257j, 0.5 - 0.3257j], | |
decimal=4) | |
assert_almost_equal(k, [2.8082], decimal=4) | |
r, p, k = residuez([1, -1], [1, -5, 6]) | |
assert_almost_equal(r, [-1, 2]) | |
assert_almost_equal(p, [2, 3]) | |
assert_equal(k.size, 0) | |
r, p, k = residuez([2, 3, 4], [1, 3, 3, 1]) | |
self.assert_rp_almost_equal(r, p, [4, -5, 3], [-1, -1, -1]) | |
assert_equal(k.size, 0) | |
r, p, k = residuez([1, -10, -4, 4], [2, -2, -4]) | |
assert_almost_equal(r, [0.5, -1.5]) | |
assert_almost_equal(p, [-1, 2]) | |
assert_almost_equal(k, [1.5, -1]) | |
r, p, k = residuez([18], [18, 3, -4, -1]) | |
self.assert_rp_almost_equal(r, p, | |
[0.36, 0.24, 0.4], [0.5, -1/3, -1/3]) | |
assert_equal(k.size, 0) | |
r, p, k = residuez([2, 3], np.polymul([1, -1/2], [1, 1/4])) | |
assert_almost_equal(r, [-10/3, 16/3]) | |
assert_almost_equal(p, [-0.25, 0.5]) | |
assert_equal(k.size, 0) | |
r, p, k = residuez([1, -2, 1], [1, -1]) | |
assert_almost_equal(r, [0]) | |
assert_almost_equal(p, [1]) | |
assert_almost_equal(k, [1, -1]) | |
r, p, k = residuez(1, [1, -1j]) | |
assert_almost_equal(r, [1]) | |
assert_almost_equal(p, [1j]) | |
assert_equal(k.size, 0) | |
r, p, k = residuez(1, [1, -1, 0.25]) | |
assert_almost_equal(r, [0, 1]) | |
assert_almost_equal(p, [0.5, 0.5]) | |
assert_equal(k.size, 0) | |
r, p, k = residuez(1, [1, -0.75, .125]) | |
assert_almost_equal(r, [-1, 2]) | |
assert_almost_equal(p, [0.25, 0.5]) | |
assert_equal(k.size, 0) | |
r, p, k = residuez([1, 6, 2], [1, -2, 1]) | |
assert_almost_equal(r, [-10, 9]) | |
assert_almost_equal(p, [1, 1]) | |
assert_almost_equal(k, [2]) | |
r, p, k = residuez([6, 2], [1, -2, 1]) | |
assert_almost_equal(r, [-2, 8]) | |
assert_almost_equal(p, [1, 1]) | |
assert_equal(k.size, 0) | |
r, p, k = residuez([1, 6, 6, 2], [1, -2, 1]) | |
assert_almost_equal(r, [-24, 15]) | |
assert_almost_equal(p, [1, 1]) | |
assert_almost_equal(k, [10, 2]) | |
r, p, k = residuez([1, 0, 1], [1, 0, 0, 0, 0, -1]) | |
self.assert_rp_almost_equal(r, p, | |
[0.2618 + 0.1902j, 0.2618 - 0.1902j, | |
0.4, 0.0382 - 0.1176j, 0.0382 + 0.1176j], | |
[-0.8090 + 0.5878j, -0.8090 - 0.5878j, | |
1.0, 0.3090 + 0.9511j, 0.3090 - 0.9511j], | |
decimal=4) | |
assert_equal(k.size, 0) | |
def test_residuez_trailing_zeros(self): | |
# Trailing zeros in numerator or denominator must not affect the | |
# answer. | |
r0, p0, k0 = residuez([5, 3, -2, 7], [-4, 0, 8, 3]) | |
r1, p1, k1 = residuez([5, 3, -2, 7, 0], [-4, 0, 8, 3]) | |
r2, p2, k2 = residuez([5, 3, -2, 7], [-4, 0, 8, 3, 0]) | |
r3, p3, k3 = residuez([5, 3, -2, 7, 0, 0], [-4, 0, 8, 3, 0, 0, 0]) | |
assert_almost_equal(r0, r1) | |
assert_almost_equal(r0, r2) | |
assert_almost_equal(r0, r3) | |
assert_almost_equal(p0, p1) | |
assert_almost_equal(p0, p2) | |
assert_almost_equal(p0, p3) | |
assert_almost_equal(k0, k1) | |
assert_almost_equal(k0, k2) | |
assert_almost_equal(k0, k3) | |
def test_residuez_degenerate(self): | |
r, p, k = residuez([0, 0], [1, 6, 8]) | |
assert_almost_equal(r, [0, 0]) | |
assert_almost_equal(p, [-2, -4]) | |
assert_equal(k.size, 0) | |
r, p, k = residuez(0, 1) | |
assert_equal(r.size, 0) | |
assert_equal(p.size, 0) | |
assert_equal(k.size, 0) | |
with pytest.raises(ValueError, match="Denominator `a` is zero."): | |
residuez(1, 0) | |
with pytest.raises(ValueError, | |
match="First coefficient of determinant `a` must " | |
"be non-zero."): | |
residuez(1, [0, 1, 2, 3]) | |
def test_inverse_unique_roots_different_rtypes(self): | |
# This test was inspired by github issue 2496. | |
r = [3 / 10, -1 / 6, -2 / 15] | |
p = [0, -2, -5] | |
k = [] | |
b_expected = [0, 1, 3] | |
a_expected = [1, 7, 10, 0] | |
# With the default tolerance, the rtype does not matter | |
# for this example. | |
for rtype in ('avg', 'mean', 'min', 'minimum', 'max', 'maximum'): | |
b, a = invres(r, p, k, rtype=rtype) | |
assert_allclose(b, b_expected) | |
assert_allclose(a, a_expected) | |
b, a = invresz(r, p, k, rtype=rtype) | |
assert_allclose(b, b_expected) | |
assert_allclose(a, a_expected) | |
def test_inverse_repeated_roots_different_rtypes(self): | |
r = [3 / 20, -7 / 36, -1 / 6, 2 / 45] | |
p = [0, -2, -2, -5] | |
k = [] | |
b_expected = [0, 0, 1, 3] | |
b_expected_z = [-1/6, -2/3, 11/6, 3] | |
a_expected = [1, 9, 24, 20, 0] | |
for rtype in ('avg', 'mean', 'min', 'minimum', 'max', 'maximum'): | |
b, a = invres(r, p, k, rtype=rtype) | |
assert_allclose(b, b_expected, atol=1e-14) | |
assert_allclose(a, a_expected) | |
b, a = invresz(r, p, k, rtype=rtype) | |
assert_allclose(b, b_expected_z, atol=1e-14) | |
assert_allclose(a, a_expected) | |
def test_inverse_bad_rtype(self): | |
r = [3 / 20, -7 / 36, -1 / 6, 2 / 45] | |
p = [0, -2, -2, -5] | |
k = [] | |
with pytest.raises(ValueError, match="`rtype` must be one of"): | |
invres(r, p, k, rtype='median') | |
with pytest.raises(ValueError, match="`rtype` must be one of"): | |
invresz(r, p, k, rtype='median') | |
def test_invresz_one_coefficient_bug(self): | |
# Regression test for issue in gh-4646. | |
r = [1] | |
p = [2] | |
k = [0] | |
b, a = invresz(r, p, k) | |
assert_allclose(b, [1.0]) | |
assert_allclose(a, [1.0, -2.0]) | |
def test_invres(self): | |
b, a = invres([1], [1], []) | |
assert_almost_equal(b, [1]) | |
assert_almost_equal(a, [1, -1]) | |
b, a = invres([1 - 1j, 2, 0.5 - 3j], [1, 0.5j, 1 + 1j], []) | |
assert_almost_equal(b, [3.5 - 4j, -8.5 + 0.25j, 3.5 + 3.25j]) | |
assert_almost_equal(a, [1, -2 - 1.5j, 0.5 + 2j, 0.5 - 0.5j]) | |
b, a = invres([0.5, 1], [1 - 1j, 2 + 2j], [1, 2, 3]) | |
assert_almost_equal(b, [1, -1 - 1j, 1 - 2j, 0.5 - 3j, 10]) | |
assert_almost_equal(a, [1, -3 - 1j, 4]) | |
b, a = invres([-1, 2, 1j, 3 - 1j, 4, -2], | |
[-1, 2 - 1j, 2 - 1j, 3, 3, 3], []) | |
assert_almost_equal(b, [4 - 1j, -28 + 16j, 40 - 62j, 100 + 24j, | |
-292 + 219j, 192 - 268j]) | |
assert_almost_equal(a, [1, -12 + 2j, 53 - 20j, -96 + 68j, 27 - 72j, | |
108 - 54j, -81 + 108j]) | |
b, a = invres([-1, 1j], [1, 1], [1, 2]) | |
assert_almost_equal(b, [1, 0, -4, 3 + 1j]) | |
assert_almost_equal(a, [1, -2, 1]) | |
def test_invresz(self): | |
b, a = invresz([1], [1], []) | |
assert_almost_equal(b, [1]) | |
assert_almost_equal(a, [1, -1]) | |
b, a = invresz([1 - 1j, 2, 0.5 - 3j], [1, 0.5j, 1 + 1j], []) | |
assert_almost_equal(b, [3.5 - 4j, -8.5 + 0.25j, 3.5 + 3.25j]) | |
assert_almost_equal(a, [1, -2 - 1.5j, 0.5 + 2j, 0.5 - 0.5j]) | |
b, a = invresz([0.5, 1], [1 - 1j, 2 + 2j], [1, 2, 3]) | |
assert_almost_equal(b, [2.5, -3 - 1j, 1 - 2j, -1 - 3j, 12]) | |
assert_almost_equal(a, [1, -3 - 1j, 4]) | |
b, a = invresz([-1, 2, 1j, 3 - 1j, 4, -2], | |
[-1, 2 - 1j, 2 - 1j, 3, 3, 3], []) | |
assert_almost_equal(b, [6, -50 + 11j, 100 - 72j, 80 + 58j, | |
-354 + 228j, 234 - 297j]) | |
assert_almost_equal(a, [1, -12 + 2j, 53 - 20j, -96 + 68j, 27 - 72j, | |
108 - 54j, -81 + 108j]) | |
b, a = invresz([-1, 1j], [1, 1], [1, 2]) | |
assert_almost_equal(b, [1j, 1, -3, 2]) | |
assert_almost_equal(a, [1, -2, 1]) | |
def test_inverse_scalar_arguments(self): | |
b, a = invres(1, 1, 1) | |
assert_almost_equal(b, [1, 0]) | |
assert_almost_equal(a, [1, -1]) | |
b, a = invresz(1, 1, 1) | |
assert_almost_equal(b, [2, -1]) | |
assert_almost_equal(a, [1, -1]) | |
class TestVectorstrength: | |
def test_single_1dperiod(self): | |
events = np.array([.5]) | |
period = 5. | |
targ_strength = 1. | |
targ_phase = .1 | |
strength, phase = vectorstrength(events, period) | |
assert_equal(strength.ndim, 0) | |
assert_equal(phase.ndim, 0) | |
assert_almost_equal(strength, targ_strength) | |
assert_almost_equal(phase, 2 * np.pi * targ_phase) | |
def test_single_2dperiod(self): | |
events = np.array([.5]) | |
period = [1, 2, 5.] | |
targ_strength = [1.] * 3 | |
targ_phase = np.array([.5, .25, .1]) | |
strength, phase = vectorstrength(events, period) | |
assert_equal(strength.ndim, 1) | |
assert_equal(phase.ndim, 1) | |
assert_array_almost_equal(strength, targ_strength) | |
assert_almost_equal(phase, 2 * np.pi * targ_phase) | |
def test_equal_1dperiod(self): | |
events = np.array([.25, .25, .25, .25, .25, .25]) | |
period = 2 | |
targ_strength = 1. | |
targ_phase = .125 | |
strength, phase = vectorstrength(events, period) | |
assert_equal(strength.ndim, 0) | |
assert_equal(phase.ndim, 0) | |
assert_almost_equal(strength, targ_strength) | |
assert_almost_equal(phase, 2 * np.pi * targ_phase) | |
def test_equal_2dperiod(self): | |
events = np.array([.25, .25, .25, .25, .25, .25]) | |
period = [1, 2, ] | |
targ_strength = [1.] * 2 | |
targ_phase = np.array([.25, .125]) | |
strength, phase = vectorstrength(events, period) | |
assert_equal(strength.ndim, 1) | |
assert_equal(phase.ndim, 1) | |
assert_almost_equal(strength, targ_strength) | |
assert_almost_equal(phase, 2 * np.pi * targ_phase) | |
def test_spaced_1dperiod(self): | |
events = np.array([.1, 1.1, 2.1, 4.1, 10.1]) | |
period = 1 | |
targ_strength = 1. | |
targ_phase = .1 | |
strength, phase = vectorstrength(events, period) | |
assert_equal(strength.ndim, 0) | |
assert_equal(phase.ndim, 0) | |
assert_almost_equal(strength, targ_strength) | |
assert_almost_equal(phase, 2 * np.pi * targ_phase) | |
def test_spaced_2dperiod(self): | |
events = np.array([.1, 1.1, 2.1, 4.1, 10.1]) | |
period = [1, .5] | |
targ_strength = [1.] * 2 | |
targ_phase = np.array([.1, .2]) | |
strength, phase = vectorstrength(events, period) | |
assert_equal(strength.ndim, 1) | |
assert_equal(phase.ndim, 1) | |
assert_almost_equal(strength, targ_strength) | |
assert_almost_equal(phase, 2 * np.pi * targ_phase) | |
def test_partial_1dperiod(self): | |
events = np.array([.25, .5, .75]) | |
period = 1 | |
targ_strength = 1. / 3. | |
targ_phase = .5 | |
strength, phase = vectorstrength(events, period) | |
assert_equal(strength.ndim, 0) | |
assert_equal(phase.ndim, 0) | |
assert_almost_equal(strength, targ_strength) | |
assert_almost_equal(phase, 2 * np.pi * targ_phase) | |
def test_partial_2dperiod(self): | |
events = np.array([.25, .5, .75]) | |
period = [1., 1., 1., 1.] | |
targ_strength = [1. / 3.] * 4 | |
targ_phase = np.array([.5, .5, .5, .5]) | |
strength, phase = vectorstrength(events, period) | |
assert_equal(strength.ndim, 1) | |
assert_equal(phase.ndim, 1) | |
assert_almost_equal(strength, targ_strength) | |
assert_almost_equal(phase, 2 * np.pi * targ_phase) | |
def test_opposite_1dperiod(self): | |
events = np.array([0, .25, .5, .75]) | |
period = 1. | |
targ_strength = 0 | |
strength, phase = vectorstrength(events, period) | |
assert_equal(strength.ndim, 0) | |
assert_equal(phase.ndim, 0) | |
assert_almost_equal(strength, targ_strength) | |
def test_opposite_2dperiod(self): | |
events = np.array([0, .25, .5, .75]) | |
period = [1.] * 10 | |
targ_strength = [0.] * 10 | |
strength, phase = vectorstrength(events, period) | |
assert_equal(strength.ndim, 1) | |
assert_equal(phase.ndim, 1) | |
assert_almost_equal(strength, targ_strength) | |
def test_2d_events_ValueError(self): | |
events = np.array([[1, 2]]) | |
period = 1. | |
assert_raises(ValueError, vectorstrength, events, period) | |
def test_2d_period_ValueError(self): | |
events = 1. | |
period = np.array([[1]]) | |
assert_raises(ValueError, vectorstrength, events, period) | |
def test_zero_period_ValueError(self): | |
events = 1. | |
period = 0 | |
assert_raises(ValueError, vectorstrength, events, period) | |
def test_negative_period_ValueError(self): | |
events = 1. | |
period = -1 | |
assert_raises(ValueError, vectorstrength, events, period) | |
def assert_allclose_cast(actual, desired, rtol=1e-7, atol=0): | |
"""Wrap assert_allclose while casting object arrays.""" | |
if actual.dtype.kind == 'O': | |
dtype = np.array(actual.flat[0]).dtype | |
actual, desired = actual.astype(dtype), desired.astype(dtype) | |
assert_allclose(actual, desired, rtol, atol) | |
def test_nonnumeric_dtypes(func): | |
x = [Decimal(1), Decimal(2), Decimal(3)] | |
b = [Decimal(1), Decimal(2), Decimal(3)] | |
a = [Decimal(1), Decimal(2), Decimal(3)] | |
x = np.array(x) | |
assert x.dtype.kind == 'O' | |
desired = lfilter(np.array(b, float), np.array(a, float), x.astype(float)) | |
if func is sosfilt: | |
actual = sosfilt([b + a], x) | |
else: | |
actual = lfilter(b, a, x) | |
assert all(isinstance(x, Decimal) for x in actual) | |
assert_allclose(actual.astype(float), desired.astype(float)) | |
# Degenerate cases | |
if func is lfilter: | |
args = [1., 1.] | |
else: | |
args = [tf2sos(1., 1.)] | |
with pytest.raises(ValueError, match='must be at least 1-D'): | |
func(*args, x=1.) | |
class TestSOSFilt: | |
# The test_rank* tests are pulled from _TestLinearFilter | |
def test_rank1(self, dt): | |
x = np.linspace(0, 5, 6).astype(dt) | |
b = np.array([1, -1]).astype(dt) | |
a = np.array([0.5, -0.5]).astype(dt) | |
# Test simple IIR | |
y_r = np.array([0, 2, 4, 6, 8, 10.]).astype(dt) | |
sos = tf2sos(b, a) | |
assert_array_almost_equal(sosfilt(tf2sos(b, a), x), y_r) | |
# Test simple FIR | |
b = np.array([1, 1]).astype(dt) | |
# NOTE: This was changed (rel. to TestLinear...) to add a pole @zero: | |
a = np.array([1, 0]).astype(dt) | |
y_r = np.array([0, 1, 3, 5, 7, 9.]).astype(dt) | |
assert_array_almost_equal(sosfilt(tf2sos(b, a), x), y_r) | |
b = [1, 1, 0] | |
a = [1, 0, 0] | |
x = np.ones(8) | |
sos = np.concatenate((b, a)) | |
sos.shape = (1, 6) | |
y = sosfilt(sos, x) | |
assert_allclose(y, [1, 2, 2, 2, 2, 2, 2, 2]) | |
def test_rank2(self, dt): | |
shape = (4, 3) | |
x = np.linspace(0, np.prod(shape) - 1, np.prod(shape)).reshape(shape) | |
x = x.astype(dt) | |
b = np.array([1, -1]).astype(dt) | |
a = np.array([0.5, 0.5]).astype(dt) | |
y_r2_a0 = np.array([[0, 2, 4], [6, 4, 2], [0, 2, 4], [6, 4, 2]], | |
dtype=dt) | |
y_r2_a1 = np.array([[0, 2, 0], [6, -4, 6], [12, -10, 12], | |
[18, -16, 18]], dtype=dt) | |
y = sosfilt(tf2sos(b, a), x, axis=0) | |
assert_array_almost_equal(y_r2_a0, y) | |
y = sosfilt(tf2sos(b, a), x, axis=1) | |
assert_array_almost_equal(y_r2_a1, y) | |
def test_rank3(self, dt): | |
shape = (4, 3, 2) | |
x = np.linspace(0, np.prod(shape) - 1, np.prod(shape)).reshape(shape) | |
b = np.array([1, -1]).astype(dt) | |
a = np.array([0.5, 0.5]).astype(dt) | |
# Test last axis | |
y = sosfilt(tf2sos(b, a), x) | |
for i in range(x.shape[0]): | |
for j in range(x.shape[1]): | |
assert_array_almost_equal(y[i, j], lfilter(b, a, x[i, j])) | |
def test_initial_conditions(self, dt): | |
b1, a1 = signal.butter(2, 0.25, 'low') | |
b2, a2 = signal.butter(2, 0.75, 'low') | |
b3, a3 = signal.butter(2, 0.75, 'low') | |
b = np.convolve(np.convolve(b1, b2), b3) | |
a = np.convolve(np.convolve(a1, a2), a3) | |
sos = np.array((np.r_[b1, a1], np.r_[b2, a2], np.r_[b3, a3])) | |
x = np.random.rand(50).astype(dt) | |
# Stopping filtering and continuing | |
y_true, zi = lfilter(b, a, x[:20], zi=np.zeros(6)) | |
y_true = np.r_[y_true, lfilter(b, a, x[20:], zi=zi)[0]] | |
assert_allclose_cast(y_true, lfilter(b, a, x)) | |
y_sos, zi = sosfilt(sos, x[:20], zi=np.zeros((3, 2))) | |
y_sos = np.r_[y_sos, sosfilt(sos, x[20:], zi=zi)[0]] | |
assert_allclose_cast(y_true, y_sos) | |
# Use a step function | |
zi = sosfilt_zi(sos) | |
x = np.ones(8, dt) | |
y, zf = sosfilt(sos, x, zi=zi) | |
assert_allclose_cast(y, np.ones(8)) | |
assert_allclose_cast(zf, zi) | |
# Initial condition shape matching | |
x.shape = (1, 1) + x.shape # 3D | |
assert_raises(ValueError, sosfilt, sos, x, zi=zi) | |
zi_nd = zi.copy() | |
zi_nd.shape = (zi.shape[0], 1, 1, zi.shape[-1]) | |
assert_raises(ValueError, sosfilt, sos, x, | |
zi=zi_nd[:, :, :, [0, 1, 1]]) | |
y, zf = sosfilt(sos, x, zi=zi_nd) | |
assert_allclose_cast(y[0, 0], np.ones(8)) | |
assert_allclose_cast(zf[:, 0, 0, :], zi) | |
def test_initial_conditions_3d_axis1(self, dt): | |
# Test the use of zi when sosfilt is applied to axis 1 of a 3-d input. | |
# Input array is x. | |
x = np.random.RandomState(159).randint(0, 5, size=(2, 15, 3)) | |
x = x.astype(dt) | |
# Design a filter in ZPK format and convert to SOS | |
zpk = signal.butter(6, 0.35, output='zpk') | |
sos = zpk2sos(*zpk) | |
nsections = sos.shape[0] | |
# Filter along this axis. | |
axis = 1 | |
# Initial conditions, all zeros. | |
shp = list(x.shape) | |
shp[axis] = 2 | |
shp = [nsections] + shp | |
z0 = np.zeros(shp) | |
# Apply the filter to x. | |
yf, zf = sosfilt(sos, x, axis=axis, zi=z0) | |
# Apply the filter to x in two stages. | |
y1, z1 = sosfilt(sos, x[:, :5, :], axis=axis, zi=z0) | |
y2, z2 = sosfilt(sos, x[:, 5:, :], axis=axis, zi=z1) | |
# y should equal yf, and z2 should equal zf. | |
y = np.concatenate((y1, y2), axis=axis) | |
assert_allclose_cast(y, yf, rtol=1e-10, atol=1e-13) | |
assert_allclose_cast(z2, zf, rtol=1e-10, atol=1e-13) | |
# let's try the "step" initial condition | |
zi = sosfilt_zi(sos) | |
zi.shape = [nsections, 1, 2, 1] | |
zi = zi * x[:, 0:1, :] | |
y = sosfilt(sos, x, axis=axis, zi=zi)[0] | |
# check it against the TF form | |
b, a = zpk2tf(*zpk) | |
zi = lfilter_zi(b, a) | |
zi.shape = [1, zi.size, 1] | |
zi = zi * x[:, 0:1, :] | |
y_tf = lfilter(b, a, x, axis=axis, zi=zi)[0] | |
assert_allclose_cast(y, y_tf, rtol=1e-10, atol=1e-13) | |
def test_bad_zi_shape(self, dt): | |
# The shape of zi is checked before using any values in the | |
# arguments, so np.empty is fine for creating the arguments. | |
x = np.empty((3, 15, 3), dt) | |
sos = np.zeros((4, 6)) | |
zi = np.empty((4, 3, 3, 2)) # Correct shape is (4, 3, 2, 3) | |
with pytest.raises(ValueError, match='should be all ones'): | |
sosfilt(sos, x, zi=zi, axis=1) | |
sos[:, 3] = 1. | |
with pytest.raises(ValueError, match='Invalid zi shape'): | |
sosfilt(sos, x, zi=zi, axis=1) | |
def test_sosfilt_zi(self, dt): | |
sos = signal.butter(6, 0.2, output='sos') | |
zi = sosfilt_zi(sos) | |
y, zf = sosfilt(sos, np.ones(40, dt), zi=zi) | |
assert_allclose_cast(zf, zi, rtol=1e-13) | |
# Expected steady state value of the step response of this filter: | |
ss = np.prod(sos[:, :3].sum(axis=-1) / sos[:, 3:].sum(axis=-1)) | |
assert_allclose_cast(y, ss, rtol=1e-13) | |
# zi as array-like | |
_, zf = sosfilt(sos, np.ones(40, dt), zi=zi.tolist()) | |
assert_allclose_cast(zf, zi, rtol=1e-13) | |
class TestDeconvolve: | |
def test_basic(self): | |
# From docstring example | |
original = [0, 1, 0, 0, 1, 1, 0, 0] | |
impulse_response = [2, 1] | |
recorded = [0, 2, 1, 0, 2, 3, 1, 0, 0] | |
recovered, remainder = signal.deconvolve(recorded, impulse_response) | |
assert_allclose(recovered, original) | |
def test_n_dimensional_signal(self): | |
recorded = [[0, 0], [0, 0]] | |
impulse_response = [0, 0] | |
with pytest.raises(ValueError, match="signal must be 1-D."): | |
quotient, remainder = signal.deconvolve(recorded, impulse_response) | |
def test_n_dimensional_divisor(self): | |
recorded = [0, 0] | |
impulse_response = [[0, 0], [0, 0]] | |
with pytest.raises(ValueError, match="divisor must be 1-D."): | |
quotient, remainder = signal.deconvolve(recorded, impulse_response) | |
class TestDetrend: | |
def test_basic(self): | |
detrended = detrend(array([1, 2, 3])) | |
detrended_exact = array([0, 0, 0]) | |
assert_array_almost_equal(detrended, detrended_exact) | |
def test_copy(self): | |
x = array([1, 1.2, 1.5, 1.6, 2.4]) | |
copy_array = detrend(x, overwrite_data=False) | |
inplace = detrend(x, overwrite_data=True) | |
assert_array_almost_equal(copy_array, inplace) | |
def test_axis(self, axis, kind): | |
data = np.arange(5*6*7).reshape(5, 6, 7) | |
detrended = detrend(data, type=kind, axis=axis) | |
assert detrended.shape == data.shape | |
def test_bp(self): | |
data = [0, 1, 2] + [5, 0, -5, -10] | |
detrended = detrend(data, type='linear', bp=3) | |
assert_allclose(detrended, 0, atol=1e-14) | |
# repeat with ndim > 1 and axis | |
data = np.asarray(data)[None, :, None] | |
detrended = detrend(data, type="linear", bp=3, axis=1) | |
assert_allclose(detrended, 0, atol=1e-14) | |
# breakpoint index > shape[axis]: raises | |
with assert_raises(ValueError): | |
detrend(data, type="linear", bp=3) | |
def test_detrend_array_bp(self, bp): | |
# regression test for https://github.com/scipy/scipy/issues/18675 | |
rng = np.random.RandomState(12345) | |
x = rng.rand(10) | |
# bp = np.array([0, 2]) | |
res = detrend(x, bp=bp) | |
res_scipy_191 = np.array([-4.44089210e-16, -2.22044605e-16, | |
-1.11128506e-01, -1.69470553e-01, 1.14710683e-01, 6.35468419e-02, | |
3.53533144e-01, -3.67877935e-02, -2.00417675e-02, -1.94362049e-01]) | |
assert_allclose(res, res_scipy_191, atol=1e-14) | |
class TestUniqueRoots: | |
def test_real_no_repeat(self): | |
p = [-1.0, -0.5, 0.3, 1.2, 10.0] | |
unique, multiplicity = unique_roots(p) | |
assert_almost_equal(unique, p, decimal=15) | |
assert_equal(multiplicity, np.ones(len(p))) | |
def test_real_repeat(self): | |
p = [-1.0, -0.95, -0.89, -0.8, 0.5, 1.0, 1.05] | |
unique, multiplicity = unique_roots(p, tol=1e-1, rtype='min') | |
assert_almost_equal(unique, [-1.0, -0.89, 0.5, 1.0], decimal=15) | |
assert_equal(multiplicity, [2, 2, 1, 2]) | |
unique, multiplicity = unique_roots(p, tol=1e-1, rtype='max') | |
assert_almost_equal(unique, [-0.95, -0.8, 0.5, 1.05], decimal=15) | |
assert_equal(multiplicity, [2, 2, 1, 2]) | |
unique, multiplicity = unique_roots(p, tol=1e-1, rtype='avg') | |
assert_almost_equal(unique, [-0.975, -0.845, 0.5, 1.025], decimal=15) | |
assert_equal(multiplicity, [2, 2, 1, 2]) | |
def test_complex_no_repeat(self): | |
p = [-1.0, 1.0j, 0.5 + 0.5j, -1.0 - 1.0j, 3.0 + 2.0j] | |
unique, multiplicity = unique_roots(p) | |
assert_almost_equal(unique, p, decimal=15) | |
assert_equal(multiplicity, np.ones(len(p))) | |
def test_complex_repeat(self): | |
p = [-1.0, -1.0 + 0.05j, -0.95 + 0.15j, -0.90 + 0.15j, 0.0, | |
0.5 + 0.5j, 0.45 + 0.55j] | |
unique, multiplicity = unique_roots(p, tol=1e-1, rtype='min') | |
assert_almost_equal(unique, [-1.0, -0.95 + 0.15j, 0.0, 0.45 + 0.55j], | |
decimal=15) | |
assert_equal(multiplicity, [2, 2, 1, 2]) | |
unique, multiplicity = unique_roots(p, tol=1e-1, rtype='max') | |
assert_almost_equal(unique, | |
[-1.0 + 0.05j, -0.90 + 0.15j, 0.0, 0.5 + 0.5j], | |
decimal=15) | |
assert_equal(multiplicity, [2, 2, 1, 2]) | |
unique, multiplicity = unique_roots(p, tol=1e-1, rtype='avg') | |
assert_almost_equal( | |
unique, [-1.0 + 0.025j, -0.925 + 0.15j, 0.0, 0.475 + 0.525j], | |
decimal=15) | |
assert_equal(multiplicity, [2, 2, 1, 2]) | |
def test_gh_4915(self): | |
p = np.roots(np.convolve(np.ones(5), np.ones(5))) | |
true_roots = [-(-1)**(1/5), (-1)**(4/5), -(-1)**(3/5), (-1)**(2/5)] | |
unique, multiplicity = unique_roots(p) | |
unique = np.sort(unique) | |
assert_almost_equal(np.sort(unique), true_roots, decimal=7) | |
assert_equal(multiplicity, [2, 2, 2, 2]) | |
def test_complex_roots_extra(self): | |
unique, multiplicity = unique_roots([1.0, 1.0j, 1.0]) | |
assert_almost_equal(unique, [1.0, 1.0j], decimal=15) | |
assert_equal(multiplicity, [2, 1]) | |
unique, multiplicity = unique_roots([1, 1 + 2e-9, 1e-9 + 1j], tol=0.1) | |
assert_almost_equal(unique, [1.0, 1e-9 + 1.0j], decimal=15) | |
assert_equal(multiplicity, [2, 1]) | |
def test_single_unique_root(self): | |
p = np.random.rand(100) + 1j * np.random.rand(100) | |
unique, multiplicity = unique_roots(p, 2) | |
assert_almost_equal(unique, [np.min(p)], decimal=15) | |
assert_equal(multiplicity, [100]) | |