peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/special
/_ellip_harm.py
import numpy as np | |
from ._ufuncs import _ellip_harm | |
from ._ellip_harm_2 import _ellipsoid, _ellipsoid_norm | |
def ellip_harm(h2, k2, n, p, s, signm=1, signn=1): | |
r""" | |
Ellipsoidal harmonic functions E^p_n(l) | |
These are also known as Lame functions of the first kind, and are | |
solutions to the Lame equation: | |
.. math:: (s^2 - h^2)(s^2 - k^2)E''(s) | |
+ s(2s^2 - h^2 - k^2)E'(s) + (a - q s^2)E(s) = 0 | |
where :math:`q = (n+1)n` and :math:`a` is the eigenvalue (not | |
returned) corresponding to the solutions. | |
Parameters | |
---------- | |
h2 : float | |
``h**2`` | |
k2 : float | |
``k**2``; should be larger than ``h**2`` | |
n : int | |
Degree | |
s : float | |
Coordinate | |
p : int | |
Order, can range between [1,2n+1] | |
signm : {1, -1}, optional | |
Sign of prefactor of functions. Can be +/-1. See Notes. | |
signn : {1, -1}, optional | |
Sign of prefactor of functions. Can be +/-1. See Notes. | |
Returns | |
------- | |
E : float | |
the harmonic :math:`E^p_n(s)` | |
See Also | |
-------- | |
ellip_harm_2, ellip_normal | |
Notes | |
----- | |
The geometric interpretation of the ellipsoidal functions is | |
explained in [2]_, [3]_, [4]_. The `signm` and `signn` arguments control the | |
sign of prefactors for functions according to their type:: | |
K : +1 | |
L : signm | |
M : signn | |
N : signm*signn | |
.. versionadded:: 0.15.0 | |
References | |
---------- | |
.. [1] Digital Library of Mathematical Functions 29.12 | |
https://dlmf.nist.gov/29.12 | |
.. [2] Bardhan and Knepley, "Computational science and | |
re-discovery: open-source implementations of | |
ellipsoidal harmonics for problems in potential theory", | |
Comput. Sci. Disc. 5, 014006 (2012) | |
:doi:`10.1088/1749-4699/5/1/014006`. | |
.. [3] David J.and Dechambre P, "Computation of Ellipsoidal | |
Gravity Field Harmonics for small solar system bodies" | |
pp. 30-36, 2000 | |
.. [4] George Dassios, "Ellipsoidal Harmonics: Theory and Applications" | |
pp. 418, 2012 | |
Examples | |
-------- | |
>>> from scipy.special import ellip_harm | |
>>> w = ellip_harm(5,8,1,1,2.5) | |
>>> w | |
2.5 | |
Check that the functions indeed are solutions to the Lame equation: | |
>>> import numpy as np | |
>>> from scipy.interpolate import UnivariateSpline | |
>>> def eigenvalue(f, df, ddf): | |
... r = (((s**2 - h**2) * (s**2 - k**2) * ddf | |
... + s * (2*s**2 - h**2 - k**2) * df | |
... - n * (n + 1)*s**2*f) / f) | |
... return -r.mean(), r.std() | |
>>> s = np.linspace(0.1, 10, 200) | |
>>> k, h, n, p = 8.0, 2.2, 3, 2 | |
>>> E = ellip_harm(h**2, k**2, n, p, s) | |
>>> E_spl = UnivariateSpline(s, E) | |
>>> a, a_err = eigenvalue(E_spl(s), E_spl(s,1), E_spl(s,2)) | |
>>> a, a_err | |
(583.44366156701483, 6.4580890640310646e-11) | |
""" # noqa: E501 | |
return _ellip_harm(h2, k2, n, p, s, signm, signn) | |
_ellip_harm_2_vec = np.vectorize(_ellipsoid, otypes='d') | |
def ellip_harm_2(h2, k2, n, p, s): | |
r""" | |
Ellipsoidal harmonic functions F^p_n(l) | |
These are also known as Lame functions of the second kind, and are | |
solutions to the Lame equation: | |
.. math:: (s^2 - h^2)(s^2 - k^2)F''(s) | |
+ s(2s^2 - h^2 - k^2)F'(s) + (a - q s^2)F(s) = 0 | |
where :math:`q = (n+1)n` and :math:`a` is the eigenvalue (not | |
returned) corresponding to the solutions. | |
Parameters | |
---------- | |
h2 : float | |
``h**2`` | |
k2 : float | |
``k**2``; should be larger than ``h**2`` | |
n : int | |
Degree. | |
p : int | |
Order, can range between [1,2n+1]. | |
s : float | |
Coordinate | |
Returns | |
------- | |
F : float | |
The harmonic :math:`F^p_n(s)` | |
See Also | |
-------- | |
ellip_harm, ellip_normal | |
Notes | |
----- | |
Lame functions of the second kind are related to the functions of the first kind: | |
.. math:: | |
F^p_n(s)=(2n + 1)E^p_n(s)\int_{0}^{1/s} | |
\frac{du}{(E^p_n(1/u))^2\sqrt{(1-u^2k^2)(1-u^2h^2)}} | |
.. versionadded:: 0.15.0 | |
Examples | |
-------- | |
>>> from scipy.special import ellip_harm_2 | |
>>> w = ellip_harm_2(5,8,2,1,10) | |
>>> w | |
0.00108056853382 | |
""" | |
with np.errstate(all='ignore'): | |
return _ellip_harm_2_vec(h2, k2, n, p, s) | |
def _ellip_normal_vec(h2, k2, n, p): | |
return _ellipsoid_norm(h2, k2, n, p) | |
_ellip_normal_vec = np.vectorize(_ellip_normal_vec, otypes='d') | |
def ellip_normal(h2, k2, n, p): | |
r""" | |
Ellipsoidal harmonic normalization constants gamma^p_n | |
The normalization constant is defined as | |
.. math:: | |
\gamma^p_n=8\int_{0}^{h}dx\int_{h}^{k}dy | |
\frac{(y^2-x^2)(E^p_n(y)E^p_n(x))^2}{\sqrt((k^2-y^2)(y^2-h^2)(h^2-x^2)(k^2-x^2)} | |
Parameters | |
---------- | |
h2 : float | |
``h**2`` | |
k2 : float | |
``k**2``; should be larger than ``h**2`` | |
n : int | |
Degree. | |
p : int | |
Order, can range between [1,2n+1]. | |
Returns | |
------- | |
gamma : float | |
The normalization constant :math:`\gamma^p_n` | |
See Also | |
-------- | |
ellip_harm, ellip_harm_2 | |
Notes | |
----- | |
.. versionadded:: 0.15.0 | |
Examples | |
-------- | |
>>> from scipy.special import ellip_normal | |
>>> w = ellip_normal(5,8,3,7) | |
>>> w | |
1723.38796997 | |
""" | |
with np.errstate(all='ignore'): | |
return _ellip_normal_vec(h2, k2, n, p) | |