peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/stats
/tests
/test_crosstab.py
import pytest | |
import numpy as np | |
from numpy.testing import assert_array_equal, assert_equal | |
from scipy.stats.contingency import crosstab | |
def test_crosstab_basic(sparse): | |
a = [0, 0, 9, 9, 0, 0, 9] | |
b = [2, 1, 3, 1, 2, 3, 3] | |
expected_avals = [0, 9] | |
expected_bvals = [1, 2, 3] | |
expected_count = np.array([[1, 2, 1], | |
[1, 0, 2]]) | |
(avals, bvals), count = crosstab(a, b, sparse=sparse) | |
assert_array_equal(avals, expected_avals) | |
assert_array_equal(bvals, expected_bvals) | |
if sparse: | |
assert_array_equal(count.A, expected_count) | |
else: | |
assert_array_equal(count, expected_count) | |
def test_crosstab_basic_1d(): | |
# Verify that a single input sequence works as expected. | |
x = [1, 2, 3, 1, 2, 3, 3] | |
expected_xvals = [1, 2, 3] | |
expected_count = np.array([2, 2, 3]) | |
(xvals,), count = crosstab(x) | |
assert_array_equal(xvals, expected_xvals) | |
assert_array_equal(count, expected_count) | |
def test_crosstab_basic_3d(): | |
# Verify the function for three input sequences. | |
a = 'a' | |
b = 'b' | |
x = [0, 0, 9, 9, 0, 0, 9, 9] | |
y = [a, a, a, a, b, b, b, a] | |
z = [1, 2, 3, 1, 2, 3, 3, 1] | |
expected_xvals = [0, 9] | |
expected_yvals = [a, b] | |
expected_zvals = [1, 2, 3] | |
expected_count = np.array([[[1, 1, 0], | |
[0, 1, 1]], | |
[[2, 0, 1], | |
[0, 0, 1]]]) | |
(xvals, yvals, zvals), count = crosstab(x, y, z) | |
assert_array_equal(xvals, expected_xvals) | |
assert_array_equal(yvals, expected_yvals) | |
assert_array_equal(zvals, expected_zvals) | |
assert_array_equal(count, expected_count) | |
def test_crosstab_levels(sparse): | |
a = [0, 0, 9, 9, 0, 0, 9] | |
b = [1, 2, 3, 1, 2, 3, 3] | |
expected_avals = [0, 9] | |
expected_bvals = [0, 1, 2, 3] | |
expected_count = np.array([[0, 1, 2, 1], | |
[0, 1, 0, 2]]) | |
(avals, bvals), count = crosstab(a, b, levels=[None, [0, 1, 2, 3]], | |
sparse=sparse) | |
assert_array_equal(avals, expected_avals) | |
assert_array_equal(bvals, expected_bvals) | |
if sparse: | |
assert_array_equal(count.A, expected_count) | |
else: | |
assert_array_equal(count, expected_count) | |
def test_crosstab_extra_levels(sparse): | |
# The pair of values (-1, 3) will be ignored, because we explicitly | |
# request the counted `a` values to be [0, 9]. | |
a = [0, 0, 9, 9, 0, 0, 9, -1] | |
b = [1, 2, 3, 1, 2, 3, 3, 3] | |
expected_avals = [0, 9] | |
expected_bvals = [0, 1, 2, 3] | |
expected_count = np.array([[0, 1, 2, 1], | |
[0, 1, 0, 2]]) | |
(avals, bvals), count = crosstab(a, b, levels=[[0, 9], [0, 1, 2, 3]], | |
sparse=sparse) | |
assert_array_equal(avals, expected_avals) | |
assert_array_equal(bvals, expected_bvals) | |
if sparse: | |
assert_array_equal(count.A, expected_count) | |
else: | |
assert_array_equal(count, expected_count) | |
def test_validation_at_least_one(): | |
with pytest.raises(TypeError, match='At least one'): | |
crosstab() | |
def test_validation_same_lengths(): | |
with pytest.raises(ValueError, match='must have the same length'): | |
crosstab([1, 2], [1, 2, 3, 4]) | |
def test_validation_sparse_only_two_args(): | |
with pytest.raises(ValueError, match='only two input sequences'): | |
crosstab([0, 1, 1], [8, 8, 9], [1, 3, 3], sparse=True) | |
def test_validation_len_levels_matches_args(): | |
with pytest.raises(ValueError, match='number of input sequences'): | |
crosstab([0, 1, 1], [8, 8, 9], levels=([0, 1, 2, 3],)) | |
def test_result(): | |
res = crosstab([0, 1], [1, 2]) | |
assert_equal((res.elements, res.count), res) | |