peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/stats
/tests
/test_kdeoth.py
from scipy import stats, linalg, integrate | |
import numpy as np | |
from numpy.testing import (assert_almost_equal, assert_, assert_equal, | |
assert_array_almost_equal, | |
assert_array_almost_equal_nulp, assert_allclose) | |
import pytest | |
from pytest import raises as assert_raises | |
def test_kde_1d(): | |
#some basic tests comparing to normal distribution | |
np.random.seed(8765678) | |
n_basesample = 500 | |
xn = np.random.randn(n_basesample) | |
xnmean = xn.mean() | |
xnstd = xn.std(ddof=1) | |
# get kde for original sample | |
gkde = stats.gaussian_kde(xn) | |
# evaluate the density function for the kde for some points | |
xs = np.linspace(-7,7,501) | |
kdepdf = gkde.evaluate(xs) | |
normpdf = stats.norm.pdf(xs, loc=xnmean, scale=xnstd) | |
intervall = xs[1] - xs[0] | |
assert_(np.sum((kdepdf - normpdf)**2)*intervall < 0.01) | |
prob1 = gkde.integrate_box_1d(xnmean, np.inf) | |
prob2 = gkde.integrate_box_1d(-np.inf, xnmean) | |
assert_almost_equal(prob1, 0.5, decimal=1) | |
assert_almost_equal(prob2, 0.5, decimal=1) | |
assert_almost_equal(gkde.integrate_box(xnmean, np.inf), prob1, decimal=13) | |
assert_almost_equal(gkde.integrate_box(-np.inf, xnmean), prob2, decimal=13) | |
assert_almost_equal(gkde.integrate_kde(gkde), | |
(kdepdf**2).sum()*intervall, decimal=2) | |
assert_almost_equal(gkde.integrate_gaussian(xnmean, xnstd**2), | |
(kdepdf*normpdf).sum()*intervall, decimal=2) | |
def test_kde_1d_weighted(): | |
#some basic tests comparing to normal distribution | |
np.random.seed(8765678) | |
n_basesample = 500 | |
xn = np.random.randn(n_basesample) | |
wn = np.random.rand(n_basesample) | |
xnmean = np.average(xn, weights=wn) | |
xnstd = np.sqrt(np.average((xn-xnmean)**2, weights=wn)) | |
# get kde for original sample | |
gkde = stats.gaussian_kde(xn, weights=wn) | |
# evaluate the density function for the kde for some points | |
xs = np.linspace(-7,7,501) | |
kdepdf = gkde.evaluate(xs) | |
normpdf = stats.norm.pdf(xs, loc=xnmean, scale=xnstd) | |
intervall = xs[1] - xs[0] | |
assert_(np.sum((kdepdf - normpdf)**2)*intervall < 0.01) | |
prob1 = gkde.integrate_box_1d(xnmean, np.inf) | |
prob2 = gkde.integrate_box_1d(-np.inf, xnmean) | |
assert_almost_equal(prob1, 0.5, decimal=1) | |
assert_almost_equal(prob2, 0.5, decimal=1) | |
assert_almost_equal(gkde.integrate_box(xnmean, np.inf), prob1, decimal=13) | |
assert_almost_equal(gkde.integrate_box(-np.inf, xnmean), prob2, decimal=13) | |
assert_almost_equal(gkde.integrate_kde(gkde), | |
(kdepdf**2).sum()*intervall, decimal=2) | |
assert_almost_equal(gkde.integrate_gaussian(xnmean, xnstd**2), | |
(kdepdf*normpdf).sum()*intervall, decimal=2) | |
def test_kde_2d(): | |
#some basic tests comparing to normal distribution | |
np.random.seed(8765678) | |
n_basesample = 500 | |
mean = np.array([1.0, 3.0]) | |
covariance = np.array([[1.0, 2.0], [2.0, 6.0]]) | |
# Need transpose (shape (2, 500)) for kde | |
xn = np.random.multivariate_normal(mean, covariance, size=n_basesample).T | |
# get kde for original sample | |
gkde = stats.gaussian_kde(xn) | |
# evaluate the density function for the kde for some points | |
x, y = np.mgrid[-7:7:500j, -7:7:500j] | |
grid_coords = np.vstack([x.ravel(), y.ravel()]) | |
kdepdf = gkde.evaluate(grid_coords) | |
kdepdf = kdepdf.reshape(500, 500) | |
normpdf = stats.multivariate_normal.pdf(np.dstack([x, y]), | |
mean=mean, cov=covariance) | |
intervall = y.ravel()[1] - y.ravel()[0] | |
assert_(np.sum((kdepdf - normpdf)**2) * (intervall**2) < 0.01) | |
small = -1e100 | |
large = 1e100 | |
prob1 = gkde.integrate_box([small, mean[1]], [large, large]) | |
prob2 = gkde.integrate_box([small, small], [large, mean[1]]) | |
assert_almost_equal(prob1, 0.5, decimal=1) | |
assert_almost_equal(prob2, 0.5, decimal=1) | |
assert_almost_equal(gkde.integrate_kde(gkde), | |
(kdepdf**2).sum()*(intervall**2), decimal=2) | |
assert_almost_equal(gkde.integrate_gaussian(mean, covariance), | |
(kdepdf*normpdf).sum()*(intervall**2), decimal=2) | |
def test_kde_2d_weighted(): | |
#some basic tests comparing to normal distribution | |
np.random.seed(8765678) | |
n_basesample = 500 | |
mean = np.array([1.0, 3.0]) | |
covariance = np.array([[1.0, 2.0], [2.0, 6.0]]) | |
# Need transpose (shape (2, 500)) for kde | |
xn = np.random.multivariate_normal(mean, covariance, size=n_basesample).T | |
wn = np.random.rand(n_basesample) | |
# get kde for original sample | |
gkde = stats.gaussian_kde(xn, weights=wn) | |
# evaluate the density function for the kde for some points | |
x, y = np.mgrid[-7:7:500j, -7:7:500j] | |
grid_coords = np.vstack([x.ravel(), y.ravel()]) | |
kdepdf = gkde.evaluate(grid_coords) | |
kdepdf = kdepdf.reshape(500, 500) | |
normpdf = stats.multivariate_normal.pdf(np.dstack([x, y]), | |
mean=mean, cov=covariance) | |
intervall = y.ravel()[1] - y.ravel()[0] | |
assert_(np.sum((kdepdf - normpdf)**2) * (intervall**2) < 0.01) | |
small = -1e100 | |
large = 1e100 | |
prob1 = gkde.integrate_box([small, mean[1]], [large, large]) | |
prob2 = gkde.integrate_box([small, small], [large, mean[1]]) | |
assert_almost_equal(prob1, 0.5, decimal=1) | |
assert_almost_equal(prob2, 0.5, decimal=1) | |
assert_almost_equal(gkde.integrate_kde(gkde), | |
(kdepdf**2).sum()*(intervall**2), decimal=2) | |
assert_almost_equal(gkde.integrate_gaussian(mean, covariance), | |
(kdepdf*normpdf).sum()*(intervall**2), decimal=2) | |
def test_kde_bandwidth_method(): | |
def scotts_factor(kde_obj): | |
"""Same as default, just check that it works.""" | |
return np.power(kde_obj.n, -1./(kde_obj.d+4)) | |
np.random.seed(8765678) | |
n_basesample = 50 | |
xn = np.random.randn(n_basesample) | |
# Default | |
gkde = stats.gaussian_kde(xn) | |
# Supply a callable | |
gkde2 = stats.gaussian_kde(xn, bw_method=scotts_factor) | |
# Supply a scalar | |
gkde3 = stats.gaussian_kde(xn, bw_method=gkde.factor) | |
xs = np.linspace(-7,7,51) | |
kdepdf = gkde.evaluate(xs) | |
kdepdf2 = gkde2.evaluate(xs) | |
assert_almost_equal(kdepdf, kdepdf2) | |
kdepdf3 = gkde3.evaluate(xs) | |
assert_almost_equal(kdepdf, kdepdf3) | |
assert_raises(ValueError, stats.gaussian_kde, xn, bw_method='wrongstring') | |
def test_kde_bandwidth_method_weighted(): | |
def scotts_factor(kde_obj): | |
"""Same as default, just check that it works.""" | |
return np.power(kde_obj.neff, -1./(kde_obj.d+4)) | |
np.random.seed(8765678) | |
n_basesample = 50 | |
xn = np.random.randn(n_basesample) | |
# Default | |
gkde = stats.gaussian_kde(xn) | |
# Supply a callable | |
gkde2 = stats.gaussian_kde(xn, bw_method=scotts_factor) | |
# Supply a scalar | |
gkde3 = stats.gaussian_kde(xn, bw_method=gkde.factor) | |
xs = np.linspace(-7,7,51) | |
kdepdf = gkde.evaluate(xs) | |
kdepdf2 = gkde2.evaluate(xs) | |
assert_almost_equal(kdepdf, kdepdf2) | |
kdepdf3 = gkde3.evaluate(xs) | |
assert_almost_equal(kdepdf, kdepdf3) | |
assert_raises(ValueError, stats.gaussian_kde, xn, bw_method='wrongstring') | |
# Subclasses that should stay working (extracted from various sources). | |
# Unfortunately the earlier design of gaussian_kde made it necessary for users | |
# to create these kinds of subclasses, or call _compute_covariance() directly. | |
class _kde_subclass1(stats.gaussian_kde): | |
def __init__(self, dataset): | |
self.dataset = np.atleast_2d(dataset) | |
self.d, self.n = self.dataset.shape | |
self.covariance_factor = self.scotts_factor | |
self._compute_covariance() | |
class _kde_subclass2(stats.gaussian_kde): | |
def __init__(self, dataset): | |
self.covariance_factor = self.scotts_factor | |
super().__init__(dataset) | |
class _kde_subclass4(stats.gaussian_kde): | |
def covariance_factor(self): | |
return 0.5 * self.silverman_factor() | |
def test_gaussian_kde_subclassing(): | |
x1 = np.array([-7, -5, 1, 4, 5], dtype=float) | |
xs = np.linspace(-10, 10, num=50) | |
# gaussian_kde itself | |
kde = stats.gaussian_kde(x1) | |
ys = kde(xs) | |
# subclass 1 | |
kde1 = _kde_subclass1(x1) | |
y1 = kde1(xs) | |
assert_array_almost_equal_nulp(ys, y1, nulp=10) | |
# subclass 2 | |
kde2 = _kde_subclass2(x1) | |
y2 = kde2(xs) | |
assert_array_almost_equal_nulp(ys, y2, nulp=10) | |
# subclass 3 was removed because we have no obligation to maintain support | |
# for user invocation of private methods | |
# subclass 4 | |
kde4 = _kde_subclass4(x1) | |
y4 = kde4(x1) | |
y_expected = [0.06292987, 0.06346938, 0.05860291, 0.08657652, 0.07904017] | |
assert_array_almost_equal(y_expected, y4, decimal=6) | |
# Not a subclass, but check for use of _compute_covariance() | |
kde5 = kde | |
kde5.covariance_factor = lambda: kde.factor | |
kde5._compute_covariance() | |
y5 = kde5(xs) | |
assert_array_almost_equal_nulp(ys, y5, nulp=10) | |
def test_gaussian_kde_covariance_caching(): | |
x1 = np.array([-7, -5, 1, 4, 5], dtype=float) | |
xs = np.linspace(-10, 10, num=5) | |
# These expected values are from scipy 0.10, before some changes to | |
# gaussian_kde. They were not compared with any external reference. | |
y_expected = [0.02463386, 0.04689208, 0.05395444, 0.05337754, 0.01664475] | |
# Set the bandwidth, then reset it to the default. | |
kde = stats.gaussian_kde(x1) | |
kde.set_bandwidth(bw_method=0.5) | |
kde.set_bandwidth(bw_method='scott') | |
y2 = kde(xs) | |
assert_array_almost_equal(y_expected, y2, decimal=7) | |
def test_gaussian_kde_monkeypatch(): | |
"""Ugly, but people may rely on this. See scipy pull request 123, | |
specifically the linked ML thread "Width of the Gaussian in stats.kde". | |
If it is necessary to break this later on, that is to be discussed on ML. | |
""" | |
x1 = np.array([-7, -5, 1, 4, 5], dtype=float) | |
xs = np.linspace(-10, 10, num=50) | |
# The old monkeypatched version to get at Silverman's Rule. | |
kde = stats.gaussian_kde(x1) | |
kde.covariance_factor = kde.silverman_factor | |
kde._compute_covariance() | |
y1 = kde(xs) | |
# The new saner version. | |
kde2 = stats.gaussian_kde(x1, bw_method='silverman') | |
y2 = kde2(xs) | |
assert_array_almost_equal_nulp(y1, y2, nulp=10) | |
def test_kde_integer_input(): | |
"""Regression test for #1181.""" | |
x1 = np.arange(5) | |
kde = stats.gaussian_kde(x1) | |
y_expected = [0.13480721, 0.18222869, 0.19514935, 0.18222869, 0.13480721] | |
assert_array_almost_equal(kde(x1), y_expected, decimal=6) | |
_ftypes = ['float32', 'float64', 'float96', 'float128', 'int32', 'int64'] | |
def test_kde_output_dtype(dtype, bw_type): | |
# Check whether the datatypes are available | |
dtype = getattr(np, dtype, None) | |
if bw_type in ["scott", "silverman"]: | |
bw = bw_type | |
else: | |
bw_type = getattr(np, bw_type, None) | |
bw = bw_type(3) if bw_type else None | |
if any(dt is None for dt in [dtype, bw]): | |
pytest.skip() | |
weights = np.arange(5, dtype=dtype) | |
dataset = np.arange(5, dtype=dtype) | |
k = stats.gaussian_kde(dataset, bw_method=bw, weights=weights) | |
points = np.arange(5, dtype=dtype) | |
result = k(points) | |
# weights are always cast to float64 | |
assert result.dtype == np.result_type(dataset, points, np.float64(weights), | |
k.factor) | |
def test_pdf_logpdf_validation(): | |
rng = np.random.default_rng(64202298293133848336925499069837723291) | |
xn = rng.standard_normal((2, 10)) | |
gkde = stats.gaussian_kde(xn) | |
xs = rng.standard_normal((3, 10)) | |
msg = "points have dimension 3, dataset has dimension 2" | |
with pytest.raises(ValueError, match=msg): | |
gkde.logpdf(xs) | |
def test_pdf_logpdf(): | |
np.random.seed(1) | |
n_basesample = 50 | |
xn = np.random.randn(n_basesample) | |
# Default | |
gkde = stats.gaussian_kde(xn) | |
xs = np.linspace(-15, 12, 25) | |
pdf = gkde.evaluate(xs) | |
pdf2 = gkde.pdf(xs) | |
assert_almost_equal(pdf, pdf2, decimal=12) | |
logpdf = np.log(pdf) | |
logpdf2 = gkde.logpdf(xs) | |
assert_almost_equal(logpdf, logpdf2, decimal=12) | |
# There are more points than data | |
gkde = stats.gaussian_kde(xs) | |
pdf = np.log(gkde.evaluate(xn)) | |
pdf2 = gkde.logpdf(xn) | |
assert_almost_equal(pdf, pdf2, decimal=12) | |
def test_pdf_logpdf_weighted(): | |
np.random.seed(1) | |
n_basesample = 50 | |
xn = np.random.randn(n_basesample) | |
wn = np.random.rand(n_basesample) | |
# Default | |
gkde = stats.gaussian_kde(xn, weights=wn) | |
xs = np.linspace(-15, 12, 25) | |
pdf = gkde.evaluate(xs) | |
pdf2 = gkde.pdf(xs) | |
assert_almost_equal(pdf, pdf2, decimal=12) | |
logpdf = np.log(pdf) | |
logpdf2 = gkde.logpdf(xs) | |
assert_almost_equal(logpdf, logpdf2, decimal=12) | |
# There are more points than data | |
gkde = stats.gaussian_kde(xs, weights=np.random.rand(len(xs))) | |
pdf = np.log(gkde.evaluate(xn)) | |
pdf2 = gkde.logpdf(xn) | |
assert_almost_equal(pdf, pdf2, decimal=12) | |
def test_marginal_1_axis(): | |
rng = np.random.default_rng(6111799263660870475) | |
n_data = 50 | |
n_dim = 10 | |
dataset = rng.normal(size=(n_dim, n_data)) | |
points = rng.normal(size=(n_dim, 3)) | |
dimensions = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) # dimensions to keep | |
kde = stats.gaussian_kde(dataset) | |
marginal = kde.marginal(dimensions) | |
pdf = marginal.pdf(points[dimensions]) | |
def marginal_pdf_single(point): | |
def f(x): | |
x = np.concatenate(([x], point[dimensions])) | |
return kde.pdf(x)[0] | |
return integrate.quad(f, -np.inf, np.inf)[0] | |
def marginal_pdf(points): | |
return np.apply_along_axis(marginal_pdf_single, axis=0, arr=points) | |
ref = marginal_pdf(points) | |
assert_allclose(pdf, ref, rtol=1e-6) | |
def test_marginal_2_axis(): | |
rng = np.random.default_rng(6111799263660870475) | |
n_data = 30 | |
n_dim = 4 | |
dataset = rng.normal(size=(n_dim, n_data)) | |
points = rng.normal(size=(n_dim, 3)) | |
dimensions = np.array([1, 3]) # dimensions to keep | |
kde = stats.gaussian_kde(dataset) | |
marginal = kde.marginal(dimensions) | |
pdf = marginal.pdf(points[dimensions]) | |
def marginal_pdf(points): | |
def marginal_pdf_single(point): | |
def f(y, x): | |
w, z = point[dimensions] | |
x = np.array([x, w, y, z]) | |
return kde.pdf(x)[0] | |
return integrate.dblquad(f, -np.inf, np.inf, -np.inf, np.inf)[0] | |
return np.apply_along_axis(marginal_pdf_single, axis=0, arr=points) | |
ref = marginal_pdf(points) | |
assert_allclose(pdf, ref, rtol=1e-6) | |
def test_marginal_iv(): | |
# test input validation | |
rng = np.random.default_rng(6111799263660870475) | |
n_data = 30 | |
n_dim = 4 | |
dataset = rng.normal(size=(n_dim, n_data)) | |
points = rng.normal(size=(n_dim, 3)) | |
kde = stats.gaussian_kde(dataset) | |
# check that positive and negative indices are equivalent | |
dimensions1 = [-1, 1] | |
marginal1 = kde.marginal(dimensions1) | |
pdf1 = marginal1.pdf(points[dimensions1]) | |
dimensions2 = [3, -3] | |
marginal2 = kde.marginal(dimensions2) | |
pdf2 = marginal2.pdf(points[dimensions2]) | |
assert_equal(pdf1, pdf2) | |
# IV for non-integer dimensions | |
message = "Elements of `dimensions` must be integers..." | |
with pytest.raises(ValueError, match=message): | |
kde.marginal([1, 2.5]) | |
# IV for uniquenes | |
message = "All elements of `dimensions` must be unique." | |
with pytest.raises(ValueError, match=message): | |
kde.marginal([1, 2, 2]) | |
# IV for non-integer dimensions | |
message = (r"Dimensions \[-5 6\] are invalid for a distribution in 4...") | |
with pytest.raises(ValueError, match=message): | |
kde.marginal([1, -5, 6]) | |
def test_logpdf_overflow(): | |
# regression test for gh-12988; testing against linalg instability for | |
# very high dimensionality kde | |
np.random.seed(1) | |
n_dimensions = 2500 | |
n_samples = 5000 | |
xn = np.array([np.random.randn(n_samples) + (n) for n in range( | |
0, n_dimensions)]) | |
# Default | |
gkde = stats.gaussian_kde(xn) | |
logpdf = gkde.logpdf(np.arange(0, n_dimensions)) | |
np.testing.assert_equal(np.isneginf(logpdf[0]), False) | |
np.testing.assert_equal(np.isnan(logpdf[0]), False) | |
def test_weights_intact(): | |
# regression test for gh-9709: weights are not modified | |
np.random.seed(12345) | |
vals = np.random.lognormal(size=100) | |
weights = np.random.choice([1.0, 10.0, 100], size=vals.size) | |
orig_weights = weights.copy() | |
stats.gaussian_kde(np.log10(vals), weights=weights) | |
assert_allclose(weights, orig_weights, atol=1e-14, rtol=1e-14) | |
def test_weights_integer(): | |
# integer weights are OK, cf gh-9709 (comment) | |
np.random.seed(12345) | |
values = [0.2, 13.5, 21.0, 75.0, 99.0] | |
weights = [1, 2, 4, 8, 16] # a list of integers | |
pdf_i = stats.gaussian_kde(values, weights=weights) | |
pdf_f = stats.gaussian_kde(values, weights=np.float64(weights)) | |
xn = [0.3, 11, 88] | |
assert_allclose(pdf_i.evaluate(xn), | |
pdf_f.evaluate(xn), atol=1e-14, rtol=1e-14) | |
def test_seed(): | |
# Test the seed option of the resample method | |
def test_seed_sub(gkde_trail): | |
n_sample = 200 | |
# The results should be different without using seed | |
samp1 = gkde_trail.resample(n_sample) | |
samp2 = gkde_trail.resample(n_sample) | |
assert_raises( | |
AssertionError, assert_allclose, samp1, samp2, atol=1e-13 | |
) | |
# Use integer seed | |
seed = 831 | |
samp1 = gkde_trail.resample(n_sample, seed=seed) | |
samp2 = gkde_trail.resample(n_sample, seed=seed) | |
assert_allclose(samp1, samp2, atol=1e-13) | |
# Use RandomState | |
rstate1 = np.random.RandomState(seed=138) | |
samp1 = gkde_trail.resample(n_sample, seed=rstate1) | |
rstate2 = np.random.RandomState(seed=138) | |
samp2 = gkde_trail.resample(n_sample, seed=rstate2) | |
assert_allclose(samp1, samp2, atol=1e-13) | |
# check that np.random.Generator can be used (numpy >= 1.17) | |
if hasattr(np.random, 'default_rng'): | |
# obtain a np.random.Generator object | |
rng = np.random.default_rng(1234) | |
gkde_trail.resample(n_sample, seed=rng) | |
np.random.seed(8765678) | |
n_basesample = 500 | |
wn = np.random.rand(n_basesample) | |
# Test 1D case | |
xn_1d = np.random.randn(n_basesample) | |
gkde_1d = stats.gaussian_kde(xn_1d) | |
test_seed_sub(gkde_1d) | |
gkde_1d_weighted = stats.gaussian_kde(xn_1d, weights=wn) | |
test_seed_sub(gkde_1d_weighted) | |
# Test 2D case | |
mean = np.array([1.0, 3.0]) | |
covariance = np.array([[1.0, 2.0], [2.0, 6.0]]) | |
xn_2d = np.random.multivariate_normal(mean, covariance, size=n_basesample).T | |
gkde_2d = stats.gaussian_kde(xn_2d) | |
test_seed_sub(gkde_2d) | |
gkde_2d_weighted = stats.gaussian_kde(xn_2d, weights=wn) | |
test_seed_sub(gkde_2d_weighted) | |
def test_singular_data_covariance_gh10205(): | |
# When the data lie in a lower-dimensional subspace and this causes | |
# and exception, check that the error message is informative. | |
rng = np.random.default_rng(2321583144339784787) | |
mu = np.array([1, 10, 20]) | |
sigma = np.array([[4, 10, 0], [10, 25, 0], [0, 0, 100]]) | |
data = rng.multivariate_normal(mu, sigma, 1000) | |
try: # doesn't raise any error on some platforms, and that's OK | |
stats.gaussian_kde(data.T) | |
except linalg.LinAlgError: | |
msg = "The data appears to lie in a lower-dimensional subspace..." | |
with assert_raises(linalg.LinAlgError, match=msg): | |
stats.gaussian_kde(data.T) | |
def test_fewer_points_than_dimensions_gh17436(): | |
# When the number of points is fewer than the number of dimensions, the | |
# the covariance matrix would be singular, and the exception tested in | |
# test_singular_data_covariance_gh10205 would occur. However, sometimes | |
# this occurs when the user passes in the transpose of what `gaussian_kde` | |
# expects. This can result in a huge covariance matrix, so bail early. | |
rng = np.random.default_rng(2046127537594925772) | |
rvs = rng.multivariate_normal(np.zeros(3), np.eye(3), size=5) | |
message = "Number of dimensions is greater than number of samples..." | |
with pytest.raises(ValueError, match=message): | |
stats.gaussian_kde(rvs) | |