peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/special
/_spherical_bessel.py
import numpy as np | |
from ._ufuncs import (_spherical_jn, _spherical_yn, _spherical_in, | |
_spherical_kn, _spherical_jn_d, _spherical_yn_d, | |
_spherical_in_d, _spherical_kn_d) | |
def spherical_jn(n, z, derivative=False): | |
r"""Spherical Bessel function of the first kind or its derivative. | |
Defined as [1]_, | |
.. math:: j_n(z) = \sqrt{\frac{\pi}{2z}} J_{n + 1/2}(z), | |
where :math:`J_n` is the Bessel function of the first kind. | |
Parameters | |
---------- | |
n : int, array_like | |
Order of the Bessel function (n >= 0). | |
z : complex or float, array_like | |
Argument of the Bessel function. | |
derivative : bool, optional | |
If True, the value of the derivative (rather than the function | |
itself) is returned. | |
Returns | |
------- | |
jn : ndarray | |
Notes | |
----- | |
For real arguments greater than the order, the function is computed | |
using the ascending recurrence [2]_. For small real or complex | |
arguments, the definitional relation to the cylindrical Bessel function | |
of the first kind is used. | |
The derivative is computed using the relations [3]_, | |
.. math:: | |
j_n'(z) = j_{n-1}(z) - \frac{n + 1}{z} j_n(z). | |
j_0'(z) = -j_1(z) | |
.. versionadded:: 0.18.0 | |
References | |
---------- | |
.. [1] https://dlmf.nist.gov/10.47.E3 | |
.. [2] https://dlmf.nist.gov/10.51.E1 | |
.. [3] https://dlmf.nist.gov/10.51.E2 | |
.. [AS] Milton Abramowitz and Irene A. Stegun, eds. | |
Handbook of Mathematical Functions with Formulas, | |
Graphs, and Mathematical Tables. New York: Dover, 1972. | |
Examples | |
-------- | |
The spherical Bessel functions of the first kind :math:`j_n` accept | |
both real and complex second argument. They can return a complex type: | |
>>> from scipy.special import spherical_jn | |
>>> spherical_jn(0, 3+5j) | |
(-9.878987731663194-8.021894345786002j) | |
>>> type(spherical_jn(0, 3+5j)) | |
<class 'numpy.complex128'> | |
We can verify the relation for the derivative from the Notes | |
for :math:`n=3` in the interval :math:`[1, 2]`: | |
>>> import numpy as np | |
>>> x = np.arange(1.0, 2.0, 0.01) | |
>>> np.allclose(spherical_jn(3, x, True), | |
... spherical_jn(2, x) - 4/x * spherical_jn(3, x)) | |
True | |
The first few :math:`j_n` with real argument: | |
>>> import matplotlib.pyplot as plt | |
>>> x = np.arange(0.0, 10.0, 0.01) | |
>>> fig, ax = plt.subplots() | |
>>> ax.set_ylim(-0.5, 1.5) | |
>>> ax.set_title(r'Spherical Bessel functions $j_n$') | |
>>> for n in np.arange(0, 4): | |
... ax.plot(x, spherical_jn(n, x), label=rf'$j_{n}$') | |
>>> plt.legend(loc='best') | |
>>> plt.show() | |
""" | |
n = np.asarray(n, dtype=np.dtype("long")) | |
if derivative: | |
return _spherical_jn_d(n, z) | |
else: | |
return _spherical_jn(n, z) | |
def spherical_yn(n, z, derivative=False): | |
r"""Spherical Bessel function of the second kind or its derivative. | |
Defined as [1]_, | |
.. math:: y_n(z) = \sqrt{\frac{\pi}{2z}} Y_{n + 1/2}(z), | |
where :math:`Y_n` is the Bessel function of the second kind. | |
Parameters | |
---------- | |
n : int, array_like | |
Order of the Bessel function (n >= 0). | |
z : complex or float, array_like | |
Argument of the Bessel function. | |
derivative : bool, optional | |
If True, the value of the derivative (rather than the function | |
itself) is returned. | |
Returns | |
------- | |
yn : ndarray | |
Notes | |
----- | |
For real arguments, the function is computed using the ascending | |
recurrence [2]_. For complex arguments, the definitional relation to | |
the cylindrical Bessel function of the second kind is used. | |
The derivative is computed using the relations [3]_, | |
.. math:: | |
y_n' = y_{n-1} - \frac{n + 1}{z} y_n. | |
y_0' = -y_1 | |
.. versionadded:: 0.18.0 | |
References | |
---------- | |
.. [1] https://dlmf.nist.gov/10.47.E4 | |
.. [2] https://dlmf.nist.gov/10.51.E1 | |
.. [3] https://dlmf.nist.gov/10.51.E2 | |
.. [AS] Milton Abramowitz and Irene A. Stegun, eds. | |
Handbook of Mathematical Functions with Formulas, | |
Graphs, and Mathematical Tables. New York: Dover, 1972. | |
Examples | |
-------- | |
The spherical Bessel functions of the second kind :math:`y_n` accept | |
both real and complex second argument. They can return a complex type: | |
>>> from scipy.special import spherical_yn | |
>>> spherical_yn(0, 3+5j) | |
(8.022343088587197-9.880052589376795j) | |
>>> type(spherical_yn(0, 3+5j)) | |
<class 'numpy.complex128'> | |
We can verify the relation for the derivative from the Notes | |
for :math:`n=3` in the interval :math:`[1, 2]`: | |
>>> import numpy as np | |
>>> x = np.arange(1.0, 2.0, 0.01) | |
>>> np.allclose(spherical_yn(3, x, True), | |
... spherical_yn(2, x) - 4/x * spherical_yn(3, x)) | |
True | |
The first few :math:`y_n` with real argument: | |
>>> import matplotlib.pyplot as plt | |
>>> x = np.arange(0.0, 10.0, 0.01) | |
>>> fig, ax = plt.subplots() | |
>>> ax.set_ylim(-2.0, 1.0) | |
>>> ax.set_title(r'Spherical Bessel functions $y_n$') | |
>>> for n in np.arange(0, 4): | |
... ax.plot(x, spherical_yn(n, x), label=rf'$y_{n}$') | |
>>> plt.legend(loc='best') | |
>>> plt.show() | |
""" | |
n = np.asarray(n, dtype=np.dtype("long")) | |
if derivative: | |
return _spherical_yn_d(n, z) | |
else: | |
return _spherical_yn(n, z) | |
def spherical_in(n, z, derivative=False): | |
r"""Modified spherical Bessel function of the first kind or its derivative. | |
Defined as [1]_, | |
.. math:: i_n(z) = \sqrt{\frac{\pi}{2z}} I_{n + 1/2}(z), | |
where :math:`I_n` is the modified Bessel function of the first kind. | |
Parameters | |
---------- | |
n : int, array_like | |
Order of the Bessel function (n >= 0). | |
z : complex or float, array_like | |
Argument of the Bessel function. | |
derivative : bool, optional | |
If True, the value of the derivative (rather than the function | |
itself) is returned. | |
Returns | |
------- | |
in : ndarray | |
Notes | |
----- | |
The function is computed using its definitional relation to the | |
modified cylindrical Bessel function of the first kind. | |
The derivative is computed using the relations [2]_, | |
.. math:: | |
i_n' = i_{n-1} - \frac{n + 1}{z} i_n. | |
i_1' = i_0 | |
.. versionadded:: 0.18.0 | |
References | |
---------- | |
.. [1] https://dlmf.nist.gov/10.47.E7 | |
.. [2] https://dlmf.nist.gov/10.51.E5 | |
.. [AS] Milton Abramowitz and Irene A. Stegun, eds. | |
Handbook of Mathematical Functions with Formulas, | |
Graphs, and Mathematical Tables. New York: Dover, 1972. | |
Examples | |
-------- | |
The modified spherical Bessel functions of the first kind :math:`i_n` | |
accept both real and complex second argument. | |
They can return a complex type: | |
>>> from scipy.special import spherical_in | |
>>> spherical_in(0, 3+5j) | |
(-1.1689867793369182-1.2697305267234222j) | |
>>> type(spherical_in(0, 3+5j)) | |
<class 'numpy.complex128'> | |
We can verify the relation for the derivative from the Notes | |
for :math:`n=3` in the interval :math:`[1, 2]`: | |
>>> import numpy as np | |
>>> x = np.arange(1.0, 2.0, 0.01) | |
>>> np.allclose(spherical_in(3, x, True), | |
... spherical_in(2, x) - 4/x * spherical_in(3, x)) | |
True | |
The first few :math:`i_n` with real argument: | |
>>> import matplotlib.pyplot as plt | |
>>> x = np.arange(0.0, 6.0, 0.01) | |
>>> fig, ax = plt.subplots() | |
>>> ax.set_ylim(-0.5, 5.0) | |
>>> ax.set_title(r'Modified spherical Bessel functions $i_n$') | |
>>> for n in np.arange(0, 4): | |
... ax.plot(x, spherical_in(n, x), label=rf'$i_{n}$') | |
>>> plt.legend(loc='best') | |
>>> plt.show() | |
""" | |
n = np.asarray(n, dtype=np.dtype("long")) | |
if derivative: | |
return _spherical_in_d(n, z) | |
else: | |
return _spherical_in(n, z) | |
def spherical_kn(n, z, derivative=False): | |
r"""Modified spherical Bessel function of the second kind or its derivative. | |
Defined as [1]_, | |
.. math:: k_n(z) = \sqrt{\frac{\pi}{2z}} K_{n + 1/2}(z), | |
where :math:`K_n` is the modified Bessel function of the second kind. | |
Parameters | |
---------- | |
n : int, array_like | |
Order of the Bessel function (n >= 0). | |
z : complex or float, array_like | |
Argument of the Bessel function. | |
derivative : bool, optional | |
If True, the value of the derivative (rather than the function | |
itself) is returned. | |
Returns | |
------- | |
kn : ndarray | |
Notes | |
----- | |
The function is computed using its definitional relation to the | |
modified cylindrical Bessel function of the second kind. | |
The derivative is computed using the relations [2]_, | |
.. math:: | |
k_n' = -k_{n-1} - \frac{n + 1}{z} k_n. | |
k_0' = -k_1 | |
.. versionadded:: 0.18.0 | |
References | |
---------- | |
.. [1] https://dlmf.nist.gov/10.47.E9 | |
.. [2] https://dlmf.nist.gov/10.51.E5 | |
.. [AS] Milton Abramowitz and Irene A. Stegun, eds. | |
Handbook of Mathematical Functions with Formulas, | |
Graphs, and Mathematical Tables. New York: Dover, 1972. | |
Examples | |
-------- | |
The modified spherical Bessel functions of the second kind :math:`k_n` | |
accept both real and complex second argument. | |
They can return a complex type: | |
>>> from scipy.special import spherical_kn | |
>>> spherical_kn(0, 3+5j) | |
(0.012985785614001561+0.003354691603137546j) | |
>>> type(spherical_kn(0, 3+5j)) | |
<class 'numpy.complex128'> | |
We can verify the relation for the derivative from the Notes | |
for :math:`n=3` in the interval :math:`[1, 2]`: | |
>>> import numpy as np | |
>>> x = np.arange(1.0, 2.0, 0.01) | |
>>> np.allclose(spherical_kn(3, x, True), | |
... - 4/x * spherical_kn(3, x) - spherical_kn(2, x)) | |
True | |
The first few :math:`k_n` with real argument: | |
>>> import matplotlib.pyplot as plt | |
>>> x = np.arange(0.0, 4.0, 0.01) | |
>>> fig, ax = plt.subplots() | |
>>> ax.set_ylim(0.0, 5.0) | |
>>> ax.set_title(r'Modified spherical Bessel functions $k_n$') | |
>>> for n in np.arange(0, 4): | |
... ax.plot(x, spherical_kn(n, x), label=rf'$k_{n}$') | |
>>> plt.legend(loc='best') | |
>>> plt.show() | |
""" | |
n = np.asarray(n, dtype=np.dtype("long")) | |
if derivative: | |
return _spherical_kn_d(n, z) | |
else: | |
return _spherical_kn(n, z) | |