peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/stats
/tests
/test_fit.py
import os | |
import numpy as np | |
import numpy.testing as npt | |
from numpy.testing import assert_allclose, assert_equal | |
import pytest | |
from scipy import stats | |
from scipy.optimize import differential_evolution | |
from .test_continuous_basic import distcont | |
from scipy.stats._distn_infrastructure import FitError | |
from scipy.stats._distr_params import distdiscrete | |
from scipy.stats import goodness_of_fit | |
# this is not a proper statistical test for convergence, but only | |
# verifies that the estimate and true values don't differ by too much | |
fit_sizes = [1000, 5000, 10000] # sample sizes to try | |
thresh_percent = 0.25 # percent of true parameters for fail cut-off | |
thresh_min = 0.75 # minimum difference estimate - true to fail test | |
mle_failing_fits = [ | |
'gausshyper', | |
'genexpon', | |
'gengamma', | |
'kappa4', | |
'ksone', | |
'kstwo', | |
'ncf', | |
'ncx2', | |
'truncexpon', | |
'tukeylambda', | |
'vonmises', | |
'levy_stable', | |
'trapezoid', | |
'truncweibull_min', | |
'studentized_range', | |
] | |
# The MLE fit method of these distributions doesn't perform well when all | |
# parameters are fit, so test them with the location fixed at 0. | |
mle_use_floc0 = [ | |
'burr', | |
'chi', | |
'chi2', | |
'mielke', | |
'pearson3', | |
'genhalflogistic', | |
'rdist', | |
'pareto', | |
'powerlaw', # distfn.nnlf(est2, rvs) > distfn.nnlf(est1, rvs) otherwise | |
'powerlognorm', | |
'wrapcauchy', | |
'rel_breitwigner', | |
] | |
mm_failing_fits = ['alpha', 'betaprime', 'burr', 'burr12', 'cauchy', 'chi', | |
'chi2', 'crystalball', 'dgamma', 'dweibull', 'f', | |
'fatiguelife', 'fisk', 'foldcauchy', 'genextreme', | |
'gengamma', 'genhyperbolic', 'gennorm', 'genpareto', | |
'halfcauchy', 'invgamma', 'invweibull', 'jf_skew_t', | |
'johnsonsu', 'kappa3', 'ksone', 'kstwo', 'levy', 'levy_l', | |
'levy_stable', 'loglaplace', 'lomax', 'mielke', 'nakagami', | |
'ncf', 'nct', 'ncx2', 'pareto', 'powerlognorm', 'powernorm', | |
'rel_breitwigner', 'skewcauchy', 't', 'trapezoid', 'triang', | |
'truncpareto', 'truncweibull_min', 'tukeylambda', | |
'studentized_range'] | |
# not sure if these fail, but they caused my patience to fail | |
mm_slow_fits = ['argus', 'exponpow', 'exponweib', 'gausshyper', 'genexpon', | |
'genhalflogistic', 'halfgennorm', 'gompertz', 'johnsonsb', | |
'kappa4', 'kstwobign', 'recipinvgauss', | |
'truncexpon', 'vonmises', 'vonmises_line'] | |
failing_fits = {"MM": mm_failing_fits + mm_slow_fits, "MLE": mle_failing_fits} | |
fail_interval_censored = {"truncpareto"} | |
# Don't run the fit test on these: | |
skip_fit = [ | |
'erlang', # Subclass of gamma, generates a warning. | |
'genhyperbolic', # too slow | |
] | |
def cases_test_cont_fit(): | |
# this tests the closeness of the estimated parameters to the true | |
# parameters with fit method of continuous distributions | |
# Note: is slow, some distributions don't converge with sample | |
# size <= 10000 | |
for distname, arg in distcont: | |
if distname not in skip_fit: | |
yield distname, arg | |
def test_cont_fit(distname, arg, method): | |
if distname in failing_fits[method]: | |
# Skip failing fits unless overridden | |
try: | |
xfail = not int(os.environ['SCIPY_XFAIL']) | |
except Exception: | |
xfail = True | |
if xfail: | |
msg = "Fitting %s doesn't work reliably yet" % distname | |
msg += (" [Set environment variable SCIPY_XFAIL=1 to run this" | |
" test nevertheless.]") | |
pytest.xfail(msg) | |
distfn = getattr(stats, distname) | |
truearg = np.hstack([arg, [0.0, 1.0]]) | |
diffthreshold = np.max(np.vstack([truearg*thresh_percent, | |
np.full(distfn.numargs+2, thresh_min)]), | |
0) | |
for fit_size in fit_sizes: | |
# Note that if a fit succeeds, the other fit_sizes are skipped | |
np.random.seed(1234) | |
with np.errstate(all='ignore'): | |
rvs = distfn.rvs(size=fit_size, *arg) | |
if method == 'MLE' and distfn.name in mle_use_floc0: | |
kwds = {'floc': 0} | |
else: | |
kwds = {} | |
# start with default values | |
est = distfn.fit(rvs, method=method, **kwds) | |
if method == 'MLE': | |
# Trivial test of the use of CensoredData. The fit() method | |
# will check that data contains no actual censored data, and | |
# do a regular uncensored fit. | |
data1 = stats.CensoredData(rvs) | |
est1 = distfn.fit(data1, **kwds) | |
msg = ('Different results fitting uncensored data wrapped as' | |
f' CensoredData: {distfn.name}: est={est} est1={est1}') | |
assert_allclose(est1, est, rtol=1e-10, err_msg=msg) | |
if method == 'MLE' and distname not in fail_interval_censored: | |
# Convert the first `nic` values in rvs to interval-censored | |
# values. The interval is small, so est2 should be close to | |
# est. | |
nic = 15 | |
interval = np.column_stack((rvs, rvs)) | |
interval[:nic, 0] *= 0.99 | |
interval[:nic, 1] *= 1.01 | |
interval.sort(axis=1) | |
data2 = stats.CensoredData(interval=interval) | |
est2 = distfn.fit(data2, **kwds) | |
msg = ('Different results fitting interval-censored' | |
f' data: {distfn.name}: est={est} est2={est2}') | |
assert_allclose(est2, est, rtol=0.05, err_msg=msg) | |
diff = est - truearg | |
# threshold for location | |
diffthreshold[-2] = np.max([np.abs(rvs.mean())*thresh_percent, | |
thresh_min]) | |
if np.any(np.isnan(est)): | |
raise AssertionError('nan returned in fit') | |
else: | |
if np.all(np.abs(diff) <= diffthreshold): | |
break | |
else: | |
txt = 'parameter: %s\n' % str(truearg) | |
txt += 'estimated: %s\n' % str(est) | |
txt += 'diff : %s\n' % str(diff) | |
raise AssertionError('fit not very good in %s\n' % distfn.name + txt) | |
def _check_loc_scale_mle_fit(name, data, desired, atol=None): | |
d = getattr(stats, name) | |
actual = d.fit(data)[-2:] | |
assert_allclose(actual, desired, atol=atol, | |
err_msg='poor mle fit of (loc, scale) in %s' % name) | |
def test_non_default_loc_scale_mle_fit(): | |
data = np.array([1.01, 1.78, 1.78, 1.78, 1.88, 1.88, 1.88, 2.00]) | |
_check_loc_scale_mle_fit('uniform', data, [1.01, 0.99], 1e-3) | |
_check_loc_scale_mle_fit('expon', data, [1.01, 0.73875], 1e-3) | |
def test_expon_fit(): | |
"""gh-6167""" | |
data = [0, 0, 0, 0, 2, 2, 2, 2] | |
phat = stats.expon.fit(data, floc=0) | |
assert_allclose(phat, [0, 1.0], atol=1e-3) | |
def test_fit_error(): | |
data = np.concatenate([np.zeros(29), np.ones(21)]) | |
message = "Optimization converged to parameters that are..." | |
with pytest.raises(FitError, match=message), \ | |
pytest.warns(RuntimeWarning): | |
stats.beta.fit(data) | |
# type: ignore[attr-defined] | |
def test_nnlf_and_related_methods(dist, params): | |
rng = np.random.default_rng(983459824) | |
if hasattr(dist, 'pdf'): | |
logpxf = dist.logpdf | |
else: | |
logpxf = dist.logpmf | |
x = dist.rvs(*params, size=100, random_state=rng) | |
ref = -logpxf(x, *params).sum() | |
res1 = dist.nnlf(params, x) | |
res2 = dist._penalized_nnlf(params, x) | |
assert_allclose(res1, ref) | |
assert_allclose(res2, ref) | |
def cases_test_fit_mle(): | |
# These fail default test or hang | |
skip_basic_fit = {'argus', 'foldnorm', 'truncpareto', 'truncweibull_min', | |
'ksone', 'levy_stable', 'studentized_range', 'kstwo', | |
'arcsine'} | |
# Please keep this list in alphabetical order... | |
slow_basic_fit = {'alpha', | |
'betaprime', 'binom', 'bradford', 'burr12', | |
'chi', 'crystalball', 'dweibull', 'exponpow', | |
'f', 'fatiguelife', 'fisk', 'foldcauchy', | |
'genexpon', 'genextreme', 'gennorm', 'genpareto', | |
'gompertz', 'halfgennorm', 'invgauss', 'invweibull', | |
'jf_skew_t', 'johnsonsb', 'johnsonsu', 'kappa3', | |
'kstwobign', 'loglaplace', 'lognorm', 'lomax', 'mielke', | |
'nakagami', 'nbinom', 'norminvgauss', | |
'pareto', 'pearson3', 'powerlaw', 'powernorm', | |
'randint', 'rdist', 'recipinvgauss', 'rice', | |
't', 'uniform', 'weibull_max', 'wrapcauchy'} | |
# Please keep this list in alphabetical order... | |
xslow_basic_fit = {'beta', 'betabinom', 'burr', 'exponweib', | |
'gausshyper', 'gengamma', 'genhalflogistic', | |
'genhyperbolic', 'geninvgauss', | |
'hypergeom', 'kappa4', 'loguniform', | |
'ncf', 'nchypergeom_fisher', 'nchypergeom_wallenius', | |
'nct', 'ncx2', 'nhypergeom', | |
'powerlognorm', 'reciprocal', 'rel_breitwigner', | |
'skellam', 'trapezoid', 'triang', 'truncnorm', | |
'tukeylambda', 'zipfian'} | |
for dist in dict(distdiscrete + distcont): | |
if dist in skip_basic_fit or not isinstance(dist, str): | |
reason = "tested separately" | |
yield pytest.param(dist, marks=pytest.mark.skip(reason=reason)) | |
elif dist in slow_basic_fit: | |
reason = "too slow (>= 0.25s)" | |
yield pytest.param(dist, marks=pytest.mark.slow(reason=reason)) | |
elif dist in xslow_basic_fit: | |
reason = "too slow (>= 1.0s)" | |
yield pytest.param(dist, marks=pytest.mark.xslow(reason=reason)) | |
else: | |
yield dist | |
def cases_test_fit_mse(): | |
# the first four are so slow that I'm not sure whether they would pass | |
skip_basic_fit = {'levy_stable', 'studentized_range', 'ksone', 'skewnorm', | |
'norminvgauss', # super slow (~1 hr) but passes | |
'kstwo', # very slow (~25 min) but passes | |
'geninvgauss', # quite slow (~4 minutes) but passes | |
'gausshyper', 'genhyperbolic', # integration warnings | |
'tukeylambda', # close, but doesn't meet tolerance | |
'vonmises'} # can have negative CDF; doesn't play nice | |
# Please keep this list in alphabetical order... | |
slow_basic_fit = {'alpha', 'anglit', 'arcsine', 'betabinom', 'bradford', | |
'chi', 'chi2', 'crystalball', 'dgamma', 'dweibull', | |
'erlang', 'exponnorm', 'exponpow', 'exponweib', | |
'fatiguelife', 'fisk', 'foldcauchy', 'foldnorm', | |
'gamma', 'genexpon', 'genextreme', 'genhalflogistic', | |
'genlogistic', 'genpareto', 'gompertz', | |
'hypergeom', 'invweibull', 'jf_skew_t', 'johnsonsb', | |
'johnsonsu', 'kappa3', 'kstwobign', | |
'laplace_asymmetric', 'loggamma', 'loglaplace', | |
'lognorm', 'lomax', | |
'maxwell', 'mielke', 'nakagami', 'nhypergeom', | |
'pareto', 'powernorm', 'randint', 'recipinvgauss', | |
'semicircular', | |
't', 'triang', 'truncexpon', 'truncpareto', | |
'truncweibull_min', | |
'uniform', 'vonmises_line', | |
'wald', 'weibull_max', 'weibull_min', 'wrapcauchy'} | |
# Please keep this list in alphabetical order... | |
xslow_basic_fit = {'beta', 'betaprime', 'burr', 'burr12', | |
'f', 'gengamma', 'gennorm', | |
'halfgennorm', 'invgamma', 'invgauss', | |
'kappa4', 'loguniform', | |
'ncf', 'nchypergeom_fisher', 'nchypergeom_wallenius', | |
'nct', 'ncx2', | |
'pearson3', 'powerlaw', 'powerlognorm', | |
'rdist', 'reciprocal', 'rel_breitwigner', 'rice', | |
'trapezoid', 'truncnorm', | |
'zipfian'} | |
warns_basic_fit = {'skellam'} # can remove mark after gh-14901 is resolved | |
for dist in dict(distdiscrete + distcont): | |
if dist in skip_basic_fit or not isinstance(dist, str): | |
reason = "Fails. Oh well." | |
yield pytest.param(dist, marks=pytest.mark.skip(reason=reason)) | |
elif dist in slow_basic_fit: | |
reason = "too slow (>= 0.25s)" | |
yield pytest.param(dist, marks=pytest.mark.slow(reason=reason)) | |
elif dist in xslow_basic_fit: | |
reason = "too slow (>= 1.0s)" | |
yield pytest.param(dist, marks=pytest.mark.xslow(reason=reason)) | |
elif dist in warns_basic_fit: | |
mark = pytest.mark.filterwarnings('ignore::RuntimeWarning') | |
yield pytest.param(dist, marks=mark) | |
else: | |
yield dist | |
def cases_test_fitstart(): | |
for distname, shapes in dict(distcont).items(): | |
if (not isinstance(distname, str) or | |
distname in {'studentized_range', 'recipinvgauss'}): # slow | |
continue | |
yield distname, shapes | |
def test_fitstart(distname, shapes): | |
dist = getattr(stats, distname) | |
rng = np.random.default_rng(216342614) | |
data = rng.random(10) | |
with np.errstate(invalid='ignore', divide='ignore'): # irrelevant to test | |
guess = dist._fitstart(data) | |
assert dist._argcheck(*guess[:-2]) | |
def assert_nlff_less_or_close(dist, data, params1, params0, rtol=1e-7, atol=0, | |
nlff_name='nnlf'): | |
nlff = getattr(dist, nlff_name) | |
nlff1 = nlff(params1, data) | |
nlff0 = nlff(params0, data) | |
if not (nlff1 < nlff0): | |
np.testing.assert_allclose(nlff1, nlff0, rtol=rtol, atol=atol) | |
class TestFit: | |
dist = stats.binom # type: ignore[attr-defined] | |
seed = 654634816187 | |
rng = np.random.default_rng(seed) | |
data = stats.binom.rvs(5, 0.5, size=100, random_state=rng) # type: ignore[attr-defined] # noqa: E501 | |
shape_bounds_a = [(1, 10), (0, 1)] | |
shape_bounds_d = {'n': (1, 10), 'p': (0, 1)} | |
atol = 5e-2 | |
rtol = 1e-2 | |
tols = {'atol': atol, 'rtol': rtol} | |
def opt(self, *args, **kwds): | |
return differential_evolution(*args, seed=0, **kwds) | |
def test_dist_iv(self): | |
message = "`dist` must be an instance of..." | |
with pytest.raises(ValueError, match=message): | |
stats.fit(10, self.data, self.shape_bounds_a) | |
def test_data_iv(self): | |
message = "`data` must be exactly one-dimensional." | |
with pytest.raises(ValueError, match=message): | |
stats.fit(self.dist, [[1, 2, 3]], self.shape_bounds_a) | |
message = "All elements of `data` must be finite numbers." | |
with pytest.raises(ValueError, match=message): | |
stats.fit(self.dist, [1, 2, 3, np.nan], self.shape_bounds_a) | |
with pytest.raises(ValueError, match=message): | |
stats.fit(self.dist, [1, 2, 3, np.inf], self.shape_bounds_a) | |
with pytest.raises(ValueError, match=message): | |
stats.fit(self.dist, ['1', '2', '3'], self.shape_bounds_a) | |
def test_bounds_iv(self): | |
message = "Bounds provided for the following unrecognized..." | |
shape_bounds = {'n': (1, 10), 'p': (0, 1), '1': (0, 10)} | |
with pytest.warns(RuntimeWarning, match=message): | |
stats.fit(self.dist, self.data, shape_bounds) | |
message = "Each element of a `bounds` sequence must be a tuple..." | |
shape_bounds = [(1, 10, 3), (0, 1)] | |
with pytest.raises(ValueError, match=message): | |
stats.fit(self.dist, self.data, shape_bounds) | |
message = "Each element of `bounds` must be a tuple specifying..." | |
shape_bounds = [(1, 10, 3), (0, 1, 0.5)] | |
with pytest.raises(ValueError, match=message): | |
stats.fit(self.dist, self.data, shape_bounds) | |
shape_bounds = [1, 0] | |
with pytest.raises(ValueError, match=message): | |
stats.fit(self.dist, self.data, shape_bounds) | |
message = "A `bounds` sequence must contain at least 2 elements..." | |
shape_bounds = [(1, 10)] | |
with pytest.raises(ValueError, match=message): | |
stats.fit(self.dist, self.data, shape_bounds) | |
message = "A `bounds` sequence may not contain more than 3 elements..." | |
bounds = [(1, 10), (1, 10), (1, 10), (1, 10)] | |
with pytest.raises(ValueError, match=message): | |
stats.fit(self.dist, self.data, bounds) | |
message = "There are no values for `p` on the interval..." | |
shape_bounds = {'n': (1, 10), 'p': (1, 0)} | |
with pytest.raises(ValueError, match=message): | |
stats.fit(self.dist, self.data, shape_bounds) | |
message = "There are no values for `n` on the interval..." | |
shape_bounds = [(10, 1), (0, 1)] | |
with pytest.raises(ValueError, match=message): | |
stats.fit(self.dist, self.data, shape_bounds) | |
message = "There are no integer values for `n` on the interval..." | |
shape_bounds = [(1.4, 1.6), (0, 1)] | |
with pytest.raises(ValueError, match=message): | |
stats.fit(self.dist, self.data, shape_bounds) | |
message = "The intersection of user-provided bounds for `n`" | |
with pytest.raises(ValueError, match=message): | |
stats.fit(self.dist, self.data) | |
shape_bounds = [(-np.inf, np.inf), (0, 1)] | |
with pytest.raises(ValueError, match=message): | |
stats.fit(self.dist, self.data, shape_bounds) | |
def test_guess_iv(self): | |
message = "Guesses provided for the following unrecognized..." | |
guess = {'n': 1, 'p': 0.5, '1': 255} | |
with pytest.warns(RuntimeWarning, match=message): | |
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess) | |
message = "Each element of `guess` must be a scalar..." | |
guess = {'n': 1, 'p': 'hi'} | |
with pytest.raises(ValueError, match=message): | |
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess) | |
guess = [1, 'f'] | |
with pytest.raises(ValueError, match=message): | |
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess) | |
guess = [[1, 2]] | |
with pytest.raises(ValueError, match=message): | |
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess) | |
message = "A `guess` sequence must contain at least 2..." | |
guess = [1] | |
with pytest.raises(ValueError, match=message): | |
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess) | |
message = "A `guess` sequence may not contain more than 3..." | |
guess = [1, 2, 3, 4] | |
with pytest.raises(ValueError, match=message): | |
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess) | |
message = "Guess for parameter `n` rounded.*|Guess for parameter `p` clipped.*" | |
guess = {'n': 4.5, 'p': -0.5} | |
with pytest.warns(RuntimeWarning, match=message): | |
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess) | |
message = "Guess for parameter `loc` rounded..." | |
guess = [5, 0.5, 0.5] | |
with pytest.warns(RuntimeWarning, match=message): | |
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess) | |
message = "Guess for parameter `p` clipped..." | |
guess = {'n': 5, 'p': -0.5} | |
with pytest.warns(RuntimeWarning, match=message): | |
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess) | |
message = "Guess for parameter `loc` clipped..." | |
guess = [5, 0.5, 1] | |
with pytest.warns(RuntimeWarning, match=message): | |
stats.fit(self.dist, self.data, self.shape_bounds_d, guess=guess) | |
def basic_fit_test(self, dist_name, method): | |
N = 5000 | |
dist_data = dict(distcont + distdiscrete) | |
rng = np.random.default_rng(self.seed) | |
dist = getattr(stats, dist_name) | |
shapes = np.array(dist_data[dist_name]) | |
bounds = np.empty((len(shapes) + 2, 2), dtype=np.float64) | |
bounds[:-2, 0] = shapes/10.**np.sign(shapes) | |
bounds[:-2, 1] = shapes*10.**np.sign(shapes) | |
bounds[-2] = (0, 10) | |
bounds[-1] = (1e-16, 10) | |
loc = rng.uniform(*bounds[-2]) | |
scale = rng.uniform(*bounds[-1]) | |
ref = list(dist_data[dist_name]) + [loc, scale] | |
if getattr(dist, 'pmf', False): | |
ref = ref[:-1] | |
ref[-1] = np.floor(loc) | |
data = dist.rvs(*ref, size=N, random_state=rng) | |
bounds = bounds[:-1] | |
if getattr(dist, 'pdf', False): | |
data = dist.rvs(*ref, size=N, random_state=rng) | |
with npt.suppress_warnings() as sup: | |
sup.filter(RuntimeWarning, "overflow encountered") | |
res = stats.fit(dist, data, bounds, method=method, | |
optimizer=self.opt) | |
nlff_names = {'mle': 'nnlf', 'mse': '_penalized_nlpsf'} | |
nlff_name = nlff_names[method] | |
assert_nlff_less_or_close(dist, data, res.params, ref, **self.tols, | |
nlff_name=nlff_name) | |
def test_basic_fit_mle(self, dist_name): | |
self.basic_fit_test(dist_name, "mle") | |
def test_basic_fit_mse(self, dist_name): | |
self.basic_fit_test(dist_name, "mse") | |
def test_arcsine(self): | |
# Can't guarantee that all distributions will fit all data with | |
# arbitrary bounds. This distribution just happens to fail above. | |
# Try something slightly different. | |
N = 1000 | |
rng = np.random.default_rng(self.seed) | |
dist = stats.arcsine | |
shapes = (1., 2.) | |
data = dist.rvs(*shapes, size=N, random_state=rng) | |
shape_bounds = {'loc': (0.1, 10), 'scale': (0.1, 10)} | |
res = stats.fit(dist, data, shape_bounds, optimizer=self.opt) | |
assert_nlff_less_or_close(dist, data, res.params, shapes, **self.tols) | |
def test_argus(self): | |
# Can't guarantee that all distributions will fit all data with | |
# arbitrary bounds. This distribution just happens to fail above. | |
# Try something slightly different. | |
N = 1000 | |
rng = np.random.default_rng(self.seed) | |
dist = stats.argus | |
shapes = (1., 2., 3.) | |
data = dist.rvs(*shapes, size=N, random_state=rng) | |
shape_bounds = {'chi': (0.1, 10), 'loc': (0.1, 10), 'scale': (0.1, 10)} | |
res = stats.fit(dist, data, shape_bounds, optimizer=self.opt) | |
assert_nlff_less_or_close(dist, data, res.params, shapes, **self.tols) | |
def test_foldnorm(self): | |
# Can't guarantee that all distributions will fit all data with | |
# arbitrary bounds. This distribution just happens to fail above. | |
# Try something slightly different. | |
N = 1000 | |
rng = np.random.default_rng(self.seed) | |
dist = stats.foldnorm | |
shapes = (1.952125337355587, 2., 3.) | |
data = dist.rvs(*shapes, size=N, random_state=rng) | |
shape_bounds = {'c': (0.1, 10), 'loc': (0.1, 10), 'scale': (0.1, 10)} | |
res = stats.fit(dist, data, shape_bounds, optimizer=self.opt) | |
assert_nlff_less_or_close(dist, data, res.params, shapes, **self.tols) | |
def test_truncpareto(self): | |
# Can't guarantee that all distributions will fit all data with | |
# arbitrary bounds. This distribution just happens to fail above. | |
# Try something slightly different. | |
N = 1000 | |
rng = np.random.default_rng(self.seed) | |
dist = stats.truncpareto | |
shapes = (1.8, 5.3, 2.3, 4.1) | |
data = dist.rvs(*shapes, size=N, random_state=rng) | |
shape_bounds = [(0.1, 10)]*4 | |
res = stats.fit(dist, data, shape_bounds, optimizer=self.opt) | |
assert_nlff_less_or_close(dist, data, res.params, shapes, **self.tols) | |
def test_truncweibull_min(self): | |
# Can't guarantee that all distributions will fit all data with | |
# arbitrary bounds. This distribution just happens to fail above. | |
# Try something slightly different. | |
N = 1000 | |
rng = np.random.default_rng(self.seed) | |
dist = stats.truncweibull_min | |
shapes = (2.5, 0.25, 1.75, 2., 3.) | |
data = dist.rvs(*shapes, size=N, random_state=rng) | |
shape_bounds = [(0.1, 10)]*5 | |
res = stats.fit(dist, data, shape_bounds, optimizer=self.opt) | |
assert_nlff_less_or_close(dist, data, res.params, shapes, **self.tols) | |
def test_missing_shape_bounds(self): | |
# some distributions have a small domain w.r.t. a parameter, e.g. | |
# $p \in [0, 1]$ for binomial distribution | |
# User does not need to provide these because the intersection of the | |
# user's bounds (none) and the distribution's domain is finite | |
N = 1000 | |
rng = np.random.default_rng(self.seed) | |
dist = stats.binom | |
n, p, loc = 10, 0.65, 0 | |
data = dist.rvs(n, p, loc=loc, size=N, random_state=rng) | |
shape_bounds = {'n': np.array([0, 20])} # check arrays are OK, too | |
res = stats.fit(dist, data, shape_bounds, optimizer=self.opt) | |
assert_allclose(res.params, (n, p, loc), **self.tols) | |
dist = stats.bernoulli | |
p, loc = 0.314159, 0 | |
data = dist.rvs(p, loc=loc, size=N, random_state=rng) | |
res = stats.fit(dist, data, optimizer=self.opt) | |
assert_allclose(res.params, (p, loc), **self.tols) | |
def test_fit_only_loc_scale(self): | |
# fit only loc | |
N = 5000 | |
rng = np.random.default_rng(self.seed) | |
dist = stats.norm | |
loc, scale = 1.5, 1 | |
data = dist.rvs(loc=loc, size=N, random_state=rng) | |
loc_bounds = (0, 5) | |
bounds = {'loc': loc_bounds} | |
res = stats.fit(dist, data, bounds, optimizer=self.opt) | |
assert_allclose(res.params, (loc, scale), **self.tols) | |
# fit only scale | |
loc, scale = 0, 2.5 | |
data = dist.rvs(scale=scale, size=N, random_state=rng) | |
scale_bounds = (0.01, 5) | |
bounds = {'scale': scale_bounds} | |
res = stats.fit(dist, data, bounds, optimizer=self.opt) | |
assert_allclose(res.params, (loc, scale), **self.tols) | |
# fit only loc and scale | |
dist = stats.norm | |
loc, scale = 1.5, 2.5 | |
data = dist.rvs(loc=loc, scale=scale, size=N, random_state=rng) | |
bounds = {'loc': loc_bounds, 'scale': scale_bounds} | |
res = stats.fit(dist, data, bounds, optimizer=self.opt) | |
assert_allclose(res.params, (loc, scale), **self.tols) | |
def test_everything_fixed(self): | |
N = 5000 | |
rng = np.random.default_rng(self.seed) | |
dist = stats.norm | |
loc, scale = 1.5, 2.5 | |
data = dist.rvs(loc=loc, scale=scale, size=N, random_state=rng) | |
# loc, scale fixed to 0, 1 by default | |
res = stats.fit(dist, data) | |
assert_allclose(res.params, (0, 1), **self.tols) | |
# loc, scale explicitly fixed | |
bounds = {'loc': (loc, loc), 'scale': (scale, scale)} | |
res = stats.fit(dist, data, bounds) | |
assert_allclose(res.params, (loc, scale), **self.tols) | |
# `n` gets fixed during polishing | |
dist = stats.binom | |
n, p, loc = 10, 0.65, 0 | |
data = dist.rvs(n, p, loc=loc, size=N, random_state=rng) | |
shape_bounds = {'n': (0, 20), 'p': (0.65, 0.65)} | |
res = stats.fit(dist, data, shape_bounds, optimizer=self.opt) | |
assert_allclose(res.params, (n, p, loc), **self.tols) | |
def test_failure(self): | |
N = 5000 | |
rng = np.random.default_rng(self.seed) | |
dist = stats.nbinom | |
shapes = (5, 0.5) | |
data = dist.rvs(*shapes, size=N, random_state=rng) | |
assert data.min() == 0 | |
# With lower bounds on location at 0.5, likelihood is zero | |
bounds = [(0, 30), (0, 1), (0.5, 10)] | |
res = stats.fit(dist, data, bounds) | |
message = "Optimization converged to parameter values that are" | |
assert res.message.startswith(message) | |
assert res.success is False | |
def test_guess(self): | |
# Test that guess helps DE find the desired solution | |
N = 2000 | |
# With some seeds, `fit` doesn't need a guess | |
rng = np.random.default_rng(1963904448561) | |
dist = stats.nhypergeom | |
params = (20, 7, 12, 0) | |
bounds = [(2, 200), (0.7, 70), (1.2, 120), (0, 10)] | |
data = dist.rvs(*params, size=N, random_state=rng) | |
res = stats.fit(dist, data, bounds, optimizer=self.opt) | |
assert not np.allclose(res.params, params, **self.tols) | |
res = stats.fit(dist, data, bounds, guess=params, optimizer=self.opt) | |
assert_allclose(res.params, params, **self.tols) | |
def test_mse_accuracy_1(self): | |
# Test maximum spacing estimation against example from Wikipedia | |
# https://en.wikipedia.org/wiki/Maximum_spacing_estimation#Examples | |
data = [2, 4] | |
dist = stats.expon | |
bounds = {'loc': (0, 0), 'scale': (1e-8, 10)} | |
res_mle = stats.fit(dist, data, bounds=bounds, method='mle') | |
assert_allclose(res_mle.params.scale, 3, atol=1e-3) | |
res_mse = stats.fit(dist, data, bounds=bounds, method='mse') | |
assert_allclose(res_mse.params.scale, 3.915, atol=1e-3) | |
def test_mse_accuracy_2(self): | |
# Test maximum spacing estimation against example from Wikipedia | |
# https://en.wikipedia.org/wiki/Maximum_spacing_estimation#Examples | |
rng = np.random.default_rng(9843212616816518964) | |
dist = stats.uniform | |
n = 10 | |
data = dist(3, 6).rvs(size=n, random_state=rng) | |
bounds = {'loc': (0, 10), 'scale': (1e-8, 10)} | |
res = stats.fit(dist, data, bounds=bounds, method='mse') | |
# (loc=3.608118420015416, scale=5.509323262055043) | |
x = np.sort(data) | |
a = (n*x[0] - x[-1])/(n - 1) | |
b = (n*x[-1] - x[0])/(n - 1) | |
ref = a, b-a # (3.6081133632151503, 5.509328130317254) | |
assert_allclose(res.params, ref, rtol=1e-4) | |
# Data from Matlab: https://www.mathworks.com/help/stats/lillietest.html | |
examgrades = [65, 61, 81, 88, 69, 89, 55, 84, 86, 84, 71, 81, 84, 81, 78, 67, | |
96, 66, 73, 75, 59, 71, 69, 63, 79, 76, 63, 85, 87, 88, 80, 71, | |
65, 84, 71, 75, 81, 79, 64, 65, 84, 77, 70, 75, 84, 75, 73, 92, | |
90, 79, 80, 71, 73, 71, 58, 79, 73, 64, 77, 82, 81, 59, 54, 82, | |
57, 79, 79, 73, 74, 82, 63, 64, 73, 69, 87, 68, 81, 73, 83, 73, | |
80, 73, 73, 71, 66, 78, 64, 74, 68, 67, 75, 75, 80, 85, 74, 76, | |
80, 77, 93, 70, 86, 80, 81, 83, 68, 60, 85, 64, 74, 82, 81, 77, | |
66, 85, 75, 81, 69, 60, 83, 72] | |
class TestGoodnessOfFit: | |
def test_gof_iv(self): | |
dist = stats.norm | |
x = [1, 2, 3] | |
message = r"`dist` must be a \(non-frozen\) instance of..." | |
with pytest.raises(TypeError, match=message): | |
goodness_of_fit(stats.norm(), x) | |
message = "`data` must be a one-dimensional array of numbers." | |
with pytest.raises(ValueError, match=message): | |
goodness_of_fit(dist, [[1, 2, 3]]) | |
message = "`statistic` must be one of..." | |
with pytest.raises(ValueError, match=message): | |
goodness_of_fit(dist, x, statistic='mm') | |
message = "`n_mc_samples` must be an integer." | |
with pytest.raises(TypeError, match=message): | |
goodness_of_fit(dist, x, n_mc_samples=1000.5) | |
message = "'herring' cannot be used to seed a" | |
with pytest.raises(ValueError, match=message): | |
goodness_of_fit(dist, x, random_state='herring') | |
def test_against_ks(self): | |
rng = np.random.default_rng(8517426291317196949) | |
x = examgrades | |
known_params = {'loc': np.mean(x), 'scale': np.std(x, ddof=1)} | |
res = goodness_of_fit(stats.norm, x, known_params=known_params, | |
statistic='ks', random_state=rng) | |
ref = stats.kstest(x, stats.norm(**known_params).cdf, method='exact') | |
assert_allclose(res.statistic, ref.statistic) # ~0.0848 | |
assert_allclose(res.pvalue, ref.pvalue, atol=5e-3) # ~0.335 | |
def test_against_lilliefors(self): | |
rng = np.random.default_rng(2291803665717442724) | |
x = examgrades | |
res = goodness_of_fit(stats.norm, x, statistic='ks', random_state=rng) | |
known_params = {'loc': np.mean(x), 'scale': np.std(x, ddof=1)} | |
ref = stats.kstest(x, stats.norm(**known_params).cdf, method='exact') | |
assert_allclose(res.statistic, ref.statistic) # ~0.0848 | |
assert_allclose(res.pvalue, 0.0348, atol=5e-3) | |
def test_against_cvm(self): | |
rng = np.random.default_rng(8674330857509546614) | |
x = examgrades | |
known_params = {'loc': np.mean(x), 'scale': np.std(x, ddof=1)} | |
res = goodness_of_fit(stats.norm, x, known_params=known_params, | |
statistic='cvm', random_state=rng) | |
ref = stats.cramervonmises(x, stats.norm(**known_params).cdf) | |
assert_allclose(res.statistic, ref.statistic) # ~0.090 | |
assert_allclose(res.pvalue, ref.pvalue, atol=5e-3) # ~0.636 | |
def test_against_anderson_case_0(self): | |
# "Case 0" is where loc and scale are known [1] | |
rng = np.random.default_rng(7384539336846690410) | |
x = np.arange(1, 101) | |
# loc that produced critical value of statistic found w/ root_scalar | |
known_params = {'loc': 45.01575354024957, 'scale': 30} | |
res = goodness_of_fit(stats.norm, x, known_params=known_params, | |
statistic='ad', random_state=rng) | |
assert_allclose(res.statistic, 2.492) # See [1] Table 1A 1.0 | |
assert_allclose(res.pvalue, 0.05, atol=5e-3) | |
def test_against_anderson_case_1(self): | |
# "Case 1" is where scale is known and loc is fit [1] | |
rng = np.random.default_rng(5040212485680146248) | |
x = np.arange(1, 101) | |
# scale that produced critical value of statistic found w/ root_scalar | |
known_params = {'scale': 29.957112639101933} | |
res = goodness_of_fit(stats.norm, x, known_params=known_params, | |
statistic='ad', random_state=rng) | |
assert_allclose(res.statistic, 0.908) # See [1] Table 1B 1.1 | |
assert_allclose(res.pvalue, 0.1, atol=5e-3) | |
def test_against_anderson_case_2(self): | |
# "Case 2" is where loc is known and scale is fit [1] | |
rng = np.random.default_rng(726693985720914083) | |
x = np.arange(1, 101) | |
# loc that produced critical value of statistic found w/ root_scalar | |
known_params = {'loc': 44.5680212261933} | |
res = goodness_of_fit(stats.norm, x, known_params=known_params, | |
statistic='ad', random_state=rng) | |
assert_allclose(res.statistic, 2.904) # See [1] Table 1B 1.2 | |
assert_allclose(res.pvalue, 0.025, atol=5e-3) | |
def test_against_anderson_case_3(self): | |
# "Case 3" is where both loc and scale are fit [1] | |
rng = np.random.default_rng(6763691329830218206) | |
# c that produced critical value of statistic found w/ root_scalar | |
x = stats.skewnorm.rvs(1.4477847789132101, loc=1, scale=2, size=100, | |
random_state=rng) | |
res = goodness_of_fit(stats.norm, x, statistic='ad', random_state=rng) | |
assert_allclose(res.statistic, 0.559) # See [1] Table 1B 1.2 | |
assert_allclose(res.pvalue, 0.15, atol=5e-3) | |
def test_against_anderson_gumbel_r(self): | |
rng = np.random.default_rng(7302761058217743) | |
# c that produced critical value of statistic found w/ root_scalar | |
x = stats.genextreme(0.051896837188595134, loc=0.5, | |
scale=1.5).rvs(size=1000, random_state=rng) | |
res = goodness_of_fit(stats.gumbel_r, x, statistic='ad', | |
random_state=rng) | |
ref = stats.anderson(x, dist='gumbel_r') | |
assert_allclose(res.statistic, ref.critical_values[0]) | |
assert_allclose(res.pvalue, ref.significance_level[0]/100, atol=5e-3) | |
def test_against_filliben_norm(self): | |
# Test against `stats.fit` ref. [7] Section 8 "Example" | |
rng = np.random.default_rng(8024266430745011915) | |
y = [6, 1, -4, 8, -2, 5, 0] | |
known_params = {'loc': 0, 'scale': 1} | |
res = stats.goodness_of_fit(stats.norm, y, known_params=known_params, | |
statistic="filliben", random_state=rng) | |
# Slight discrepancy presumably due to roundoff in Filliben's | |
# calculation. Using exact order statistic medians instead of | |
# Filliben's approximation doesn't account for it. | |
assert_allclose(res.statistic, 0.98538, atol=1e-4) | |
assert 0.75 < res.pvalue < 0.9 | |
# Using R's ppcc library: | |
# library(ppcc) | |
# options(digits=16) | |
# x < - c(6, 1, -4, 8, -2, 5, 0) | |
# set.seed(100) | |
# ppccTest(x, "qnorm", ppos="Filliben") | |
# Discrepancy with | |
assert_allclose(res.statistic, 0.98540957187084, rtol=2e-5) | |
assert_allclose(res.pvalue, 0.8875, rtol=2e-3) | |
def test_filliben_property(self): | |
# Filliben's statistic should be independent of data location and scale | |
rng = np.random.default_rng(8535677809395478813) | |
x = rng.normal(loc=10, scale=0.5, size=100) | |
res = stats.goodness_of_fit(stats.norm, x, | |
statistic="filliben", random_state=rng) | |
known_params = {'loc': 0, 'scale': 1} | |
ref = stats.goodness_of_fit(stats.norm, x, known_params=known_params, | |
statistic="filliben", random_state=rng) | |
assert_allclose(res.statistic, ref.statistic, rtol=1e-15) | |
def test_against_filliben_norm_table(self, case): | |
# Test against `stats.fit` ref. [7] Table 1 | |
rng = np.random.default_rng(504569995557928957) | |
n, ref = case | |
x = rng.random(n) | |
known_params = {'loc': 0, 'scale': 1} | |
res = stats.goodness_of_fit(stats.norm, x, known_params=known_params, | |
statistic="filliben", random_state=rng) | |
percentiles = np.array([0.005, 0.01, 0.025, 0.05, 0.1]) | |
res = stats.scoreatpercentile(res.null_distribution, percentiles*100) | |
assert_allclose(res, ref, atol=2e-3) | |
def test_against_ppcc(self, case): | |
# Test against R ppcc, e.g. | |
# library(ppcc) | |
# options(digits=16) | |
# x < - c(0.52325412, 1.06907699, -0.36084066, 0.15305959, 0.99093194) | |
# set.seed(100) | |
# ppccTest(x, "qrayleigh", ppos="Filliben") | |
n, ref_statistic, ref_pvalue = case | |
rng = np.random.default_rng(7777775561439803116) | |
x = rng.normal(size=n) | |
res = stats.goodness_of_fit(stats.rayleigh, x, statistic="filliben", | |
random_state=rng) | |
assert_allclose(res.statistic, ref_statistic, rtol=1e-4) | |
assert_allclose(res.pvalue, ref_pvalue, atol=1.5e-2) | |
def test_params_effects(self): | |
# Ensure that `guessed_params`, `fit_params`, and `known_params` have | |
# the intended effects. | |
rng = np.random.default_rng(9121950977643805391) | |
x = stats.skewnorm.rvs(-5.044559778383153, loc=1, scale=2, size=50, | |
random_state=rng) | |
# Show that `guessed_params` don't fit to the guess, | |
# but `fit_params` and `known_params` respect the provided fit | |
guessed_params = {'c': 13.4} | |
fit_params = {'scale': 13.73} | |
known_params = {'loc': -13.85} | |
rng = np.random.default_rng(9121950977643805391) | |
res1 = goodness_of_fit(stats.weibull_min, x, n_mc_samples=2, | |
guessed_params=guessed_params, | |
fit_params=fit_params, | |
known_params=known_params, random_state=rng) | |
assert not np.allclose(res1.fit_result.params.c, 13.4) | |
assert_equal(res1.fit_result.params.scale, 13.73) | |
assert_equal(res1.fit_result.params.loc, -13.85) | |
# Show that changing the guess changes the parameter that gets fit, | |
# and it changes the null distribution | |
guessed_params = {'c': 2} | |
rng = np.random.default_rng(9121950977643805391) | |
res2 = goodness_of_fit(stats.weibull_min, x, n_mc_samples=2, | |
guessed_params=guessed_params, | |
fit_params=fit_params, | |
known_params=known_params, random_state=rng) | |
assert not np.allclose(res2.fit_result.params.c, | |
res1.fit_result.params.c, rtol=1e-8) | |
assert not np.allclose(res2.null_distribution, | |
res1.null_distribution, rtol=1e-8) | |
assert_equal(res2.fit_result.params.scale, 13.73) | |
assert_equal(res2.fit_result.params.loc, -13.85) | |
# If we set all parameters as fit_params and known_params, | |
# they're all fixed to those values, but the null distribution | |
# varies. | |
fit_params = {'c': 13.4, 'scale': 13.73} | |
rng = np.random.default_rng(9121950977643805391) | |
res3 = goodness_of_fit(stats.weibull_min, x, n_mc_samples=2, | |
guessed_params=guessed_params, | |
fit_params=fit_params, | |
known_params=known_params, random_state=rng) | |
assert_equal(res3.fit_result.params.c, 13.4) | |
assert_equal(res3.fit_result.params.scale, 13.73) | |
assert_equal(res3.fit_result.params.loc, -13.85) | |
assert not np.allclose(res3.null_distribution, res1.null_distribution) | |
def test_custom_statistic(self): | |
# Test support for custom statistic function. | |
# References: | |
# [1] Pyke, R. (1965). "Spacings". Journal of the Royal Statistical | |
# Society: Series B (Methodological), 27(3): 395-436. | |
# [2] Burrows, P. M. (1979). "Selected Percentage Points of | |
# Greenwood's Statistics". Journal of the Royal Statistical | |
# Society. Series A (General), 142(2): 256-258. | |
# Use the Greenwood statistic for illustration; see [1, p.402]. | |
def greenwood(dist, data, *, axis): | |
x = np.sort(data, axis=axis) | |
y = dist.cdf(x) | |
d = np.diff(y, axis=axis, prepend=0, append=1) | |
return np.sum(d ** 2, axis=axis) | |
# Run the Monte Carlo test with sample size = 5 on a fully specified | |
# null distribution, and compare the simulated quantiles to the exact | |
# ones given in [2, Table 1, column (n = 5)]. | |
rng = np.random.default_rng(9121950977643805391) | |
data = stats.expon.rvs(size=5, random_state=rng) | |
result = goodness_of_fit(stats.expon, data, | |
known_params={'loc': 0, 'scale': 1}, | |
statistic=greenwood, random_state=rng) | |
p = [.01, .05, .1, .2, .3, .4, .5, .6, .7, .8, .9, .95, .99] | |
exact_quantiles = [ | |
.183863, .199403, .210088, .226040, .239947, .253677, .268422, | |
.285293, .306002, .334447, .382972, .432049, .547468] | |
simulated_quantiles = np.quantile(result.null_distribution, p) | |
assert_allclose(simulated_quantiles, exact_quantiles, atol=0.005) | |
class TestFitResult: | |
def test_plot_iv(self): | |
rng = np.random.default_rng(1769658657308472721) | |
data = stats.norm.rvs(0, 1, size=100, random_state=rng) | |
def optimizer(*args, **kwargs): | |
return differential_evolution(*args, **kwargs, seed=rng) | |
bounds = [(0, 30), (0, 1)] | |
res = stats.fit(stats.norm, data, bounds, optimizer=optimizer) | |
try: | |
import matplotlib # noqa: F401 | |
message = r"`plot_type` must be one of \{'..." | |
with pytest.raises(ValueError, match=message): | |
res.plot(plot_type='llama') | |
except (ModuleNotFoundError, ImportError): | |
# Avoid trying to call MPL with numpy 2.0-dev, because that fails | |
# too often due to ABI mismatches and is hard to avoid. This test | |
# will work fine again once MPL has done a 2.0-compatible release. | |
if not np.__version__.startswith('2.0.0.dev0'): | |
message = r"matplotlib must be installed to use method `plot`." | |
with pytest.raises(ModuleNotFoundError, match=message): | |
res.plot(plot_type='llama') | |