peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/signal
/tests
/test_wavelets.py
import numpy as np | |
from numpy.testing import (assert_equal, | |
assert_array_equal, assert_array_almost_equal, assert_array_less, assert_,) | |
import pytest | |
import scipy.signal._wavelets as wavelets | |
class TestWavelets: | |
def test_qmf(self): | |
with pytest.deprecated_call(): | |
assert_array_equal(wavelets.qmf([1, 1]), [1, -1]) | |
def test_daub(self): | |
with pytest.deprecated_call(): | |
for i in range(1, 15): | |
assert_equal(len(wavelets.daub(i)), i * 2) | |
def test_cascade(self): | |
with pytest.deprecated_call(): | |
for J in range(1, 7): | |
for i in range(1, 5): | |
lpcoef = wavelets.daub(i) | |
k = len(lpcoef) | |
x, phi, psi = wavelets.cascade(lpcoef, J) | |
assert_(len(x) == len(phi) == len(psi)) | |
assert_equal(len(x), (k - 1) * 2 ** J) | |
def test_morlet(self): | |
with pytest.deprecated_call(): | |
x = wavelets.morlet(50, 4.1, complete=True) | |
y = wavelets.morlet(50, 4.1, complete=False) | |
# Test if complete and incomplete wavelet have same lengths: | |
assert_equal(len(x), len(y)) | |
# Test if complete wavelet is less than incomplete wavelet: | |
assert_array_less(x, y) | |
x = wavelets.morlet(10, 50, complete=False) | |
y = wavelets.morlet(10, 50, complete=True) | |
# For large widths complete and incomplete wavelets should be | |
# identical within numerical precision: | |
assert_equal(x, y) | |
# miscellaneous tests: | |
x = np.array([1.73752399e-09 + 9.84327394e-25j, | |
6.49471756e-01 + 0.00000000e+00j, | |
1.73752399e-09 - 9.84327394e-25j]) | |
y = wavelets.morlet(3, w=2, complete=True) | |
assert_array_almost_equal(x, y) | |
x = np.array([2.00947715e-09 + 9.84327394e-25j, | |
7.51125544e-01 + 0.00000000e+00j, | |
2.00947715e-09 - 9.84327394e-25j]) | |
y = wavelets.morlet(3, w=2, complete=False) | |
assert_array_almost_equal(x, y, decimal=2) | |
x = wavelets.morlet(10000, s=4, complete=True) | |
y = wavelets.morlet(20000, s=8, complete=True)[5000:15000] | |
assert_array_almost_equal(x, y, decimal=2) | |
x = wavelets.morlet(10000, s=4, complete=False) | |
assert_array_almost_equal(y, x, decimal=2) | |
y = wavelets.morlet(20000, s=8, complete=False)[5000:15000] | |
assert_array_almost_equal(x, y, decimal=2) | |
x = wavelets.morlet(10000, w=3, s=5, complete=True) | |
y = wavelets.morlet(20000, w=3, s=10, complete=True)[5000:15000] | |
assert_array_almost_equal(x, y, decimal=2) | |
x = wavelets.morlet(10000, w=3, s=5, complete=False) | |
assert_array_almost_equal(y, x, decimal=2) | |
y = wavelets.morlet(20000, w=3, s=10, complete=False)[5000:15000] | |
assert_array_almost_equal(x, y, decimal=2) | |
x = wavelets.morlet(10000, w=7, s=10, complete=True) | |
y = wavelets.morlet(20000, w=7, s=20, complete=True)[5000:15000] | |
assert_array_almost_equal(x, y, decimal=2) | |
x = wavelets.morlet(10000, w=7, s=10, complete=False) | |
assert_array_almost_equal(x, y, decimal=2) | |
y = wavelets.morlet(20000, w=7, s=20, complete=False)[5000:15000] | |
assert_array_almost_equal(x, y, decimal=2) | |
def test_morlet2(self): | |
with pytest.deprecated_call(): | |
w = wavelets.morlet2(1.0, 0.5) | |
expected = (np.pi**(-0.25) * np.sqrt(1/0.5)).astype(complex) | |
assert_array_equal(w, expected) | |
lengths = [5, 11, 15, 51, 101] | |
for length in lengths: | |
w = wavelets.morlet2(length, 1.0) | |
assert_(len(w) == length) | |
max_loc = np.argmax(w) | |
assert_(max_loc == (length // 2)) | |
points = 100 | |
w = abs(wavelets.morlet2(points, 2.0)) | |
half_vec = np.arange(0, points // 2) | |
assert_array_almost_equal(w[half_vec], w[-(half_vec + 1)]) | |
x = np.array([5.03701224e-09 + 2.46742437e-24j, | |
1.88279253e+00 + 0.00000000e+00j, | |
5.03701224e-09 - 2.46742437e-24j]) | |
y = wavelets.morlet2(3, s=1/(2*np.pi), w=2) | |
assert_array_almost_equal(x, y) | |
def test_ricker(self): | |
with pytest.deprecated_call(): | |
w = wavelets.ricker(1.0, 1) | |
expected = 2 / (np.sqrt(3 * 1.0) * (np.pi ** 0.25)) | |
assert_array_equal(w, expected) | |
lengths = [5, 11, 15, 51, 101] | |
for length in lengths: | |
w = wavelets.ricker(length, 1.0) | |
assert_(len(w) == length) | |
max_loc = np.argmax(w) | |
assert_(max_loc == (length // 2)) | |
points = 100 | |
w = wavelets.ricker(points, 2.0) | |
half_vec = np.arange(0, points // 2) | |
#Wavelet should be symmetric | |
assert_array_almost_equal(w[half_vec], w[-(half_vec + 1)]) | |
#Check zeros | |
aas = [5, 10, 15, 20, 30] | |
points = 99 | |
for a in aas: | |
w = wavelets.ricker(points, a) | |
vec = np.arange(0, points) - (points - 1.0) / 2 | |
exp_zero1 = np.argmin(np.abs(vec - a)) | |
exp_zero2 = np.argmin(np.abs(vec + a)) | |
assert_array_almost_equal(w[exp_zero1], 0) | |
assert_array_almost_equal(w[exp_zero2], 0) | |
def test_cwt(self): | |
with pytest.deprecated_call(): | |
widths = [1.0] | |
def delta_wavelet(s, t): | |
return np.array([1]) | |
len_data = 100 | |
test_data = np.sin(np.pi * np.arange(0, len_data) / 10.0) | |
#Test delta function input gives same data as output | |
cwt_dat = wavelets.cwt(test_data, delta_wavelet, widths) | |
assert_(cwt_dat.shape == (len(widths), len_data)) | |
assert_array_almost_equal(test_data, cwt_dat.flatten()) | |
#Check proper shape on output | |
widths = [1, 3, 4, 5, 10] | |
cwt_dat = wavelets.cwt(test_data, wavelets.ricker, widths) | |
assert_(cwt_dat.shape == (len(widths), len_data)) | |
widths = [len_data * 10] | |
#Note: this wavelet isn't defined quite right, but is fine for this test | |
def flat_wavelet(l, w): | |
return np.full(w, 1 / w) | |
cwt_dat = wavelets.cwt(test_data, flat_wavelet, widths) | |
assert_array_almost_equal(cwt_dat, np.mean(test_data)) | |