peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/stats
/tests
/test_contingency.py
import numpy as np | |
from numpy.testing import (assert_equal, assert_array_equal, | |
assert_array_almost_equal, assert_approx_equal, | |
assert_allclose) | |
import pytest | |
from pytest import raises as assert_raises | |
from scipy.special import xlogy | |
from scipy.stats.contingency import (margins, expected_freq, | |
chi2_contingency, association) | |
def test_margins(): | |
a = np.array([1]) | |
m = margins(a) | |
assert_equal(len(m), 1) | |
m0 = m[0] | |
assert_array_equal(m0, np.array([1])) | |
a = np.array([[1]]) | |
m0, m1 = margins(a) | |
expected0 = np.array([[1]]) | |
expected1 = np.array([[1]]) | |
assert_array_equal(m0, expected0) | |
assert_array_equal(m1, expected1) | |
a = np.arange(12).reshape(2, 6) | |
m0, m1 = margins(a) | |
expected0 = np.array([[15], [51]]) | |
expected1 = np.array([[6, 8, 10, 12, 14, 16]]) | |
assert_array_equal(m0, expected0) | |
assert_array_equal(m1, expected1) | |
a = np.arange(24).reshape(2, 3, 4) | |
m0, m1, m2 = margins(a) | |
expected0 = np.array([[[66]], [[210]]]) | |
expected1 = np.array([[[60], [92], [124]]]) | |
expected2 = np.array([[[60, 66, 72, 78]]]) | |
assert_array_equal(m0, expected0) | |
assert_array_equal(m1, expected1) | |
assert_array_equal(m2, expected2) | |
def test_expected_freq(): | |
assert_array_equal(expected_freq([1]), np.array([1.0])) | |
observed = np.array([[[2, 0], [0, 2]], [[0, 2], [2, 0]], [[1, 1], [1, 1]]]) | |
e = expected_freq(observed) | |
assert_array_equal(e, np.ones_like(observed)) | |
observed = np.array([[10, 10, 20], [20, 20, 20]]) | |
e = expected_freq(observed) | |
correct = np.array([[12., 12., 16.], [18., 18., 24.]]) | |
assert_array_almost_equal(e, correct) | |
def test_chi2_contingency_trivial(): | |
# Some very simple tests for chi2_contingency. | |
# A trivial case | |
obs = np.array([[1, 2], [1, 2]]) | |
chi2, p, dof, expected = chi2_contingency(obs, correction=False) | |
assert_equal(chi2, 0.0) | |
assert_equal(p, 1.0) | |
assert_equal(dof, 1) | |
assert_array_equal(obs, expected) | |
# A *really* trivial case: 1-D data. | |
obs = np.array([1, 2, 3]) | |
chi2, p, dof, expected = chi2_contingency(obs, correction=False) | |
assert_equal(chi2, 0.0) | |
assert_equal(p, 1.0) | |
assert_equal(dof, 0) | |
assert_array_equal(obs, expected) | |
def test_chi2_contingency_R(): | |
# Some test cases that were computed independently, using R. | |
# Rcode = \ | |
# """ | |
# # Data vector. | |
# data <- c( | |
# 12, 34, 23, 4, 47, 11, | |
# 35, 31, 11, 34, 10, 18, | |
# 12, 32, 9, 18, 13, 19, | |
# 12, 12, 14, 9, 33, 25 | |
# ) | |
# | |
# # Create factor tags:r=rows, c=columns, t=tiers | |
# r <- factor(gl(4, 2*3, 2*3*4, labels=c("r1", "r2", "r3", "r4"))) | |
# c <- factor(gl(3, 1, 2*3*4, labels=c("c1", "c2", "c3"))) | |
# t <- factor(gl(2, 3, 2*3*4, labels=c("t1", "t2"))) | |
# | |
# # 3-way Chi squared test of independence | |
# s = summary(xtabs(data~r+c+t)) | |
# print(s) | |
# """ | |
# Routput = \ | |
# """ | |
# Call: xtabs(formula = data ~ r + c + t) | |
# Number of cases in table: 478 | |
# Number of factors: 3 | |
# Test for independence of all factors: | |
# Chisq = 102.17, df = 17, p-value = 3.514e-14 | |
# """ | |
obs = np.array( | |
[[[12, 34, 23], | |
[35, 31, 11], | |
[12, 32, 9], | |
[12, 12, 14]], | |
[[4, 47, 11], | |
[34, 10, 18], | |
[18, 13, 19], | |
[9, 33, 25]]]) | |
chi2, p, dof, expected = chi2_contingency(obs) | |
assert_approx_equal(chi2, 102.17, significant=5) | |
assert_approx_equal(p, 3.514e-14, significant=4) | |
assert_equal(dof, 17) | |
# Rcode = \ | |
# """ | |
# # Data vector. | |
# data <- c( | |
# # | |
# 12, 17, | |
# 11, 16, | |
# # | |
# 11, 12, | |
# 15, 16, | |
# # | |
# 23, 15, | |
# 30, 22, | |
# # | |
# 14, 17, | |
# 15, 16 | |
# ) | |
# | |
# # Create factor tags:r=rows, c=columns, d=depths(?), t=tiers | |
# r <- factor(gl(2, 2, 2*2*2*2, labels=c("r1", "r2"))) | |
# c <- factor(gl(2, 1, 2*2*2*2, labels=c("c1", "c2"))) | |
# d <- factor(gl(2, 4, 2*2*2*2, labels=c("d1", "d2"))) | |
# t <- factor(gl(2, 8, 2*2*2*2, labels=c("t1", "t2"))) | |
# | |
# # 4-way Chi squared test of independence | |
# s = summary(xtabs(data~r+c+d+t)) | |
# print(s) | |
# """ | |
# Routput = \ | |
# """ | |
# Call: xtabs(formula = data ~ r + c + d + t) | |
# Number of cases in table: 262 | |
# Number of factors: 4 | |
# Test for independence of all factors: | |
# Chisq = 8.758, df = 11, p-value = 0.6442 | |
# """ | |
obs = np.array( | |
[[[[12, 17], | |
[11, 16]], | |
[[11, 12], | |
[15, 16]]], | |
[[[23, 15], | |
[30, 22]], | |
[[14, 17], | |
[15, 16]]]]) | |
chi2, p, dof, expected = chi2_contingency(obs) | |
assert_approx_equal(chi2, 8.758, significant=4) | |
assert_approx_equal(p, 0.6442, significant=4) | |
assert_equal(dof, 11) | |
def test_chi2_contingency_g(): | |
c = np.array([[15, 60], [15, 90]]) | |
g, p, dof, e = chi2_contingency(c, lambda_='log-likelihood', | |
correction=False) | |
assert_allclose(g, 2*xlogy(c, c/e).sum()) | |
g, p, dof, e = chi2_contingency(c, lambda_='log-likelihood', | |
correction=True) | |
c_corr = c + np.array([[-0.5, 0.5], [0.5, -0.5]]) | |
assert_allclose(g, 2*xlogy(c_corr, c_corr/e).sum()) | |
c = np.array([[10, 12, 10], [12, 10, 10]]) | |
g, p, dof, e = chi2_contingency(c, lambda_='log-likelihood') | |
assert_allclose(g, 2*xlogy(c, c/e).sum()) | |
def test_chi2_contingency_bad_args(): | |
# Test that "bad" inputs raise a ValueError. | |
# Negative value in the array of observed frequencies. | |
obs = np.array([[-1, 10], [1, 2]]) | |
assert_raises(ValueError, chi2_contingency, obs) | |
# The zeros in this will result in zeros in the array | |
# of expected frequencies. | |
obs = np.array([[0, 1], [0, 1]]) | |
assert_raises(ValueError, chi2_contingency, obs) | |
# A degenerate case: `observed` has size 0. | |
obs = np.empty((0, 8)) | |
assert_raises(ValueError, chi2_contingency, obs) | |
def test_chi2_contingency_yates_gh13875(): | |
# Magnitude of Yates' continuity correction should not exceed difference | |
# between expected and observed value of the statistic; see gh-13875 | |
observed = np.array([[1573, 3], [4, 0]]) | |
p = chi2_contingency(observed)[1] | |
assert_allclose(p, 1, rtol=1e-12) | |
def test_result(correction): | |
obs = np.array([[1, 2], [1, 2]]) | |
res = chi2_contingency(obs, correction=correction) | |
assert_equal((res.statistic, res.pvalue, res.dof, res.expected_freq), res) | |
def test_bad_association_args(): | |
# Invalid Test Statistic | |
assert_raises(ValueError, association, [[1, 2], [3, 4]], "X") | |
# Invalid array shape | |
assert_raises(ValueError, association, [[[1, 2]], [[3, 4]]], "cramer") | |
# chi2_contingency exception | |
assert_raises(ValueError, association, [[-1, 10], [1, 2]], 'cramer') | |
# Invalid Array Item Data Type | |
assert_raises(ValueError, association, | |
np.array([[1, 2], ["dd", 4]], dtype=object), 'cramer') | |
def test_assoc(stat, expected): | |
# 2d Array | |
obs1 = np.array([[12, 13, 14, 15, 16], | |
[17, 16, 18, 19, 11], | |
[9, 15, 14, 12, 11]]) | |
a = association(observed=obs1, method=stat) | |
assert_allclose(a, expected) | |