peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/stats
/tests
/test_multivariate.py
""" | |
Test functions for multivariate normal distributions. | |
""" | |
import pickle | |
from numpy.testing import (assert_allclose, assert_almost_equal, | |
assert_array_almost_equal, assert_equal, | |
assert_array_less, assert_) | |
import pytest | |
from pytest import raises as assert_raises | |
from .test_continuous_basic import check_distribution_rvs | |
import numpy | |
import numpy as np | |
import scipy.linalg | |
from scipy.stats._multivariate import (_PSD, | |
_lnB, | |
multivariate_normal_frozen) | |
from scipy.stats import (multivariate_normal, multivariate_hypergeom, | |
matrix_normal, special_ortho_group, ortho_group, | |
random_correlation, unitary_group, dirichlet, | |
beta, wishart, multinomial, invwishart, chi2, | |
invgamma, norm, uniform, ks_2samp, kstest, binom, | |
hypergeom, multivariate_t, cauchy, normaltest, | |
random_table, uniform_direction, vonmises_fisher, | |
dirichlet_multinomial, vonmises) | |
from scipy.stats import _covariance, Covariance | |
from scipy import stats | |
from scipy.integrate import romb, qmc_quad, tplquad | |
from scipy.special import multigammaln | |
from scipy._lib._pep440 import Version | |
from .common_tests import check_random_state_property | |
from .data._mvt import _qsimvtv | |
from unittest.mock import patch | |
def assert_close(res, ref, *args, **kwargs): | |
res, ref = np.asarray(res), np.asarray(ref) | |
assert_allclose(res, ref, *args, **kwargs) | |
assert_equal(res.shape, ref.shape) | |
class TestCovariance: | |
def test_input_validation(self): | |
message = "The input `precision` must be a square, two-dimensional..." | |
with pytest.raises(ValueError, match=message): | |
_covariance.CovViaPrecision(np.ones(2)) | |
message = "`precision.shape` must equal `covariance.shape`." | |
with pytest.raises(ValueError, match=message): | |
_covariance.CovViaPrecision(np.eye(3), covariance=np.eye(2)) | |
message = "The input `diagonal` must be a one-dimensional array..." | |
with pytest.raises(ValueError, match=message): | |
_covariance.CovViaDiagonal("alpaca") | |
message = "The input `cholesky` must be a square, two-dimensional..." | |
with pytest.raises(ValueError, match=message): | |
_covariance.CovViaCholesky(np.ones(2)) | |
message = "The input `eigenvalues` must be a one-dimensional..." | |
with pytest.raises(ValueError, match=message): | |
_covariance.CovViaEigendecomposition(("alpaca", np.eye(2))) | |
message = "The input `eigenvectors` must be a square..." | |
with pytest.raises(ValueError, match=message): | |
_covariance.CovViaEigendecomposition((np.ones(2), "alpaca")) | |
message = "The shapes of `eigenvalues` and `eigenvectors` must be..." | |
with pytest.raises(ValueError, match=message): | |
_covariance.CovViaEigendecomposition(([1, 2, 3], np.eye(2))) | |
_covariance_preprocessing = {"Diagonal": np.diag, | |
"Precision": np.linalg.inv, | |
"Cholesky": np.linalg.cholesky, | |
"Eigendecomposition": np.linalg.eigh, | |
"PSD": lambda x: | |
_PSD(x, allow_singular=True)} | |
_all_covariance_types = np.array(list(_covariance_preprocessing)) | |
_matrices = {"diagonal full rank": np.diag([1, 2, 3]), | |
"general full rank": [[5, 1, 3], [1, 6, 4], [3, 4, 7]], | |
"diagonal singular": np.diag([1, 0, 3]), | |
"general singular": [[5, -1, 0], [-1, 5, 0], [0, 0, 0]]} | |
_cov_types = {"diagonal full rank": _all_covariance_types, | |
"general full rank": _all_covariance_types[1:], | |
"diagonal singular": _all_covariance_types[[0, -2, -1]], | |
"general singular": _all_covariance_types[-2:]} | |
def test_factories(self, cov_type_name): | |
A = np.diag([1, 2, 3]) | |
x = [-4, 2, 5] | |
cov_type = getattr(_covariance, f"CovVia{cov_type_name}") | |
preprocessing = self._covariance_preprocessing[cov_type_name] | |
factory = getattr(Covariance, f"from_{cov_type_name.lower()}") | |
res = factory(preprocessing(A)) | |
ref = cov_type(preprocessing(A)) | |
assert type(res) == type(ref) | |
assert_allclose(res.whiten(x), ref.whiten(x)) | |
def test_covariance(self, matrix_type, cov_type_name): | |
message = (f"CovVia{cov_type_name} does not support {matrix_type} " | |
"matrices") | |
if cov_type_name not in self._cov_types[matrix_type]: | |
pytest.skip(message) | |
A = self._matrices[matrix_type] | |
cov_type = getattr(_covariance, f"CovVia{cov_type_name}") | |
preprocessing = self._covariance_preprocessing[cov_type_name] | |
psd = _PSD(A, allow_singular=True) | |
# test properties | |
cov_object = cov_type(preprocessing(A)) | |
assert_close(cov_object.log_pdet, psd.log_pdet) | |
assert_equal(cov_object.rank, psd.rank) | |
assert_equal(cov_object.shape, np.asarray(A).shape) | |
assert_close(cov_object.covariance, np.asarray(A)) | |
# test whitening/coloring 1D x | |
rng = np.random.default_rng(5292808890472453840) | |
x = rng.random(size=3) | |
res = cov_object.whiten(x) | |
ref = x @ psd.U | |
# res != ref in general; but res @ res == ref @ ref | |
assert_close(res @ res, ref @ ref) | |
if hasattr(cov_object, "_colorize") and "singular" not in matrix_type: | |
# CovViaPSD does not have _colorize | |
assert_close(cov_object.colorize(res), x) | |
# test whitening/coloring 3D x | |
x = rng.random(size=(2, 4, 3)) | |
res = cov_object.whiten(x) | |
ref = x @ psd.U | |
assert_close((res**2).sum(axis=-1), (ref**2).sum(axis=-1)) | |
if hasattr(cov_object, "_colorize") and "singular" not in matrix_type: | |
assert_close(cov_object.colorize(res), x) | |
# gh-19197 reported that multivariate normal `rvs` produced incorrect | |
# results when a singular Covariance object was produce using | |
# `from_eigenvalues`. This was due to an issue in `colorize` with | |
# singular covariance matrices. Check this edge case, which is skipped | |
# in the previous tests. | |
if hasattr(cov_object, "_colorize"): | |
res = cov_object.colorize(np.eye(len(A))) | |
assert_close(res.T @ res, A) | |
def test_mvn_with_covariance(self, size, matrix_type, cov_type_name): | |
message = (f"CovVia{cov_type_name} does not support {matrix_type} " | |
"matrices") | |
if cov_type_name not in self._cov_types[matrix_type]: | |
pytest.skip(message) | |
A = self._matrices[matrix_type] | |
cov_type = getattr(_covariance, f"CovVia{cov_type_name}") | |
preprocessing = self._covariance_preprocessing[cov_type_name] | |
mean = [0.1, 0.2, 0.3] | |
cov_object = cov_type(preprocessing(A)) | |
mvn = multivariate_normal | |
dist0 = multivariate_normal(mean, A, allow_singular=True) | |
dist1 = multivariate_normal(mean, cov_object, allow_singular=True) | |
rng = np.random.default_rng(5292808890472453840) | |
x = rng.multivariate_normal(mean, A, size=size) | |
rng = np.random.default_rng(5292808890472453840) | |
x1 = mvn.rvs(mean, cov_object, size=size, random_state=rng) | |
rng = np.random.default_rng(5292808890472453840) | |
x2 = mvn(mean, cov_object, seed=rng).rvs(size=size) | |
if isinstance(cov_object, _covariance.CovViaPSD): | |
assert_close(x1, np.squeeze(x)) # for backward compatibility | |
assert_close(x2, np.squeeze(x)) | |
else: | |
assert_equal(x1.shape, x.shape) | |
assert_equal(x2.shape, x.shape) | |
assert_close(x2, x1) | |
assert_close(mvn.pdf(x, mean, cov_object), dist0.pdf(x)) | |
assert_close(dist1.pdf(x), dist0.pdf(x)) | |
assert_close(mvn.logpdf(x, mean, cov_object), dist0.logpdf(x)) | |
assert_close(dist1.logpdf(x), dist0.logpdf(x)) | |
assert_close(mvn.entropy(mean, cov_object), dist0.entropy()) | |
assert_close(dist1.entropy(), dist0.entropy()) | |
def test_mvn_with_covariance_cdf(self, size, cov_type_name): | |
# This is split from the test above because it's slow to be running | |
# with all matrix types, and there's no need because _mvn.mvnun | |
# does the calculation. All Covariance needs to do is pass is | |
# provide the `covariance` attribute. | |
matrix_type = "diagonal full rank" | |
A = self._matrices[matrix_type] | |
cov_type = getattr(_covariance, f"CovVia{cov_type_name}") | |
preprocessing = self._covariance_preprocessing[cov_type_name] | |
mean = [0.1, 0.2, 0.3] | |
cov_object = cov_type(preprocessing(A)) | |
mvn = multivariate_normal | |
dist0 = multivariate_normal(mean, A, allow_singular=True) | |
dist1 = multivariate_normal(mean, cov_object, allow_singular=True) | |
rng = np.random.default_rng(5292808890472453840) | |
x = rng.multivariate_normal(mean, A, size=size) | |
assert_close(mvn.cdf(x, mean, cov_object), dist0.cdf(x)) | |
assert_close(dist1.cdf(x), dist0.cdf(x)) | |
assert_close(mvn.logcdf(x, mean, cov_object), dist0.logcdf(x)) | |
assert_close(dist1.logcdf(x), dist0.logcdf(x)) | |
def test_covariance_instantiation(self): | |
message = "The `Covariance` class cannot be instantiated directly." | |
with pytest.raises(NotImplementedError, match=message): | |
Covariance() | |
# matrix not PSD | |
def test_gh9942(self): | |
# Originally there was a mistake in the `multivariate_normal_frozen` | |
# `rvs` method that caused all covariance objects to be processed as | |
# a `_CovViaPSD`. Ensure that this is resolved. | |
A = np.diag([1, 2, -1e-8]) | |
n = A.shape[0] | |
mean = np.zeros(n) | |
# Error if the matrix is processed as a `_CovViaPSD` | |
with pytest.raises(ValueError, match="The input matrix must be..."): | |
multivariate_normal(mean, A).rvs() | |
# No error if it is provided as a `CovViaEigendecomposition` | |
seed = 3562050283508273023 | |
rng1 = np.random.default_rng(seed) | |
rng2 = np.random.default_rng(seed) | |
cov = Covariance.from_eigendecomposition(np.linalg.eigh(A)) | |
rv = multivariate_normal(mean, cov) | |
res = rv.rvs(random_state=rng1) | |
ref = multivariate_normal.rvs(mean, cov, random_state=rng2) | |
assert_equal(res, ref) | |
def test_gh19197(self): | |
# gh-19197 reported that multivariate normal `rvs` produced incorrect | |
# results when a singular Covariance object was produce using | |
# `from_eigenvalues`. Check that this specific issue is resolved; | |
# a more general test is included in `test_covariance`. | |
mean = np.ones(2) | |
cov = Covariance.from_eigendecomposition((np.zeros(2), np.eye(2))) | |
dist = scipy.stats.multivariate_normal(mean=mean, cov=cov) | |
rvs = dist.rvs(size=None) | |
assert_equal(rvs, mean) | |
cov = scipy.stats.Covariance.from_eigendecomposition( | |
(np.array([1., 0.]), np.array([[1., 0.], [0., 400.]]))) | |
dist = scipy.stats.multivariate_normal(mean=mean, cov=cov) | |
rvs = dist.rvs(size=None) | |
assert rvs[0] != mean[0] | |
assert rvs[1] == mean[1] | |
def _random_covariance(dim, evals, rng, singular=False): | |
# Generates random covariance matrix with dimensionality `dim` and | |
# eigenvalues `evals` using provided Generator `rng`. Randomly sets | |
# some evals to zero if `singular` is True. | |
A = rng.random((dim, dim)) | |
A = A @ A.T | |
_, v = np.linalg.eigh(A) | |
if singular: | |
zero_eigs = rng.normal(size=dim) > 0 | |
evals[zero_eigs] = 0 | |
cov = v @ np.diag(evals) @ v.T | |
return cov | |
def _sample_orthonormal_matrix(n): | |
M = np.random.randn(n, n) | |
u, s, v = scipy.linalg.svd(M) | |
return u | |
class TestMultivariateNormal: | |
def test_input_shape(self): | |
mu = np.arange(3) | |
cov = np.identity(2) | |
assert_raises(ValueError, multivariate_normal.pdf, (0, 1), mu, cov) | |
assert_raises(ValueError, multivariate_normal.pdf, (0, 1, 2), mu, cov) | |
assert_raises(ValueError, multivariate_normal.cdf, (0, 1), mu, cov) | |
assert_raises(ValueError, multivariate_normal.cdf, (0, 1, 2), mu, cov) | |
def test_scalar_values(self): | |
np.random.seed(1234) | |
# When evaluated on scalar data, the pdf should return a scalar | |
x, mean, cov = 1.5, 1.7, 2.5 | |
pdf = multivariate_normal.pdf(x, mean, cov) | |
assert_equal(pdf.ndim, 0) | |
# When evaluated on a single vector, the pdf should return a scalar | |
x = np.random.randn(5) | |
mean = np.random.randn(5) | |
cov = np.abs(np.random.randn(5)) # Diagonal values for cov. matrix | |
pdf = multivariate_normal.pdf(x, mean, cov) | |
assert_equal(pdf.ndim, 0) | |
# When evaluated on scalar data, the cdf should return a scalar | |
x, mean, cov = 1.5, 1.7, 2.5 | |
cdf = multivariate_normal.cdf(x, mean, cov) | |
assert_equal(cdf.ndim, 0) | |
# When evaluated on a single vector, the cdf should return a scalar | |
x = np.random.randn(5) | |
mean = np.random.randn(5) | |
cov = np.abs(np.random.randn(5)) # Diagonal values for cov. matrix | |
cdf = multivariate_normal.cdf(x, mean, cov) | |
assert_equal(cdf.ndim, 0) | |
def test_logpdf(self): | |
# Check that the log of the pdf is in fact the logpdf | |
np.random.seed(1234) | |
x = np.random.randn(5) | |
mean = np.random.randn(5) | |
cov = np.abs(np.random.randn(5)) | |
d1 = multivariate_normal.logpdf(x, mean, cov) | |
d2 = multivariate_normal.pdf(x, mean, cov) | |
assert_allclose(d1, np.log(d2)) | |
def test_logpdf_default_values(self): | |
# Check that the log of the pdf is in fact the logpdf | |
# with default parameters Mean=None and cov = 1 | |
np.random.seed(1234) | |
x = np.random.randn(5) | |
d1 = multivariate_normal.logpdf(x) | |
d2 = multivariate_normal.pdf(x) | |
# check whether default values are being used | |
d3 = multivariate_normal.logpdf(x, None, 1) | |
d4 = multivariate_normal.pdf(x, None, 1) | |
assert_allclose(d1, np.log(d2)) | |
assert_allclose(d3, np.log(d4)) | |
def test_logcdf(self): | |
# Check that the log of the cdf is in fact the logcdf | |
np.random.seed(1234) | |
x = np.random.randn(5) | |
mean = np.random.randn(5) | |
cov = np.abs(np.random.randn(5)) | |
d1 = multivariate_normal.logcdf(x, mean, cov) | |
d2 = multivariate_normal.cdf(x, mean, cov) | |
assert_allclose(d1, np.log(d2)) | |
def test_logcdf_default_values(self): | |
# Check that the log of the cdf is in fact the logcdf | |
# with default parameters Mean=None and cov = 1 | |
np.random.seed(1234) | |
x = np.random.randn(5) | |
d1 = multivariate_normal.logcdf(x) | |
d2 = multivariate_normal.cdf(x) | |
# check whether default values are being used | |
d3 = multivariate_normal.logcdf(x, None, 1) | |
d4 = multivariate_normal.cdf(x, None, 1) | |
assert_allclose(d1, np.log(d2)) | |
assert_allclose(d3, np.log(d4)) | |
def test_rank(self): | |
# Check that the rank is detected correctly. | |
np.random.seed(1234) | |
n = 4 | |
mean = np.random.randn(n) | |
for expected_rank in range(1, n + 1): | |
s = np.random.randn(n, expected_rank) | |
cov = np.dot(s, s.T) | |
distn = multivariate_normal(mean, cov, allow_singular=True) | |
assert_equal(distn.cov_object.rank, expected_rank) | |
def test_degenerate_distributions(self): | |
for n in range(1, 5): | |
z = np.random.randn(n) | |
for k in range(1, n): | |
# Sample a small covariance matrix. | |
s = np.random.randn(k, k) | |
cov_kk = np.dot(s, s.T) | |
# Embed the small covariance matrix into a larger singular one. | |
cov_nn = np.zeros((n, n)) | |
cov_nn[:k, :k] = cov_kk | |
# Embed part of the vector in the same way | |
x = np.zeros(n) | |
x[:k] = z[:k] | |
# Define a rotation of the larger low rank matrix. | |
u = _sample_orthonormal_matrix(n) | |
cov_rr = np.dot(u, np.dot(cov_nn, u.T)) | |
y = np.dot(u, x) | |
# Check some identities. | |
distn_kk = multivariate_normal(np.zeros(k), cov_kk, | |
allow_singular=True) | |
distn_nn = multivariate_normal(np.zeros(n), cov_nn, | |
allow_singular=True) | |
distn_rr = multivariate_normal(np.zeros(n), cov_rr, | |
allow_singular=True) | |
assert_equal(distn_kk.cov_object.rank, k) | |
assert_equal(distn_nn.cov_object.rank, k) | |
assert_equal(distn_rr.cov_object.rank, k) | |
pdf_kk = distn_kk.pdf(x[:k]) | |
pdf_nn = distn_nn.pdf(x) | |
pdf_rr = distn_rr.pdf(y) | |
assert_allclose(pdf_kk, pdf_nn) | |
assert_allclose(pdf_kk, pdf_rr) | |
logpdf_kk = distn_kk.logpdf(x[:k]) | |
logpdf_nn = distn_nn.logpdf(x) | |
logpdf_rr = distn_rr.logpdf(y) | |
assert_allclose(logpdf_kk, logpdf_nn) | |
assert_allclose(logpdf_kk, logpdf_rr) | |
# Add an orthogonal component and find the density | |
y_orth = y + u[:, -1] | |
pdf_rr_orth = distn_rr.pdf(y_orth) | |
logpdf_rr_orth = distn_rr.logpdf(y_orth) | |
# Ensure that this has zero probability | |
assert_equal(pdf_rr_orth, 0.0) | |
assert_equal(logpdf_rr_orth, -np.inf) | |
def test_degenerate_array(self): | |
# Test that we can generate arrays of random variate from a degenerate | |
# multivariate normal, and that the pdf for these samples is non-zero | |
# (i.e. samples from the distribution lie on the subspace) | |
k = 10 | |
for n in range(2, 6): | |
for r in range(1, n): | |
mn = np.zeros(n) | |
u = _sample_orthonormal_matrix(n)[:, :r] | |
vr = np.dot(u, u.T) | |
X = multivariate_normal.rvs(mean=mn, cov=vr, size=k) | |
pdf = multivariate_normal.pdf(X, mean=mn, cov=vr, | |
allow_singular=True) | |
assert_equal(pdf.size, k) | |
assert np.all(pdf > 0.0) | |
logpdf = multivariate_normal.logpdf(X, mean=mn, cov=vr, | |
allow_singular=True) | |
assert_equal(logpdf.size, k) | |
assert np.all(logpdf > -np.inf) | |
def test_large_pseudo_determinant(self): | |
# Check that large pseudo-determinants are handled appropriately. | |
# Construct a singular diagonal covariance matrix | |
# whose pseudo determinant overflows double precision. | |
large_total_log = 1000.0 | |
npos = 100 | |
nzero = 2 | |
large_entry = np.exp(large_total_log / npos) | |
n = npos + nzero | |
cov = np.zeros((n, n), dtype=float) | |
np.fill_diagonal(cov, large_entry) | |
cov[-nzero:, -nzero:] = 0 | |
# Check some determinants. | |
assert_equal(scipy.linalg.det(cov), 0) | |
assert_equal(scipy.linalg.det(cov[:npos, :npos]), np.inf) | |
assert_allclose(np.linalg.slogdet(cov[:npos, :npos]), | |
(1, large_total_log)) | |
# Check the pseudo-determinant. | |
psd = _PSD(cov) | |
assert_allclose(psd.log_pdet, large_total_log) | |
def test_broadcasting(self): | |
np.random.seed(1234) | |
n = 4 | |
# Construct a random covariance matrix. | |
data = np.random.randn(n, n) | |
cov = np.dot(data, data.T) | |
mean = np.random.randn(n) | |
# Construct an ndarray which can be interpreted as | |
# a 2x3 array whose elements are random data vectors. | |
X = np.random.randn(2, 3, n) | |
# Check that multiple data points can be evaluated at once. | |
desired_pdf = multivariate_normal.pdf(X, mean, cov) | |
desired_cdf = multivariate_normal.cdf(X, mean, cov) | |
for i in range(2): | |
for j in range(3): | |
actual = multivariate_normal.pdf(X[i, j], mean, cov) | |
assert_allclose(actual, desired_pdf[i,j]) | |
# Repeat for cdf | |
actual = multivariate_normal.cdf(X[i, j], mean, cov) | |
assert_allclose(actual, desired_cdf[i,j], rtol=1e-3) | |
def test_normal_1D(self): | |
# The probability density function for a 1D normal variable should | |
# agree with the standard normal distribution in scipy.stats.distributions | |
x = np.linspace(0, 2, 10) | |
mean, cov = 1.2, 0.9 | |
scale = cov**0.5 | |
d1 = norm.pdf(x, mean, scale) | |
d2 = multivariate_normal.pdf(x, mean, cov) | |
assert_allclose(d1, d2) | |
# The same should hold for the cumulative distribution function | |
d1 = norm.cdf(x, mean, scale) | |
d2 = multivariate_normal.cdf(x, mean, cov) | |
assert_allclose(d1, d2) | |
def test_marginalization(self): | |
# Integrating out one of the variables of a 2D Gaussian should | |
# yield a 1D Gaussian | |
mean = np.array([2.5, 3.5]) | |
cov = np.array([[.5, 0.2], [0.2, .6]]) | |
n = 2 ** 8 + 1 # Number of samples | |
delta = 6 / (n - 1) # Grid spacing | |
v = np.linspace(0, 6, n) | |
xv, yv = np.meshgrid(v, v) | |
pos = np.empty((n, n, 2)) | |
pos[:, :, 0] = xv | |
pos[:, :, 1] = yv | |
pdf = multivariate_normal.pdf(pos, mean, cov) | |
# Marginalize over x and y axis | |
margin_x = romb(pdf, delta, axis=0) | |
margin_y = romb(pdf, delta, axis=1) | |
# Compare with standard normal distribution | |
gauss_x = norm.pdf(v, loc=mean[0], scale=cov[0, 0] ** 0.5) | |
gauss_y = norm.pdf(v, loc=mean[1], scale=cov[1, 1] ** 0.5) | |
assert_allclose(margin_x, gauss_x, rtol=1e-2, atol=1e-2) | |
assert_allclose(margin_y, gauss_y, rtol=1e-2, atol=1e-2) | |
def test_frozen(self): | |
# The frozen distribution should agree with the regular one | |
np.random.seed(1234) | |
x = np.random.randn(5) | |
mean = np.random.randn(5) | |
cov = np.abs(np.random.randn(5)) | |
norm_frozen = multivariate_normal(mean, cov) | |
assert_allclose(norm_frozen.pdf(x), multivariate_normal.pdf(x, mean, cov)) | |
assert_allclose(norm_frozen.logpdf(x), | |
multivariate_normal.logpdf(x, mean, cov)) | |
assert_allclose(norm_frozen.cdf(x), multivariate_normal.cdf(x, mean, cov)) | |
assert_allclose(norm_frozen.logcdf(x), | |
multivariate_normal.logcdf(x, mean, cov)) | |
def test_frozen_multivariate_normal_exposes_attributes(self, covariance): | |
mean = np.ones((2,)) | |
cov_should_be = np.eye(2) | |
norm_frozen = multivariate_normal(mean, covariance) | |
assert np.allclose(norm_frozen.mean, mean) | |
assert np.allclose(norm_frozen.cov, cov_should_be) | |
def test_pseudodet_pinv(self): | |
# Make sure that pseudo-inverse and pseudo-det agree on cutoff | |
# Assemble random covariance matrix with large and small eigenvalues | |
np.random.seed(1234) | |
n = 7 | |
x = np.random.randn(n, n) | |
cov = np.dot(x, x.T) | |
s, u = scipy.linalg.eigh(cov) | |
s = np.full(n, 0.5) | |
s[0] = 1.0 | |
s[-1] = 1e-7 | |
cov = np.dot(u, np.dot(np.diag(s), u.T)) | |
# Set cond so that the lowest eigenvalue is below the cutoff | |
cond = 1e-5 | |
psd = _PSD(cov, cond=cond) | |
psd_pinv = _PSD(psd.pinv, cond=cond) | |
# Check that the log pseudo-determinant agrees with the sum | |
# of the logs of all but the smallest eigenvalue | |
assert_allclose(psd.log_pdet, np.sum(np.log(s[:-1]))) | |
# Check that the pseudo-determinant of the pseudo-inverse | |
# agrees with 1 / pseudo-determinant | |
assert_allclose(-psd.log_pdet, psd_pinv.log_pdet) | |
def test_exception_nonsquare_cov(self): | |
cov = [[1, 2, 3], [4, 5, 6]] | |
assert_raises(ValueError, _PSD, cov) | |
def test_exception_nonfinite_cov(self): | |
cov_nan = [[1, 0], [0, np.nan]] | |
assert_raises(ValueError, _PSD, cov_nan) | |
cov_inf = [[1, 0], [0, np.inf]] | |
assert_raises(ValueError, _PSD, cov_inf) | |
def test_exception_non_psd_cov(self): | |
cov = [[1, 0], [0, -1]] | |
assert_raises(ValueError, _PSD, cov) | |
def test_exception_singular_cov(self): | |
np.random.seed(1234) | |
x = np.random.randn(5) | |
mean = np.random.randn(5) | |
cov = np.ones((5, 5)) | |
e = np.linalg.LinAlgError | |
assert_raises(e, multivariate_normal, mean, cov) | |
assert_raises(e, multivariate_normal.pdf, x, mean, cov) | |
assert_raises(e, multivariate_normal.logpdf, x, mean, cov) | |
assert_raises(e, multivariate_normal.cdf, x, mean, cov) | |
assert_raises(e, multivariate_normal.logcdf, x, mean, cov) | |
# Message used to be "singular matrix", but this is more accurate. | |
# See gh-15508 | |
cov = [[1., 0.], [1., 1.]] | |
msg = "When `allow_singular is False`, the input matrix" | |
with pytest.raises(np.linalg.LinAlgError, match=msg): | |
multivariate_normal(cov=cov) | |
def test_R_values(self): | |
# Compare the multivariate pdf with some values precomputed | |
# in R version 3.0.1 (2013-05-16) on Mac OS X 10.6. | |
# The values below were generated by the following R-script: | |
# > library(mnormt) | |
# > x <- seq(0, 2, length=5) | |
# > y <- 3*x - 2 | |
# > z <- x + cos(y) | |
# > mu <- c(1, 3, 2) | |
# > Sigma <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3) | |
# > r_pdf <- dmnorm(cbind(x,y,z), mu, Sigma) | |
r_pdf = np.array([0.0002214706, 0.0013819953, 0.0049138692, | |
0.0103803050, 0.0140250800]) | |
x = np.linspace(0, 2, 5) | |
y = 3 * x - 2 | |
z = x + np.cos(y) | |
r = np.array([x, y, z]).T | |
mean = np.array([1, 3, 2], 'd') | |
cov = np.array([[1, 2, 0], [2, 5, .5], [0, .5, 3]], 'd') | |
pdf = multivariate_normal.pdf(r, mean, cov) | |
assert_allclose(pdf, r_pdf, atol=1e-10) | |
# Compare the multivariate cdf with some values precomputed | |
# in R version 3.3.2 (2016-10-31) on Debian GNU/Linux. | |
# The values below were generated by the following R-script: | |
# > library(mnormt) | |
# > x <- seq(0, 2, length=5) | |
# > y <- 3*x - 2 | |
# > z <- x + cos(y) | |
# > mu <- c(1, 3, 2) | |
# > Sigma <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3) | |
# > r_cdf <- pmnorm(cbind(x,y,z), mu, Sigma) | |
r_cdf = np.array([0.0017866215, 0.0267142892, 0.0857098761, | |
0.1063242573, 0.2501068509]) | |
cdf = multivariate_normal.cdf(r, mean, cov) | |
assert_allclose(cdf, r_cdf, atol=2e-5) | |
# Also test bivariate cdf with some values precomputed | |
# in R version 3.3.2 (2016-10-31) on Debian GNU/Linux. | |
# The values below were generated by the following R-script: | |
# > library(mnormt) | |
# > x <- seq(0, 2, length=5) | |
# > y <- 3*x - 2 | |
# > mu <- c(1, 3) | |
# > Sigma <- matrix(c(1,2,2,5), 2, 2) | |
# > r_cdf2 <- pmnorm(cbind(x,y), mu, Sigma) | |
r_cdf2 = np.array([0.01262147, 0.05838989, 0.18389571, | |
0.40696599, 0.66470577]) | |
r2 = np.array([x, y]).T | |
mean2 = np.array([1, 3], 'd') | |
cov2 = np.array([[1, 2], [2, 5]], 'd') | |
cdf2 = multivariate_normal.cdf(r2, mean2, cov2) | |
assert_allclose(cdf2, r_cdf2, atol=1e-5) | |
def test_multivariate_normal_rvs_zero_covariance(self): | |
mean = np.zeros(2) | |
covariance = np.zeros((2, 2)) | |
model = multivariate_normal(mean, covariance, allow_singular=True) | |
sample = model.rvs() | |
assert_equal(sample, [0, 0]) | |
def test_rvs_shape(self): | |
# Check that rvs parses the mean and covariance correctly, and returns | |
# an array of the right shape | |
N = 300 | |
d = 4 | |
sample = multivariate_normal.rvs(mean=np.zeros(d), cov=1, size=N) | |
assert_equal(sample.shape, (N, d)) | |
sample = multivariate_normal.rvs(mean=None, | |
cov=np.array([[2, .1], [.1, 1]]), | |
size=N) | |
assert_equal(sample.shape, (N, 2)) | |
u = multivariate_normal(mean=0, cov=1) | |
sample = u.rvs(N) | |
assert_equal(sample.shape, (N, )) | |
def test_large_sample(self): | |
# Generate large sample and compare sample mean and sample covariance | |
# with mean and covariance matrix. | |
np.random.seed(2846) | |
n = 3 | |
mean = np.random.randn(n) | |
M = np.random.randn(n, n) | |
cov = np.dot(M, M.T) | |
size = 5000 | |
sample = multivariate_normal.rvs(mean, cov, size) | |
assert_allclose(numpy.cov(sample.T), cov, rtol=1e-1) | |
assert_allclose(sample.mean(0), mean, rtol=1e-1) | |
def test_entropy(self): | |
np.random.seed(2846) | |
n = 3 | |
mean = np.random.randn(n) | |
M = np.random.randn(n, n) | |
cov = np.dot(M, M.T) | |
rv = multivariate_normal(mean, cov) | |
# Check that frozen distribution agrees with entropy function | |
assert_almost_equal(rv.entropy(), multivariate_normal.entropy(mean, cov)) | |
# Compare entropy with manually computed expression involving | |
# the sum of the logs of the eigenvalues of the covariance matrix | |
eigs = np.linalg.eig(cov)[0] | |
desired = 1 / 2 * (n * (np.log(2 * np.pi) + 1) + np.sum(np.log(eigs))) | |
assert_almost_equal(desired, rv.entropy()) | |
def test_lnB(self): | |
alpha = np.array([1, 1, 1]) | |
desired = .5 # e^lnB = 1/2 for [1, 1, 1] | |
assert_almost_equal(np.exp(_lnB(alpha)), desired) | |
def test_cdf_with_lower_limit_arrays(self): | |
# test CDF with lower limit in several dimensions | |
rng = np.random.default_rng(2408071309372769818) | |
mean = [0, 0] | |
cov = np.eye(2) | |
a = rng.random((4, 3, 2))*6 - 3 | |
b = rng.random((4, 3, 2))*6 - 3 | |
cdf1 = multivariate_normal.cdf(b, mean, cov, lower_limit=a) | |
cdf2a = multivariate_normal.cdf(b, mean, cov) | |
cdf2b = multivariate_normal.cdf(a, mean, cov) | |
ab1 = np.concatenate((a[..., 0:1], b[..., 1:2]), axis=-1) | |
ab2 = np.concatenate((a[..., 1:2], b[..., 0:1]), axis=-1) | |
cdf2ab1 = multivariate_normal.cdf(ab1, mean, cov) | |
cdf2ab2 = multivariate_normal.cdf(ab2, mean, cov) | |
cdf2 = cdf2a + cdf2b - cdf2ab1 - cdf2ab2 | |
assert_allclose(cdf1, cdf2) | |
def test_cdf_with_lower_limit_consistency(self): | |
# check that multivariate normal CDF functions are consistent | |
rng = np.random.default_rng(2408071309372769818) | |
mean = rng.random(3) | |
cov = rng.random((3, 3)) | |
cov = cov @ cov.T | |
a = rng.random((2, 3))*6 - 3 | |
b = rng.random((2, 3))*6 - 3 | |
cdf1 = multivariate_normal.cdf(b, mean, cov, lower_limit=a) | |
cdf2 = multivariate_normal(mean, cov).cdf(b, lower_limit=a) | |
cdf3 = np.exp(multivariate_normal.logcdf(b, mean, cov, lower_limit=a)) | |
cdf4 = np.exp(multivariate_normal(mean, cov).logcdf(b, lower_limit=a)) | |
assert_allclose(cdf2, cdf1, rtol=1e-4) | |
assert_allclose(cdf3, cdf1, rtol=1e-4) | |
assert_allclose(cdf4, cdf1, rtol=1e-4) | |
def test_cdf_signs(self): | |
# check that sign of output is correct when np.any(lower > x) | |
mean = np.zeros(3) | |
cov = np.eye(3) | |
b = [[1, 1, 1], [0, 0, 0], [1, 0, 1], [0, 1, 0]] | |
a = [[0, 0, 0], [1, 1, 1], [0, 1, 0], [1, 0, 1]] | |
# when odd number of elements of b < a, output is negative | |
expected_signs = np.array([1, -1, -1, 1]) | |
cdf = multivariate_normal.cdf(b, mean, cov, lower_limit=a) | |
assert_allclose(cdf, cdf[0]*expected_signs) | |
def test_mean_cov(self): | |
# test the interaction between a Covariance object and mean | |
P = np.diag(1 / np.array([1, 2, 3])) | |
cov_object = _covariance.CovViaPrecision(P) | |
message = "`cov` represents a covariance matrix in 3 dimensions..." | |
with pytest.raises(ValueError, match=message): | |
multivariate_normal.entropy([0, 0], cov_object) | |
with pytest.raises(ValueError, match=message): | |
multivariate_normal([0, 0], cov_object) | |
x = [0.5, 0.5, 0.5] | |
ref = multivariate_normal.pdf(x, [0, 0, 0], cov_object) | |
assert_equal(multivariate_normal.pdf(x, cov=cov_object), ref) | |
ref = multivariate_normal.pdf(x, [1, 1, 1], cov_object) | |
assert_equal(multivariate_normal.pdf(x, 1, cov=cov_object), ref) | |
def test_fit_wrong_fit_data_shape(self): | |
data = [1, 3] | |
error_msg = "`x` must be two-dimensional." | |
with pytest.raises(ValueError, match=error_msg): | |
multivariate_normal.fit(data) | |
def test_fit_correctness(self, dim): | |
rng = np.random.default_rng(4385269356937404) | |
x = rng.random((100, dim)) | |
mean_est, cov_est = multivariate_normal.fit(x) | |
mean_ref, cov_ref = np.mean(x, axis=0), np.cov(x.T, ddof=0) | |
assert_allclose(mean_est, mean_ref, atol=1e-15) | |
assert_allclose(cov_est, cov_ref, rtol=1e-15) | |
def test_fit_both_parameters_fixed(self): | |
data = np.full((2, 1), 3) | |
mean_fixed = 1. | |
cov_fixed = np.atleast_2d(1.) | |
mean, cov = multivariate_normal.fit(data, fix_mean=mean_fixed, | |
fix_cov=cov_fixed) | |
assert_equal(mean, mean_fixed) | |
assert_equal(cov, cov_fixed) | |
def test_fit_fix_mean_input_validation(self, fix_mean): | |
msg = ("`fix_mean` must be a one-dimensional array the same " | |
"length as the dimensionality of the vectors `x`.") | |
with pytest.raises(ValueError, match=msg): | |
multivariate_normal.fit(np.eye(2), fix_mean=fix_mean) | |
def test_fit_fix_cov_input_validation_dimension(self, fix_cov): | |
msg = ("`fix_cov` must be a two-dimensional square array " | |
"of same side length as the dimensionality of the " | |
"vectors `x`.") | |
with pytest.raises(ValueError, match=msg): | |
multivariate_normal.fit(np.eye(3), fix_cov=fix_cov) | |
def test_fit_fix_cov_not_positive_semidefinite(self): | |
error_msg = "`fix_cov` must be symmetric positive semidefinite." | |
with pytest.raises(ValueError, match=error_msg): | |
fix_cov = np.array([[1., 0.], [0., -1.]]) | |
multivariate_normal.fit(np.eye(2), fix_cov=fix_cov) | |
def test_fit_fix_mean(self): | |
rng = np.random.default_rng(4385269356937404) | |
loc = rng.random(3) | |
A = rng.random((3, 3)) | |
cov = np.dot(A, A.T) | |
samples = multivariate_normal.rvs(mean=loc, cov=cov, size=100, | |
random_state=rng) | |
mean_free, cov_free = multivariate_normal.fit(samples) | |
logp_free = multivariate_normal.logpdf(samples, mean=mean_free, | |
cov=cov_free).sum() | |
mean_fix, cov_fix = multivariate_normal.fit(samples, fix_mean=loc) | |
assert_equal(mean_fix, loc) | |
logp_fix = multivariate_normal.logpdf(samples, mean=mean_fix, | |
cov=cov_fix).sum() | |
# test that fixed parameters result in lower likelihood than free | |
# parameters | |
assert logp_fix < logp_free | |
# test that a small perturbation of the resulting parameters | |
# has lower likelihood than the estimated parameters | |
A = rng.random((3, 3)) | |
m = 1e-8 * np.dot(A, A.T) | |
cov_perturbed = cov_fix + m | |
logp_perturbed = (multivariate_normal.logpdf(samples, | |
mean=mean_fix, | |
cov=cov_perturbed) | |
).sum() | |
assert logp_perturbed < logp_fix | |
def test_fit_fix_cov(self): | |
rng = np.random.default_rng(4385269356937404) | |
loc = rng.random(3) | |
A = rng.random((3, 3)) | |
cov = np.dot(A, A.T) | |
samples = multivariate_normal.rvs(mean=loc, cov=cov, | |
size=100, random_state=rng) | |
mean_free, cov_free = multivariate_normal.fit(samples) | |
logp_free = multivariate_normal.logpdf(samples, mean=mean_free, | |
cov=cov_free).sum() | |
mean_fix, cov_fix = multivariate_normal.fit(samples, fix_cov=cov) | |
assert_equal(mean_fix, np.mean(samples, axis=0)) | |
assert_equal(cov_fix, cov) | |
logp_fix = multivariate_normal.logpdf(samples, mean=mean_fix, | |
cov=cov_fix).sum() | |
# test that fixed parameters result in lower likelihood than free | |
# parameters | |
assert logp_fix < logp_free | |
# test that a small perturbation of the resulting parameters | |
# has lower likelihood than the estimated parameters | |
mean_perturbed = mean_fix + 1e-8 * rng.random(3) | |
logp_perturbed = (multivariate_normal.logpdf(samples, | |
mean=mean_perturbed, | |
cov=cov_fix) | |
).sum() | |
assert logp_perturbed < logp_fix | |
class TestMatrixNormal: | |
def test_bad_input(self): | |
# Check that bad inputs raise errors | |
num_rows = 4 | |
num_cols = 3 | |
M = np.full((num_rows,num_cols), 0.3) | |
U = 0.5 * np.identity(num_rows) + np.full((num_rows, num_rows), 0.5) | |
V = 0.7 * np.identity(num_cols) + np.full((num_cols, num_cols), 0.3) | |
# Incorrect dimensions | |
assert_raises(ValueError, matrix_normal, np.zeros((5,4,3))) | |
assert_raises(ValueError, matrix_normal, M, np.zeros(10), V) | |
assert_raises(ValueError, matrix_normal, M, U, np.zeros(10)) | |
assert_raises(ValueError, matrix_normal, M, U, U) | |
assert_raises(ValueError, matrix_normal, M, V, V) | |
assert_raises(ValueError, matrix_normal, M.T, U, V) | |
e = np.linalg.LinAlgError | |
# Singular covariance for the rvs method of a non-frozen instance | |
assert_raises(e, matrix_normal.rvs, | |
M, U, np.ones((num_cols, num_cols))) | |
assert_raises(e, matrix_normal.rvs, | |
M, np.ones((num_rows, num_rows)), V) | |
# Singular covariance for a frozen instance | |
assert_raises(e, matrix_normal, M, U, np.ones((num_cols, num_cols))) | |
assert_raises(e, matrix_normal, M, np.ones((num_rows, num_rows)), V) | |
def test_default_inputs(self): | |
# Check that default argument handling works | |
num_rows = 4 | |
num_cols = 3 | |
M = np.full((num_rows,num_cols), 0.3) | |
U = 0.5 * np.identity(num_rows) + np.full((num_rows, num_rows), 0.5) | |
V = 0.7 * np.identity(num_cols) + np.full((num_cols, num_cols), 0.3) | |
Z = np.zeros((num_rows, num_cols)) | |
Zr = np.zeros((num_rows, 1)) | |
Zc = np.zeros((1, num_cols)) | |
Ir = np.identity(num_rows) | |
Ic = np.identity(num_cols) | |
I1 = np.identity(1) | |
assert_equal(matrix_normal.rvs(mean=M, rowcov=U, colcov=V).shape, | |
(num_rows, num_cols)) | |
assert_equal(matrix_normal.rvs(mean=M).shape, | |
(num_rows, num_cols)) | |
assert_equal(matrix_normal.rvs(rowcov=U).shape, | |
(num_rows, 1)) | |
assert_equal(matrix_normal.rvs(colcov=V).shape, | |
(1, num_cols)) | |
assert_equal(matrix_normal.rvs(mean=M, colcov=V).shape, | |
(num_rows, num_cols)) | |
assert_equal(matrix_normal.rvs(mean=M, rowcov=U).shape, | |
(num_rows, num_cols)) | |
assert_equal(matrix_normal.rvs(rowcov=U, colcov=V).shape, | |
(num_rows, num_cols)) | |
assert_equal(matrix_normal(mean=M).rowcov, Ir) | |
assert_equal(matrix_normal(mean=M).colcov, Ic) | |
assert_equal(matrix_normal(rowcov=U).mean, Zr) | |
assert_equal(matrix_normal(rowcov=U).colcov, I1) | |
assert_equal(matrix_normal(colcov=V).mean, Zc) | |
assert_equal(matrix_normal(colcov=V).rowcov, I1) | |
assert_equal(matrix_normal(mean=M, rowcov=U).colcov, Ic) | |
assert_equal(matrix_normal(mean=M, colcov=V).rowcov, Ir) | |
assert_equal(matrix_normal(rowcov=U, colcov=V).mean, Z) | |
def test_covariance_expansion(self): | |
# Check that covariance can be specified with scalar or vector | |
num_rows = 4 | |
num_cols = 3 | |
M = np.full((num_rows, num_cols), 0.3) | |
Uv = np.full(num_rows, 0.2) | |
Us = 0.2 | |
Vv = np.full(num_cols, 0.1) | |
Vs = 0.1 | |
Ir = np.identity(num_rows) | |
Ic = np.identity(num_cols) | |
assert_equal(matrix_normal(mean=M, rowcov=Uv, colcov=Vv).rowcov, | |
0.2*Ir) | |
assert_equal(matrix_normal(mean=M, rowcov=Uv, colcov=Vv).colcov, | |
0.1*Ic) | |
assert_equal(matrix_normal(mean=M, rowcov=Us, colcov=Vs).rowcov, | |
0.2*Ir) | |
assert_equal(matrix_normal(mean=M, rowcov=Us, colcov=Vs).colcov, | |
0.1*Ic) | |
def test_frozen_matrix_normal(self): | |
for i in range(1,5): | |
for j in range(1,5): | |
M = np.full((i,j), 0.3) | |
U = 0.5 * np.identity(i) + np.full((i,i), 0.5) | |
V = 0.7 * np.identity(j) + np.full((j,j), 0.3) | |
frozen = matrix_normal(mean=M, rowcov=U, colcov=V) | |
rvs1 = frozen.rvs(random_state=1234) | |
rvs2 = matrix_normal.rvs(mean=M, rowcov=U, colcov=V, | |
random_state=1234) | |
assert_equal(rvs1, rvs2) | |
X = frozen.rvs(random_state=1234) | |
pdf1 = frozen.pdf(X) | |
pdf2 = matrix_normal.pdf(X, mean=M, rowcov=U, colcov=V) | |
assert_equal(pdf1, pdf2) | |
logpdf1 = frozen.logpdf(X) | |
logpdf2 = matrix_normal.logpdf(X, mean=M, rowcov=U, colcov=V) | |
assert_equal(logpdf1, logpdf2) | |
def test_matches_multivariate(self): | |
# Check that the pdfs match those obtained by vectorising and | |
# treating as a multivariate normal. | |
for i in range(1,5): | |
for j in range(1,5): | |
M = np.full((i,j), 0.3) | |
U = 0.5 * np.identity(i) + np.full((i,i), 0.5) | |
V = 0.7 * np.identity(j) + np.full((j,j), 0.3) | |
frozen = matrix_normal(mean=M, rowcov=U, colcov=V) | |
X = frozen.rvs(random_state=1234) | |
pdf1 = frozen.pdf(X) | |
logpdf1 = frozen.logpdf(X) | |
entropy1 = frozen.entropy() | |
vecX = X.T.flatten() | |
vecM = M.T.flatten() | |
cov = np.kron(V,U) | |
pdf2 = multivariate_normal.pdf(vecX, mean=vecM, cov=cov) | |
logpdf2 = multivariate_normal.logpdf(vecX, mean=vecM, cov=cov) | |
entropy2 = multivariate_normal.entropy(mean=vecM, cov=cov) | |
assert_allclose(pdf1, pdf2, rtol=1E-10) | |
assert_allclose(logpdf1, logpdf2, rtol=1E-10) | |
assert_allclose(entropy1, entropy2) | |
def test_array_input(self): | |
# Check array of inputs has the same output as the separate entries. | |
num_rows = 4 | |
num_cols = 3 | |
M = np.full((num_rows,num_cols), 0.3) | |
U = 0.5 * np.identity(num_rows) + np.full((num_rows, num_rows), 0.5) | |
V = 0.7 * np.identity(num_cols) + np.full((num_cols, num_cols), 0.3) | |
N = 10 | |
frozen = matrix_normal(mean=M, rowcov=U, colcov=V) | |
X1 = frozen.rvs(size=N, random_state=1234) | |
X2 = frozen.rvs(size=N, random_state=4321) | |
X = np.concatenate((X1[np.newaxis,:,:,:],X2[np.newaxis,:,:,:]), axis=0) | |
assert_equal(X.shape, (2, N, num_rows, num_cols)) | |
array_logpdf = frozen.logpdf(X) | |
assert_equal(array_logpdf.shape, (2, N)) | |
for i in range(2): | |
for j in range(N): | |
separate_logpdf = matrix_normal.logpdf(X[i,j], mean=M, | |
rowcov=U, colcov=V) | |
assert_allclose(separate_logpdf, array_logpdf[i,j], 1E-10) | |
def test_moments(self): | |
# Check that the sample moments match the parameters | |
num_rows = 4 | |
num_cols = 3 | |
M = np.full((num_rows,num_cols), 0.3) | |
U = 0.5 * np.identity(num_rows) + np.full((num_rows, num_rows), 0.5) | |
V = 0.7 * np.identity(num_cols) + np.full((num_cols, num_cols), 0.3) | |
N = 1000 | |
frozen = matrix_normal(mean=M, rowcov=U, colcov=V) | |
X = frozen.rvs(size=N, random_state=1234) | |
sample_mean = np.mean(X,axis=0) | |
assert_allclose(sample_mean, M, atol=0.1) | |
sample_colcov = np.cov(X.reshape(N*num_rows,num_cols).T) | |
assert_allclose(sample_colcov, V, atol=0.1) | |
sample_rowcov = np.cov(np.swapaxes(X,1,2).reshape( | |
N*num_cols,num_rows).T) | |
assert_allclose(sample_rowcov, U, atol=0.1) | |
def test_samples(self): | |
# Regression test to ensure that we always generate the same stream of | |
# random variates. | |
actual = matrix_normal.rvs( | |
mean=np.array([[1, 2], [3, 4]]), | |
rowcov=np.array([[4, -1], [-1, 2]]), | |
colcov=np.array([[5, 1], [1, 10]]), | |
random_state=np.random.default_rng(0), | |
size=2 | |
) | |
expected = np.array( | |
[[[1.56228264238181, -1.24136424071189], | |
[2.46865788392114, 6.22964440489445]], | |
[[3.86405716144353, 10.73714311429529], | |
[2.59428444080606, 5.79987854490876]]] | |
) | |
assert_allclose(actual, expected) | |
class TestDirichlet: | |
def test_frozen_dirichlet(self): | |
np.random.seed(2846) | |
n = np.random.randint(1, 32) | |
alpha = np.random.uniform(10e-10, 100, n) | |
d = dirichlet(alpha) | |
assert_equal(d.var(), dirichlet.var(alpha)) | |
assert_equal(d.mean(), dirichlet.mean(alpha)) | |
assert_equal(d.entropy(), dirichlet.entropy(alpha)) | |
num_tests = 10 | |
for i in range(num_tests): | |
x = np.random.uniform(10e-10, 100, n) | |
x /= np.sum(x) | |
assert_equal(d.pdf(x[:-1]), dirichlet.pdf(x[:-1], alpha)) | |
assert_equal(d.logpdf(x[:-1]), dirichlet.logpdf(x[:-1], alpha)) | |
def test_numpy_rvs_shape_compatibility(self): | |
np.random.seed(2846) | |
alpha = np.array([1.0, 2.0, 3.0]) | |
x = np.random.dirichlet(alpha, size=7) | |
assert_equal(x.shape, (7, 3)) | |
assert_raises(ValueError, dirichlet.pdf, x, alpha) | |
assert_raises(ValueError, dirichlet.logpdf, x, alpha) | |
dirichlet.pdf(x.T, alpha) | |
dirichlet.pdf(x.T[:-1], alpha) | |
dirichlet.logpdf(x.T, alpha) | |
dirichlet.logpdf(x.T[:-1], alpha) | |
def test_alpha_with_zeros(self): | |
np.random.seed(2846) | |
alpha = [1.0, 0.0, 3.0] | |
# don't pass invalid alpha to np.random.dirichlet | |
x = np.random.dirichlet(np.maximum(1e-9, alpha), size=7).T | |
assert_raises(ValueError, dirichlet.pdf, x, alpha) | |
assert_raises(ValueError, dirichlet.logpdf, x, alpha) | |
def test_alpha_with_negative_entries(self): | |
np.random.seed(2846) | |
alpha = [1.0, -2.0, 3.0] | |
# don't pass invalid alpha to np.random.dirichlet | |
x = np.random.dirichlet(np.maximum(1e-9, alpha), size=7).T | |
assert_raises(ValueError, dirichlet.pdf, x, alpha) | |
assert_raises(ValueError, dirichlet.logpdf, x, alpha) | |
def test_data_with_zeros(self): | |
alpha = np.array([1.0, 2.0, 3.0, 4.0]) | |
x = np.array([0.1, 0.0, 0.2, 0.7]) | |
dirichlet.pdf(x, alpha) | |
dirichlet.logpdf(x, alpha) | |
alpha = np.array([1.0, 1.0, 1.0, 1.0]) | |
assert_almost_equal(dirichlet.pdf(x, alpha), 6) | |
assert_almost_equal(dirichlet.logpdf(x, alpha), np.log(6)) | |
def test_data_with_zeros_and_small_alpha(self): | |
alpha = np.array([1.0, 0.5, 3.0, 4.0]) | |
x = np.array([0.1, 0.0, 0.2, 0.7]) | |
assert_raises(ValueError, dirichlet.pdf, x, alpha) | |
assert_raises(ValueError, dirichlet.logpdf, x, alpha) | |
def test_data_with_negative_entries(self): | |
alpha = np.array([1.0, 2.0, 3.0, 4.0]) | |
x = np.array([0.1, -0.1, 0.3, 0.7]) | |
assert_raises(ValueError, dirichlet.pdf, x, alpha) | |
assert_raises(ValueError, dirichlet.logpdf, x, alpha) | |
def test_data_with_too_large_entries(self): | |
alpha = np.array([1.0, 2.0, 3.0, 4.0]) | |
x = np.array([0.1, 1.1, 0.3, 0.7]) | |
assert_raises(ValueError, dirichlet.pdf, x, alpha) | |
assert_raises(ValueError, dirichlet.logpdf, x, alpha) | |
def test_data_too_deep_c(self): | |
alpha = np.array([1.0, 2.0, 3.0]) | |
x = np.full((2, 7, 7), 1 / 14) | |
assert_raises(ValueError, dirichlet.pdf, x, alpha) | |
assert_raises(ValueError, dirichlet.logpdf, x, alpha) | |
def test_alpha_too_deep(self): | |
alpha = np.array([[1.0, 2.0], [3.0, 4.0]]) | |
x = np.full((2, 2, 7), 1 / 4) | |
assert_raises(ValueError, dirichlet.pdf, x, alpha) | |
assert_raises(ValueError, dirichlet.logpdf, x, alpha) | |
def test_alpha_correct_depth(self): | |
alpha = np.array([1.0, 2.0, 3.0]) | |
x = np.full((3, 7), 1 / 3) | |
dirichlet.pdf(x, alpha) | |
dirichlet.logpdf(x, alpha) | |
def test_non_simplex_data(self): | |
alpha = np.array([1.0, 2.0, 3.0]) | |
x = np.full((3, 7), 1 / 2) | |
assert_raises(ValueError, dirichlet.pdf, x, alpha) | |
assert_raises(ValueError, dirichlet.logpdf, x, alpha) | |
def test_data_vector_too_short(self): | |
alpha = np.array([1.0, 2.0, 3.0, 4.0]) | |
x = np.full((2, 7), 1 / 2) | |
assert_raises(ValueError, dirichlet.pdf, x, alpha) | |
assert_raises(ValueError, dirichlet.logpdf, x, alpha) | |
def test_data_vector_too_long(self): | |
alpha = np.array([1.0, 2.0, 3.0, 4.0]) | |
x = np.full((5, 7), 1 / 5) | |
assert_raises(ValueError, dirichlet.pdf, x, alpha) | |
assert_raises(ValueError, dirichlet.logpdf, x, alpha) | |
def test_mean_var_cov(self): | |
# Reference values calculated by hand and confirmed with Mathematica, e.g. | |
# `Covariance[DirichletDistribution[{ 1, 0.8, 0.2, 10^-300}]]` | |
alpha = np.array([1., 0.8, 0.2]) | |
d = dirichlet(alpha) | |
expected_mean = [0.5, 0.4, 0.1] | |
expected_var = [1. / 12., 0.08, 0.03] | |
expected_cov = [ | |
[ 1. / 12, -1. / 15, -1. / 60], | |
[-1. / 15, 2. / 25, -1. / 75], | |
[-1. / 60, -1. / 75, 3. / 100], | |
] | |
assert_array_almost_equal(d.mean(), expected_mean) | |
assert_array_almost_equal(d.var(), expected_var) | |
assert_array_almost_equal(d.cov(), expected_cov) | |
def test_scalar_values(self): | |
alpha = np.array([0.2]) | |
d = dirichlet(alpha) | |
# For alpha of length 1, mean and var should be scalar instead of array | |
assert_equal(d.mean().ndim, 0) | |
assert_equal(d.var().ndim, 0) | |
assert_equal(d.pdf([1.]).ndim, 0) | |
assert_equal(d.logpdf([1.]).ndim, 0) | |
def test_K_and_K_minus_1_calls_equal(self): | |
# Test that calls with K and K-1 entries yield the same results. | |
np.random.seed(2846) | |
n = np.random.randint(1, 32) | |
alpha = np.random.uniform(10e-10, 100, n) | |
d = dirichlet(alpha) | |
num_tests = 10 | |
for i in range(num_tests): | |
x = np.random.uniform(10e-10, 100, n) | |
x /= np.sum(x) | |
assert_almost_equal(d.pdf(x[:-1]), d.pdf(x)) | |
def test_multiple_entry_calls(self): | |
# Test that calls with multiple x vectors as matrix work | |
np.random.seed(2846) | |
n = np.random.randint(1, 32) | |
alpha = np.random.uniform(10e-10, 100, n) | |
d = dirichlet(alpha) | |
num_tests = 10 | |
num_multiple = 5 | |
xm = None | |
for i in range(num_tests): | |
for m in range(num_multiple): | |
x = np.random.uniform(10e-10, 100, n) | |
x /= np.sum(x) | |
if xm is not None: | |
xm = np.vstack((xm, x)) | |
else: | |
xm = x | |
rm = d.pdf(xm.T) | |
rs = None | |
for xs in xm: | |
r = d.pdf(xs) | |
if rs is not None: | |
rs = np.append(rs, r) | |
else: | |
rs = r | |
assert_array_almost_equal(rm, rs) | |
def test_2D_dirichlet_is_beta(self): | |
np.random.seed(2846) | |
alpha = np.random.uniform(10e-10, 100, 2) | |
d = dirichlet(alpha) | |
b = beta(alpha[0], alpha[1]) | |
num_tests = 10 | |
for i in range(num_tests): | |
x = np.random.uniform(10e-10, 100, 2) | |
x /= np.sum(x) | |
assert_almost_equal(b.pdf(x), d.pdf([x])) | |
assert_almost_equal(b.mean(), d.mean()[0]) | |
assert_almost_equal(b.var(), d.var()[0]) | |
def test_multivariate_normal_dimensions_mismatch(): | |
# Regression test for GH #3493. Check that setting up a PDF with a mean of | |
# length M and a covariance matrix of size (N, N), where M != N, raises a | |
# ValueError with an informative error message. | |
mu = np.array([0.0, 0.0]) | |
sigma = np.array([[1.0]]) | |
assert_raises(ValueError, multivariate_normal, mu, sigma) | |
# A simple check that the right error message was passed along. Checking | |
# that the entire message is there, word for word, would be somewhat | |
# fragile, so we just check for the leading part. | |
try: | |
multivariate_normal(mu, sigma) | |
except ValueError as e: | |
msg = "Dimension mismatch" | |
assert_equal(str(e)[:len(msg)], msg) | |
class TestWishart: | |
def test_scale_dimensions(self): | |
# Test that we can call the Wishart with various scale dimensions | |
# Test case: dim=1, scale=1 | |
true_scale = np.array(1, ndmin=2) | |
scales = [ | |
1, # scalar | |
[1], # iterable | |
np.array(1), # 0-dim | |
np.r_[1], # 1-dim | |
np.array(1, ndmin=2) # 2-dim | |
] | |
for scale in scales: | |
w = wishart(1, scale) | |
assert_equal(w.scale, true_scale) | |
assert_equal(w.scale.shape, true_scale.shape) | |
# Test case: dim=2, scale=[[1,0] | |
# [0,2] | |
true_scale = np.array([[1,0], | |
[0,2]]) | |
scales = [ | |
[1,2], # iterable | |
np.r_[1,2], # 1-dim | |
np.array([[1,0], # 2-dim | |
[0,2]]) | |
] | |
for scale in scales: | |
w = wishart(2, scale) | |
assert_equal(w.scale, true_scale) | |
assert_equal(w.scale.shape, true_scale.shape) | |
# We cannot call with a df < dim - 1 | |
assert_raises(ValueError, wishart, 1, np.eye(2)) | |
# But we can call with dim - 1 < df < dim | |
wishart(1.1, np.eye(2)) # no error | |
# see gh-5562 | |
# We cannot call with a 3-dimension array | |
scale = np.array(1, ndmin=3) | |
assert_raises(ValueError, wishart, 1, scale) | |
def test_quantile_dimensions(self): | |
# Test that we can call the Wishart rvs with various quantile dimensions | |
# If dim == 1, consider x.shape = [1,1,1] | |
X = [ | |
1, # scalar | |
[1], # iterable | |
np.array(1), # 0-dim | |
np.r_[1], # 1-dim | |
np.array(1, ndmin=2), # 2-dim | |
np.array([1], ndmin=3) # 3-dim | |
] | |
w = wishart(1,1) | |
density = w.pdf(np.array(1, ndmin=3)) | |
for x in X: | |
assert_equal(w.pdf(x), density) | |
# If dim == 1, consider x.shape = [1,1,*] | |
X = [ | |
[1,2,3], # iterable | |
np.r_[1,2,3], # 1-dim | |
np.array([1,2,3], ndmin=3) # 3-dim | |
] | |
w = wishart(1,1) | |
density = w.pdf(np.array([1,2,3], ndmin=3)) | |
for x in X: | |
assert_equal(w.pdf(x), density) | |
# If dim == 2, consider x.shape = [2,2,1] | |
# where x[:,:,*] = np.eye(1)*2 | |
X = [ | |
2, # scalar | |
[2,2], # iterable | |
np.array(2), # 0-dim | |
np.r_[2,2], # 1-dim | |
np.array([[2,0], | |
[0,2]]), # 2-dim | |
np.array([[2,0], | |
[0,2]])[:,:,np.newaxis] # 3-dim | |
] | |
w = wishart(2,np.eye(2)) | |
density = w.pdf(np.array([[2,0], | |
[0,2]])[:,:,np.newaxis]) | |
for x in X: | |
assert_equal(w.pdf(x), density) | |
def test_frozen(self): | |
# Test that the frozen and non-frozen Wishart gives the same answers | |
# Construct an arbitrary positive definite scale matrix | |
dim = 4 | |
scale = np.diag(np.arange(dim)+1) | |
scale[np.tril_indices(dim, k=-1)] = np.arange(dim * (dim-1) // 2) | |
scale = np.dot(scale.T, scale) | |
# Construct a collection of positive definite matrices to test the PDF | |
X = [] | |
for i in range(5): | |
x = np.diag(np.arange(dim)+(i+1)**2) | |
x[np.tril_indices(dim, k=-1)] = np.arange(dim * (dim-1) // 2) | |
x = np.dot(x.T, x) | |
X.append(x) | |
X = np.array(X).T | |
# Construct a 1D and 2D set of parameters | |
parameters = [ | |
(10, 1, np.linspace(0.1, 10, 5)), # 1D case | |
(10, scale, X) | |
] | |
for (df, scale, x) in parameters: | |
w = wishart(df, scale) | |
assert_equal(w.var(), wishart.var(df, scale)) | |
assert_equal(w.mean(), wishart.mean(df, scale)) | |
assert_equal(w.mode(), wishart.mode(df, scale)) | |
assert_equal(w.entropy(), wishart.entropy(df, scale)) | |
assert_equal(w.pdf(x), wishart.pdf(x, df, scale)) | |
def test_wishart_2D_rvs(self): | |
dim = 3 | |
df = 10 | |
# Construct a simple non-diagonal positive definite matrix | |
scale = np.eye(dim) | |
scale[0,1] = 0.5 | |
scale[1,0] = 0.5 | |
# Construct frozen Wishart random variables | |
w = wishart(df, scale) | |
# Get the generated random variables from a known seed | |
np.random.seed(248042) | |
w_rvs = wishart.rvs(df, scale) | |
np.random.seed(248042) | |
frozen_w_rvs = w.rvs() | |
# Manually calculate what it should be, based on the Bartlett (1933) | |
# decomposition of a Wishart into D A A' D', where D is the Cholesky | |
# factorization of the scale matrix and A is the lower triangular matrix | |
# with the square root of chi^2 variates on the diagonal and N(0,1) | |
# variates in the lower triangle. | |
np.random.seed(248042) | |
covariances = np.random.normal(size=3) | |
variances = np.r_[ | |
np.random.chisquare(df), | |
np.random.chisquare(df-1), | |
np.random.chisquare(df-2), | |
]**0.5 | |
# Construct the lower-triangular A matrix | |
A = np.diag(variances) | |
A[np.tril_indices(dim, k=-1)] = covariances | |
# Wishart random variate | |
D = np.linalg.cholesky(scale) | |
DA = D.dot(A) | |
manual_w_rvs = np.dot(DA, DA.T) | |
# Test for equality | |
assert_allclose(w_rvs, manual_w_rvs) | |
assert_allclose(frozen_w_rvs, manual_w_rvs) | |
def test_1D_is_chisquared(self): | |
# The 1-dimensional Wishart with an identity scale matrix is just a | |
# chi-squared distribution. | |
# Test variance, mean, entropy, pdf | |
# Kolgomorov-Smirnov test for rvs | |
np.random.seed(482974) | |
sn = 500 | |
dim = 1 | |
scale = np.eye(dim) | |
df_range = np.arange(1, 10, 2, dtype=float) | |
X = np.linspace(0.1,10,num=10) | |
for df in df_range: | |
w = wishart(df, scale) | |
c = chi2(df) | |
# Statistics | |
assert_allclose(w.var(), c.var()) | |
assert_allclose(w.mean(), c.mean()) | |
assert_allclose(w.entropy(), c.entropy()) | |
assert_allclose(w.pdf(X), c.pdf(X)) | |
# rvs | |
rvs = w.rvs(size=sn) | |
args = (df,) | |
alpha = 0.01 | |
check_distribution_rvs('chi2', args, alpha, rvs) | |
def test_is_scaled_chisquared(self): | |
# The 2-dimensional Wishart with an arbitrary scale matrix can be | |
# transformed to a scaled chi-squared distribution. | |
# For :math:`S \sim W_p(V,n)` and :math:`\lambda \in \mathbb{R}^p` we have | |
# :math:`\lambda' S \lambda \sim \lambda' V \lambda \times \chi^2(n)` | |
np.random.seed(482974) | |
sn = 500 | |
df = 10 | |
dim = 4 | |
# Construct an arbitrary positive definite matrix | |
scale = np.diag(np.arange(4)+1) | |
scale[np.tril_indices(4, k=-1)] = np.arange(6) | |
scale = np.dot(scale.T, scale) | |
# Use :math:`\lambda = [1, \dots, 1]'` | |
lamda = np.ones((dim,1)) | |
sigma_lamda = lamda.T.dot(scale).dot(lamda).squeeze() | |
w = wishart(df, sigma_lamda) | |
c = chi2(df, scale=sigma_lamda) | |
# Statistics | |
assert_allclose(w.var(), c.var()) | |
assert_allclose(w.mean(), c.mean()) | |
assert_allclose(w.entropy(), c.entropy()) | |
X = np.linspace(0.1,10,num=10) | |
assert_allclose(w.pdf(X), c.pdf(X)) | |
# rvs | |
rvs = w.rvs(size=sn) | |
args = (df,0,sigma_lamda) | |
alpha = 0.01 | |
check_distribution_rvs('chi2', args, alpha, rvs) | |
class TestMultinomial: | |
def test_logpmf(self): | |
vals1 = multinomial.logpmf((3,4), 7, (0.3, 0.7)) | |
assert_allclose(vals1, -1.483270127243324, rtol=1e-8) | |
vals2 = multinomial.logpmf([3, 4], 0, [.3, .7]) | |
assert vals2 == -np.inf | |
vals3 = multinomial.logpmf([0, 0], 0, [.3, .7]) | |
assert vals3 == 0 | |
vals4 = multinomial.logpmf([3, 4], 0, [-2, 3]) | |
assert_allclose(vals4, np.nan, rtol=1e-8) | |
def test_reduces_binomial(self): | |
# test that the multinomial pmf reduces to the binomial pmf in the 2d | |
# case | |
val1 = multinomial.logpmf((3, 4), 7, (0.3, 0.7)) | |
val2 = binom.logpmf(3, 7, 0.3) | |
assert_allclose(val1, val2, rtol=1e-8) | |
val1 = multinomial.pmf((6, 8), 14, (0.1, 0.9)) | |
val2 = binom.pmf(6, 14, 0.1) | |
assert_allclose(val1, val2, rtol=1e-8) | |
def test_R(self): | |
# test against the values produced by this R code | |
# (https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Multinom.html) | |
# X <- t(as.matrix(expand.grid(0:3, 0:3))); X <- X[, colSums(X) <= 3] | |
# X <- rbind(X, 3:3 - colSums(X)); dimnames(X) <- list(letters[1:3], NULL) | |
# X | |
# apply(X, 2, function(x) dmultinom(x, prob = c(1,2,5))) | |
n, p = 3, [1./8, 2./8, 5./8] | |
r_vals = {(0, 0, 3): 0.244140625, (1, 0, 2): 0.146484375, | |
(2, 0, 1): 0.029296875, (3, 0, 0): 0.001953125, | |
(0, 1, 2): 0.292968750, (1, 1, 1): 0.117187500, | |
(2, 1, 0): 0.011718750, (0, 2, 1): 0.117187500, | |
(1, 2, 0): 0.023437500, (0, 3, 0): 0.015625000} | |
for x in r_vals: | |
assert_allclose(multinomial.pmf(x, n, p), r_vals[x], atol=1e-14) | |
def test_rvs_np(self, n): | |
# test that .rvs agrees w/numpy | |
sc_rvs = multinomial.rvs(n, [1/4.]*3, size=7, random_state=123) | |
rndm = np.random.RandomState(123) | |
np_rvs = rndm.multinomial(n, [1/4.]*3, size=7) | |
assert_equal(sc_rvs, np_rvs) | |
def test_pmf(self): | |
vals0 = multinomial.pmf((5,), 5, (1,)) | |
assert_allclose(vals0, 1, rtol=1e-8) | |
vals1 = multinomial.pmf((3,4), 7, (.3, .7)) | |
assert_allclose(vals1, .22689449999999994, rtol=1e-8) | |
vals2 = multinomial.pmf([[[3,5],[0,8]], [[-1, 9], [1, 1]]], 8, | |
(.1, .9)) | |
assert_allclose(vals2, [[.03306744, .43046721], [0, 0]], rtol=1e-8) | |
x = np.empty((0,2), dtype=np.float64) | |
vals3 = multinomial.pmf(x, 4, (.3, .7)) | |
assert_equal(vals3, np.empty([], dtype=np.float64)) | |
vals4 = multinomial.pmf([1,2], 4, (.3, .7)) | |
assert_allclose(vals4, 0, rtol=1e-8) | |
vals5 = multinomial.pmf([3, 3, 0], 6, [2/3.0, 1/3.0, 0]) | |
assert_allclose(vals5, 0.219478737997, rtol=1e-8) | |
vals5 = multinomial.pmf([0, 0, 0], 0, [2/3.0, 1/3.0, 0]) | |
assert vals5 == 1 | |
vals6 = multinomial.pmf([2, 1, 0], 0, [2/3.0, 1/3.0, 0]) | |
assert vals6 == 0 | |
def test_pmf_broadcasting(self): | |
vals0 = multinomial.pmf([1, 2], 3, [[.1, .9], [.2, .8]]) | |
assert_allclose(vals0, [.243, .384], rtol=1e-8) | |
vals1 = multinomial.pmf([1, 2], [3, 4], [.1, .9]) | |
assert_allclose(vals1, [.243, 0], rtol=1e-8) | |
vals2 = multinomial.pmf([[[1, 2], [1, 1]]], 3, [.1, .9]) | |
assert_allclose(vals2, [[.243, 0]], rtol=1e-8) | |
vals3 = multinomial.pmf([1, 2], [[[3], [4]]], [.1, .9]) | |
assert_allclose(vals3, [[[.243], [0]]], rtol=1e-8) | |
vals4 = multinomial.pmf([[1, 2], [1,1]], [[[[3]]]], [.1, .9]) | |
assert_allclose(vals4, [[[[.243, 0]]]], rtol=1e-8) | |
def test_cov(self, n): | |
cov1 = multinomial.cov(n, (.2, .3, .5)) | |
cov2 = [[n*.2*.8, -n*.2*.3, -n*.2*.5], | |
[-n*.3*.2, n*.3*.7, -n*.3*.5], | |
[-n*.5*.2, -n*.5*.3, n*.5*.5]] | |
assert_allclose(cov1, cov2, rtol=1e-8) | |
def test_cov_broadcasting(self): | |
cov1 = multinomial.cov(5, [[.1, .9], [.2, .8]]) | |
cov2 = [[[.45, -.45],[-.45, .45]], [[.8, -.8], [-.8, .8]]] | |
assert_allclose(cov1, cov2, rtol=1e-8) | |
cov3 = multinomial.cov([4, 5], [.1, .9]) | |
cov4 = [[[.36, -.36], [-.36, .36]], [[.45, -.45], [-.45, .45]]] | |
assert_allclose(cov3, cov4, rtol=1e-8) | |
cov5 = multinomial.cov([4, 5], [[.3, .7], [.4, .6]]) | |
cov6 = [[[4*.3*.7, -4*.3*.7], [-4*.3*.7, 4*.3*.7]], | |
[[5*.4*.6, -5*.4*.6], [-5*.4*.6, 5*.4*.6]]] | |
assert_allclose(cov5, cov6, rtol=1e-8) | |
def test_entropy(self, n): | |
# this is equivalent to a binomial distribution with n=2, so the | |
# entropy .77899774929 is easily computed "by hand" | |
ent0 = multinomial.entropy(n, [.2, .8]) | |
assert_allclose(ent0, binom.entropy(n, .2), rtol=1e-8) | |
def test_entropy_broadcasting(self): | |
ent0 = multinomial.entropy([2, 3], [.2, .3]) | |
assert_allclose(ent0, [binom.entropy(2, .2), binom.entropy(3, .2)], | |
rtol=1e-8) | |
ent1 = multinomial.entropy([7, 8], [[.3, .7], [.4, .6]]) | |
assert_allclose(ent1, [binom.entropy(7, .3), binom.entropy(8, .4)], | |
rtol=1e-8) | |
ent2 = multinomial.entropy([[7], [8]], [[.3, .7], [.4, .6]]) | |
assert_allclose(ent2, | |
[[binom.entropy(7, .3), binom.entropy(7, .4)], | |
[binom.entropy(8, .3), binom.entropy(8, .4)]], | |
rtol=1e-8) | |
def test_mean(self, n): | |
mean1 = multinomial.mean(n, [.2, .8]) | |
assert_allclose(mean1, [n*.2, n*.8], rtol=1e-8) | |
def test_mean_broadcasting(self): | |
mean1 = multinomial.mean([5, 6], [.2, .8]) | |
assert_allclose(mean1, [[5*.2, 5*.8], [6*.2, 6*.8]], rtol=1e-8) | |
def test_frozen(self): | |
# The frozen distribution should agree with the regular one | |
np.random.seed(1234) | |
n = 12 | |
pvals = (.1, .2, .3, .4) | |
x = [[0,0,0,12],[0,0,1,11],[0,1,1,10],[1,1,1,9],[1,1,2,8]] | |
x = np.asarray(x, dtype=np.float64) | |
mn_frozen = multinomial(n, pvals) | |
assert_allclose(mn_frozen.pmf(x), multinomial.pmf(x, n, pvals)) | |
assert_allclose(mn_frozen.logpmf(x), multinomial.logpmf(x, n, pvals)) | |
assert_allclose(mn_frozen.entropy(), multinomial.entropy(n, pvals)) | |
def test_gh_11860(self): | |
# gh-11860 reported cases in which the adjustments made by multinomial | |
# to the last element of `p` can cause `nan`s even when the input is | |
# essentially valid. Check that a pathological case returns a finite, | |
# nonzero result. (This would fail in main before the PR.) | |
n = 88 | |
rng = np.random.default_rng(8879715917488330089) | |
p = rng.random(n) | |
p[-1] = 1e-30 | |
p /= np.sum(p) | |
x = np.ones(n) | |
logpmf = multinomial.logpmf(x, n, p) | |
assert np.isfinite(logpmf) | |
class TestInvwishart: | |
def test_frozen(self): | |
# Test that the frozen and non-frozen inverse Wishart gives the same | |
# answers | |
# Construct an arbitrary positive definite scale matrix | |
dim = 4 | |
scale = np.diag(np.arange(dim)+1) | |
scale[np.tril_indices(dim, k=-1)] = np.arange(dim*(dim-1)/2) | |
scale = np.dot(scale.T, scale) | |
# Construct a collection of positive definite matrices to test the PDF | |
X = [] | |
for i in range(5): | |
x = np.diag(np.arange(dim)+(i+1)**2) | |
x[np.tril_indices(dim, k=-1)] = np.arange(dim*(dim-1)/2) | |
x = np.dot(x.T, x) | |
X.append(x) | |
X = np.array(X).T | |
# Construct a 1D and 2D set of parameters | |
parameters = [ | |
(10, 1, np.linspace(0.1, 10, 5)), # 1D case | |
(10, scale, X) | |
] | |
for (df, scale, x) in parameters: | |
iw = invwishart(df, scale) | |
assert_equal(iw.var(), invwishart.var(df, scale)) | |
assert_equal(iw.mean(), invwishart.mean(df, scale)) | |
assert_equal(iw.mode(), invwishart.mode(df, scale)) | |
assert_allclose(iw.pdf(x), invwishart.pdf(x, df, scale)) | |
def test_1D_is_invgamma(self): | |
# The 1-dimensional inverse Wishart with an identity scale matrix is | |
# just an inverse gamma distribution. | |
# Test variance, mean, pdf, entropy | |
# Kolgomorov-Smirnov test for rvs | |
np.random.seed(482974) | |
sn = 500 | |
dim = 1 | |
scale = np.eye(dim) | |
df_range = np.arange(5, 20, 2, dtype=float) | |
X = np.linspace(0.1,10,num=10) | |
for df in df_range: | |
iw = invwishart(df, scale) | |
ig = invgamma(df/2, scale=1./2) | |
# Statistics | |
assert_allclose(iw.var(), ig.var()) | |
assert_allclose(iw.mean(), ig.mean()) | |
assert_allclose(iw.pdf(X), ig.pdf(X)) | |
# rvs | |
rvs = iw.rvs(size=sn) | |
args = (df/2, 0, 1./2) | |
alpha = 0.01 | |
check_distribution_rvs('invgamma', args, alpha, rvs) | |
# entropy | |
assert_allclose(iw.entropy(), ig.entropy()) | |
def test_invwishart_2D_rvs(self): | |
dim = 3 | |
df = 10 | |
# Construct a simple non-diagonal positive definite matrix | |
scale = np.eye(dim) | |
scale[0,1] = 0.5 | |
scale[1,0] = 0.5 | |
# Construct frozen inverse-Wishart random variables | |
iw = invwishart(df, scale) | |
# Get the generated random variables from a known seed | |
np.random.seed(608072) | |
iw_rvs = invwishart.rvs(df, scale) | |
np.random.seed(608072) | |
frozen_iw_rvs = iw.rvs() | |
# Manually calculate what it should be, based on the decomposition in | |
# https://arxiv.org/abs/2310.15884 of an invers-Wishart into L L', | |
# where L A = D, D is the Cholesky factorization of the scale matrix, | |
# and A is the lower triangular matrix with the square root of chi^2 | |
# variates on the diagonal and N(0,1) variates in the lower triangle. | |
# the diagonal chi^2 variates in this A are reversed compared to those | |
# in the Bartlett decomposition A for Wishart rvs. | |
np.random.seed(608072) | |
covariances = np.random.normal(size=3) | |
variances = np.r_[ | |
np.random.chisquare(df-2), | |
np.random.chisquare(df-1), | |
np.random.chisquare(df), | |
]**0.5 | |
# Construct the lower-triangular A matrix | |
A = np.diag(variances) | |
A[np.tril_indices(dim, k=-1)] = covariances | |
# inverse-Wishart random variate | |
D = np.linalg.cholesky(scale) | |
L = np.linalg.solve(A.T, D.T).T | |
manual_iw_rvs = np.dot(L, L.T) | |
# Test for equality | |
assert_allclose(iw_rvs, manual_iw_rvs) | |
assert_allclose(frozen_iw_rvs, manual_iw_rvs) | |
def test_sample_mean(self): | |
"""Test that sample mean consistent with known mean.""" | |
# Construct an arbitrary positive definite scale matrix | |
df = 10 | |
sample_size = 20_000 | |
for dim in [1, 5]: | |
scale = np.diag(np.arange(dim) + 1) | |
scale[np.tril_indices(dim, k=-1)] = np.arange(dim * (dim - 1) / 2) | |
scale = np.dot(scale.T, scale) | |
dist = invwishart(df, scale) | |
Xmean_exp = dist.mean() | |
Xvar_exp = dist.var() | |
Xmean_std = (Xvar_exp / sample_size)**0.5 # asymptotic SE of mean estimate | |
X = dist.rvs(size=sample_size, random_state=1234) | |
Xmean_est = X.mean(axis=0) | |
ntests = dim*(dim + 1)//2 | |
fail_rate = 0.01 / ntests # correct for multiple tests | |
max_diff = norm.ppf(1 - fail_rate / 2) | |
assert np.allclose( | |
(Xmean_est - Xmean_exp) / Xmean_std, | |
0, | |
atol=max_diff, | |
) | |
def test_logpdf_4x4(self): | |
"""Regression test for gh-8844.""" | |
X = np.array([[2, 1, 0, 0.5], | |
[1, 2, 0.5, 0.5], | |
[0, 0.5, 3, 1], | |
[0.5, 0.5, 1, 2]]) | |
Psi = np.array([[9, 7, 3, 1], | |
[7, 9, 5, 1], | |
[3, 5, 8, 2], | |
[1, 1, 2, 9]]) | |
nu = 6 | |
prob = invwishart.logpdf(X, nu, Psi) | |
# Explicit calculation from the formula on wikipedia. | |
p = X.shape[0] | |
sig, logdetX = np.linalg.slogdet(X) | |
sig, logdetPsi = np.linalg.slogdet(Psi) | |
M = np.linalg.solve(X, Psi) | |
expected = ((nu/2)*logdetPsi | |
- (nu*p/2)*np.log(2) | |
- multigammaln(nu/2, p) | |
- (nu + p + 1)/2*logdetX | |
- 0.5*M.trace()) | |
assert_allclose(prob, expected) | |
class TestSpecialOrthoGroup: | |
def test_reproducibility(self): | |
np.random.seed(514) | |
x = special_ortho_group.rvs(3) | |
expected = np.array([[-0.99394515, -0.04527879, 0.10011432], | |
[0.04821555, -0.99846897, 0.02711042], | |
[0.09873351, 0.03177334, 0.99460653]]) | |
assert_array_almost_equal(x, expected) | |
random_state = np.random.RandomState(seed=514) | |
x = special_ortho_group.rvs(3, random_state=random_state) | |
assert_array_almost_equal(x, expected) | |
def test_invalid_dim(self): | |
assert_raises(ValueError, special_ortho_group.rvs, None) | |
assert_raises(ValueError, special_ortho_group.rvs, (2, 2)) | |
assert_raises(ValueError, special_ortho_group.rvs, 1) | |
assert_raises(ValueError, special_ortho_group.rvs, 2.5) | |
def test_frozen_matrix(self): | |
dim = 7 | |
frozen = special_ortho_group(dim) | |
rvs1 = frozen.rvs(random_state=1234) | |
rvs2 = special_ortho_group.rvs(dim, random_state=1234) | |
assert_equal(rvs1, rvs2) | |
def test_det_and_ortho(self): | |
xs = [special_ortho_group.rvs(dim) | |
for dim in range(2,12) | |
for i in range(3)] | |
# Test that determinants are always +1 | |
dets = [np.linalg.det(x) for x in xs] | |
assert_allclose(dets, [1.]*30, rtol=1e-13) | |
# Test that these are orthogonal matrices | |
for x in xs: | |
assert_array_almost_equal(np.dot(x, x.T), | |
np.eye(x.shape[0])) | |
def test_haar(self): | |
# Test that the distribution is constant under rotation | |
# Every column should have the same distribution | |
# Additionally, the distribution should be invariant under another rotation | |
# Generate samples | |
dim = 5 | |
samples = 1000 # Not too many, or the test takes too long | |
ks_prob = .05 | |
np.random.seed(514) | |
xs = special_ortho_group.rvs(dim, size=samples) | |
# Dot a few rows (0, 1, 2) with unit vectors (0, 2, 4, 3), | |
# effectively picking off entries in the matrices of xs. | |
# These projections should all have the same distribution, | |
# establishing rotational invariance. We use the two-sided | |
# KS test to confirm this. | |
# We could instead test that angles between random vectors | |
# are uniformly distributed, but the below is sufficient. | |
# It is not feasible to consider all pairs, so pick a few. | |
els = ((0,0), (0,2), (1,4), (2,3)) | |
#proj = {(er, ec): [x[er][ec] for x in xs] for er, ec in els} | |
proj = {(er, ec): sorted([x[er][ec] for x in xs]) for er, ec in els} | |
pairs = [(e0, e1) for e0 in els for e1 in els if e0 > e1] | |
ks_tests = [ks_2samp(proj[p0], proj[p1])[1] for (p0, p1) in pairs] | |
assert_array_less([ks_prob]*len(pairs), ks_tests) | |
class TestOrthoGroup: | |
def test_reproducibility(self): | |
seed = 514 | |
np.random.seed(seed) | |
x = ortho_group.rvs(3) | |
x2 = ortho_group.rvs(3, random_state=seed) | |
# Note this matrix has det -1, distinguishing O(N) from SO(N) | |
assert_almost_equal(np.linalg.det(x), -1) | |
expected = np.array([[0.381686, -0.090374, 0.919863], | |
[0.905794, -0.161537, -0.391718], | |
[-0.183993, -0.98272, -0.020204]]) | |
assert_array_almost_equal(x, expected) | |
assert_array_almost_equal(x2, expected) | |
def test_invalid_dim(self): | |
assert_raises(ValueError, ortho_group.rvs, None) | |
assert_raises(ValueError, ortho_group.rvs, (2, 2)) | |
assert_raises(ValueError, ortho_group.rvs, 1) | |
assert_raises(ValueError, ortho_group.rvs, 2.5) | |
def test_frozen_matrix(self): | |
dim = 7 | |
frozen = ortho_group(dim) | |
frozen_seed = ortho_group(dim, seed=1234) | |
rvs1 = frozen.rvs(random_state=1234) | |
rvs2 = ortho_group.rvs(dim, random_state=1234) | |
rvs3 = frozen_seed.rvs(size=1) | |
assert_equal(rvs1, rvs2) | |
assert_equal(rvs1, rvs3) | |
def test_det_and_ortho(self): | |
xs = [[ortho_group.rvs(dim) | |
for i in range(10)] | |
for dim in range(2,12)] | |
# Test that abs determinants are always +1 | |
dets = np.array([[np.linalg.det(x) for x in xx] for xx in xs]) | |
assert_allclose(np.fabs(dets), np.ones(dets.shape), rtol=1e-13) | |
# Test that these are orthogonal matrices | |
for xx in xs: | |
for x in xx: | |
assert_array_almost_equal(np.dot(x, x.T), | |
np.eye(x.shape[0])) | |
def test_det_distribution_gh18272(self, dim): | |
# Test that positive and negative determinants are equally likely. | |
rng = np.random.default_rng(6796248956179332344) | |
dist = ortho_group(dim=dim) | |
rvs = dist.rvs(size=5000, random_state=rng) | |
dets = scipy.linalg.det(rvs) | |
k = np.sum(dets > 0) | |
n = len(dets) | |
res = stats.binomtest(k, n) | |
low, high = res.proportion_ci(confidence_level=0.95) | |
assert low < 0.5 < high | |
def test_haar(self): | |
# Test that the distribution is constant under rotation | |
# Every column should have the same distribution | |
# Additionally, the distribution should be invariant under another rotation | |
# Generate samples | |
dim = 5 | |
samples = 1000 # Not too many, or the test takes too long | |
ks_prob = .05 | |
np.random.seed(518) # Note that the test is sensitive to seed too | |
xs = ortho_group.rvs(dim, size=samples) | |
# Dot a few rows (0, 1, 2) with unit vectors (0, 2, 4, 3), | |
# effectively picking off entries in the matrices of xs. | |
# These projections should all have the same distribution, | |
# establishing rotational invariance. We use the two-sided | |
# KS test to confirm this. | |
# We could instead test that angles between random vectors | |
# are uniformly distributed, but the below is sufficient. | |
# It is not feasible to consider all pairs, so pick a few. | |
els = ((0,0), (0,2), (1,4), (2,3)) | |
#proj = {(er, ec): [x[er][ec] for x in xs] for er, ec in els} | |
proj = {(er, ec): sorted([x[er][ec] for x in xs]) for er, ec in els} | |
pairs = [(e0, e1) for e0 in els for e1 in els if e0 > e1] | |
ks_tests = [ks_2samp(proj[p0], proj[p1])[1] for (p0, p1) in pairs] | |
assert_array_less([ks_prob]*len(pairs), ks_tests) | |
def test_pairwise_distances(self): | |
# Test that the distribution of pairwise distances is close to correct. | |
np.random.seed(514) | |
def random_ortho(dim): | |
u, _s, v = np.linalg.svd(np.random.normal(size=(dim, dim))) | |
return np.dot(u, v) | |
for dim in range(2, 6): | |
def generate_test_statistics(rvs, N=1000, eps=1e-10): | |
stats = np.array([ | |
np.sum((rvs(dim=dim) - rvs(dim=dim))**2) | |
for _ in range(N) | |
]) | |
# Add a bit of noise to account for numeric accuracy. | |
stats += np.random.uniform(-eps, eps, size=stats.shape) | |
return stats | |
expected = generate_test_statistics(random_ortho) | |
actual = generate_test_statistics(scipy.stats.ortho_group.rvs) | |
_D, p = scipy.stats.ks_2samp(expected, actual) | |
assert_array_less(.05, p) | |
class TestRandomCorrelation: | |
def test_reproducibility(self): | |
np.random.seed(514) | |
eigs = (.5, .8, 1.2, 1.5) | |
x = random_correlation.rvs(eigs) | |
x2 = random_correlation.rvs(eigs, random_state=514) | |
expected = np.array([[1., -0.184851, 0.109017, -0.227494], | |
[-0.184851, 1., 0.231236, 0.326669], | |
[0.109017, 0.231236, 1., -0.178912], | |
[-0.227494, 0.326669, -0.178912, 1.]]) | |
assert_array_almost_equal(x, expected) | |
assert_array_almost_equal(x2, expected) | |
def test_invalid_eigs(self): | |
assert_raises(ValueError, random_correlation.rvs, None) | |
assert_raises(ValueError, random_correlation.rvs, 'test') | |
assert_raises(ValueError, random_correlation.rvs, 2.5) | |
assert_raises(ValueError, random_correlation.rvs, [2.5]) | |
assert_raises(ValueError, random_correlation.rvs, [[1,2],[3,4]]) | |
assert_raises(ValueError, random_correlation.rvs, [2.5, -.5]) | |
assert_raises(ValueError, random_correlation.rvs, [1, 2, .1]) | |
def test_frozen_matrix(self): | |
eigs = (.5, .8, 1.2, 1.5) | |
frozen = random_correlation(eigs) | |
frozen_seed = random_correlation(eigs, seed=514) | |
rvs1 = random_correlation.rvs(eigs, random_state=514) | |
rvs2 = frozen.rvs(random_state=514) | |
rvs3 = frozen_seed.rvs() | |
assert_equal(rvs1, rvs2) | |
assert_equal(rvs1, rvs3) | |
def test_definition(self): | |
# Test the definition of a correlation matrix in several dimensions: | |
# | |
# 1. Det is product of eigenvalues (and positive by construction | |
# in examples) | |
# 2. 1's on diagonal | |
# 3. Matrix is symmetric | |
def norm(i, e): | |
return i*e/sum(e) | |
np.random.seed(123) | |
eigs = [norm(i, np.random.uniform(size=i)) for i in range(2, 6)] | |
eigs.append([4,0,0,0]) | |
ones = [[1.]*len(e) for e in eigs] | |
xs = [random_correlation.rvs(e) for e in eigs] | |
# Test that determinants are products of eigenvalues | |
# These are positive by construction | |
# Could also test that the eigenvalues themselves are correct, | |
# but this seems sufficient. | |
dets = [np.fabs(np.linalg.det(x)) for x in xs] | |
dets_known = [np.prod(e) for e in eigs] | |
assert_allclose(dets, dets_known, rtol=1e-13, atol=1e-13) | |
# Test for 1's on the diagonal | |
diags = [np.diag(x) for x in xs] | |
for a, b in zip(diags, ones): | |
assert_allclose(a, b, rtol=1e-13) | |
# Correlation matrices are symmetric | |
for x in xs: | |
assert_allclose(x, x.T, rtol=1e-13) | |
def test_to_corr(self): | |
# Check some corner cases in to_corr | |
# ajj == 1 | |
m = np.array([[0.1, 0], [0, 1]], dtype=float) | |
m = random_correlation._to_corr(m) | |
assert_allclose(m, np.array([[1, 0], [0, 0.1]])) | |
# Floating point overflow; fails to compute the correct | |
# rotation, but should still produce some valid rotation | |
# rather than infs/nans | |
with np.errstate(over='ignore'): | |
g = np.array([[0, 1], [-1, 0]]) | |
m0 = np.array([[1e300, 0], [0, np.nextafter(1, 0)]], dtype=float) | |
m = random_correlation._to_corr(m0.copy()) | |
assert_allclose(m, g.T.dot(m0).dot(g)) | |
m0 = np.array([[0.9, 1e300], [1e300, 1.1]], dtype=float) | |
m = random_correlation._to_corr(m0.copy()) | |
assert_allclose(m, g.T.dot(m0).dot(g)) | |
# Zero discriminant; should set the first diag entry to 1 | |
m0 = np.array([[2, 1], [1, 2]], dtype=float) | |
m = random_correlation._to_corr(m0.copy()) | |
assert_allclose(m[0,0], 1) | |
# Slightly negative discriminant; should be approx correct still | |
m0 = np.array([[2 + 1e-7, 1], [1, 2]], dtype=float) | |
m = random_correlation._to_corr(m0.copy()) | |
assert_allclose(m[0,0], 1) | |
class TestUniformDirection: | |
def test_samples(self, dim, size): | |
# test that samples have correct shape and norm 1 | |
rng = np.random.default_rng(2777937887058094419) | |
uniform_direction_dist = uniform_direction(dim, seed=rng) | |
samples = uniform_direction_dist.rvs(size) | |
mean, cov = np.zeros(dim), np.eye(dim) | |
expected_shape = rng.multivariate_normal(mean, cov, size=size).shape | |
assert samples.shape == expected_shape | |
norms = np.linalg.norm(samples, axis=-1) | |
assert_allclose(norms, 1.) | |
def test_invalid_dim(self, dim): | |
message = ("Dimension of vector must be specified, " | |
"and must be an integer greater than 0.") | |
with pytest.raises(ValueError, match=message): | |
uniform_direction.rvs(dim) | |
def test_frozen_distribution(self): | |
dim = 5 | |
frozen = uniform_direction(dim) | |
frozen_seed = uniform_direction(dim, seed=514) | |
rvs1 = frozen.rvs(random_state=514) | |
rvs2 = uniform_direction.rvs(dim, random_state=514) | |
rvs3 = frozen_seed.rvs() | |
assert_equal(rvs1, rvs2) | |
assert_equal(rvs1, rvs3) | |
def test_uniform(self, dim): | |
rng = np.random.default_rng(1036978481269651776) | |
spherical_dist = uniform_direction(dim, seed=rng) | |
# generate random, orthogonal vectors | |
v1, v2 = spherical_dist.rvs(size=2) | |
v2 -= v1 @ v2 * v1 | |
v2 /= np.linalg.norm(v2) | |
assert_allclose(v1 @ v2, 0, atol=1e-14) # orthogonal | |
# generate data and project onto orthogonal vectors | |
samples = spherical_dist.rvs(size=10000) | |
s1 = samples @ v1 | |
s2 = samples @ v2 | |
angles = np.arctan2(s1, s2) | |
# test that angles follow a uniform distribution | |
# normalize angles to range [0, 1] | |
angles += np.pi | |
angles /= 2*np.pi | |
# perform KS test | |
uniform_dist = uniform() | |
kstest_result = kstest(angles, uniform_dist.cdf) | |
assert kstest_result.pvalue > 0.05 | |
class TestUnitaryGroup: | |
def test_reproducibility(self): | |
np.random.seed(514) | |
x = unitary_group.rvs(3) | |
x2 = unitary_group.rvs(3, random_state=514) | |
expected = np.array( | |
[[0.308771+0.360312j, 0.044021+0.622082j, 0.160327+0.600173j], | |
[0.732757+0.297107j, 0.076692-0.4614j, -0.394349+0.022613j], | |
[-0.148844+0.357037j, -0.284602-0.557949j, 0.607051+0.299257j]] | |
) | |
assert_array_almost_equal(x, expected) | |
assert_array_almost_equal(x2, expected) | |
def test_invalid_dim(self): | |
assert_raises(ValueError, unitary_group.rvs, None) | |
assert_raises(ValueError, unitary_group.rvs, (2, 2)) | |
assert_raises(ValueError, unitary_group.rvs, 1) | |
assert_raises(ValueError, unitary_group.rvs, 2.5) | |
def test_frozen_matrix(self): | |
dim = 7 | |
frozen = unitary_group(dim) | |
frozen_seed = unitary_group(dim, seed=514) | |
rvs1 = frozen.rvs(random_state=514) | |
rvs2 = unitary_group.rvs(dim, random_state=514) | |
rvs3 = frozen_seed.rvs(size=1) | |
assert_equal(rvs1, rvs2) | |
assert_equal(rvs1, rvs3) | |
def test_unitarity(self): | |
xs = [unitary_group.rvs(dim) | |
for dim in range(2,12) | |
for i in range(3)] | |
# Test that these are unitary matrices | |
for x in xs: | |
assert_allclose(np.dot(x, x.conj().T), np.eye(x.shape[0]), atol=1e-15) | |
def test_haar(self): | |
# Test that the eigenvalues, which lie on the unit circle in | |
# the complex plane, are uncorrelated. | |
# Generate samples | |
dim = 5 | |
samples = 1000 # Not too many, or the test takes too long | |
np.random.seed(514) # Note that the test is sensitive to seed too | |
xs = unitary_group.rvs(dim, size=samples) | |
# The angles "x" of the eigenvalues should be uniformly distributed | |
# Overall this seems to be a necessary but weak test of the distribution. | |
eigs = np.vstack([scipy.linalg.eigvals(x) for x in xs]) | |
x = np.arctan2(eigs.imag, eigs.real) | |
res = kstest(x.ravel(), uniform(-np.pi, 2*np.pi).cdf) | |
assert_(res.pvalue > 0.05) | |
class TestMultivariateT: | |
# These tests were created by running vpa(mvtpdf(...)) in MATLAB. The | |
# function takes no `mu` parameter. The tests were run as | |
# | |
# >> ans = vpa(mvtpdf(x - mu, shape, df)); | |
# | |
PDF_TESTS = [( | |
# x | |
[ | |
[1, 2], | |
[4, 1], | |
[2, 1], | |
[2, 4], | |
[1, 4], | |
[4, 1], | |
[3, 2], | |
[3, 3], | |
[4, 4], | |
[5, 1], | |
], | |
# loc | |
[0, 0], | |
# shape | |
[ | |
[1, 0], | |
[0, 1] | |
], | |
# df | |
4, | |
# ans | |
[ | |
0.013972450422333741737457302178882, | |
0.0010998721906793330026219646100571, | |
0.013972450422333741737457302178882, | |
0.00073682844024025606101402363634634, | |
0.0010998721906793330026219646100571, | |
0.0010998721906793330026219646100571, | |
0.0020732579600816823488240725481546, | |
0.00095660371505271429414668515889275, | |
0.00021831953784896498569831346792114, | |
0.00037725616140301147447000396084604 | |
] | |
), ( | |
# x | |
[ | |
[0.9718, 0.1298, 0.8134], | |
[0.4922, 0.5522, 0.7185], | |
[0.3010, 0.1491, 0.5008], | |
[0.5971, 0.2585, 0.8940], | |
[0.5434, 0.5287, 0.9507], | |
], | |
# loc | |
[-1, 1, 50], | |
# shape | |
[ | |
[1.0000, 0.5000, 0.2500], | |
[0.5000, 1.0000, -0.1000], | |
[0.2500, -0.1000, 1.0000], | |
], | |
# df | |
8, | |
# ans | |
[ | |
0.00000000000000069609279697467772867405511133763, | |
0.00000000000000073700739052207366474839369535934, | |
0.00000000000000069522909962669171512174435447027, | |
0.00000000000000074212293557998314091880208889767, | |
0.00000000000000077039675154022118593323030449058, | |
] | |
)] | |
def test_pdf_correctness(self, x, loc, shape, df, ans): | |
dist = multivariate_t(loc, shape, df, seed=0) | |
val = dist.pdf(x) | |
assert_array_almost_equal(val, ans) | |
def test_logpdf_correct(self, x, loc, shape, df, ans): | |
dist = multivariate_t(loc, shape, df, seed=0) | |
val1 = dist.pdf(x) | |
val2 = dist.logpdf(x) | |
assert_array_almost_equal(np.log(val1), val2) | |
# https://github.com/scipy/scipy/issues/10042#issuecomment-576795195 | |
def test_mvt_with_df_one_is_cauchy(self): | |
x = [9, 7, 4, 1, -3, 9, 0, -3, -1, 3] | |
val = multivariate_t.pdf(x, df=1) | |
ans = cauchy.pdf(x) | |
assert_array_almost_equal(val, ans) | |
def test_mvt_with_high_df_is_approx_normal(self): | |
# `normaltest` returns the chi-squared statistic and the associated | |
# p-value. The null hypothesis is that `x` came from a normal | |
# distribution, so a low p-value represents rejecting the null, i.e. | |
# that it is unlikely that `x` came a normal distribution. | |
P_VAL_MIN = 0.1 | |
dist = multivariate_t(0, 1, df=100000, seed=1) | |
samples = dist.rvs(size=100000) | |
_, p = normaltest(samples) | |
assert (p > P_VAL_MIN) | |
dist = multivariate_t([-2, 3], [[10, -1], [-1, 10]], df=100000, | |
seed=42) | |
samples = dist.rvs(size=100000) | |
_, p = normaltest(samples) | |
assert ((p > P_VAL_MIN).all()) | |
def test_mvt_with_inf_df_calls_normal(self, mock): | |
dist = multivariate_t(0, 1, df=np.inf, seed=7) | |
assert isinstance(dist, multivariate_normal_frozen) | |
multivariate_t.pdf(0, df=np.inf) | |
assert mock.call_count == 1 | |
multivariate_t.logpdf(0, df=np.inf) | |
assert mock.call_count == 2 | |
def test_shape_correctness(self): | |
# pdf and logpdf should return scalar when the | |
# number of samples in x is one. | |
dim = 4 | |
loc = np.zeros(dim) | |
shape = np.eye(dim) | |
df = 4.5 | |
x = np.zeros(dim) | |
res = multivariate_t(loc, shape, df).pdf(x) | |
assert np.isscalar(res) | |
res = multivariate_t(loc, shape, df).logpdf(x) | |
assert np.isscalar(res) | |
# pdf() and logpdf() should return probabilities of shape | |
# (n_samples,) when x has n_samples. | |
n_samples = 7 | |
x = np.random.random((n_samples, dim)) | |
res = multivariate_t(loc, shape, df).pdf(x) | |
assert (res.shape == (n_samples,)) | |
res = multivariate_t(loc, shape, df).logpdf(x) | |
assert (res.shape == (n_samples,)) | |
# rvs() should return scalar unless a size argument is applied. | |
res = multivariate_t(np.zeros(1), np.eye(1), 1).rvs() | |
assert np.isscalar(res) | |
# rvs() should return vector of shape (size,) if size argument | |
# is applied. | |
size = 7 | |
res = multivariate_t(np.zeros(1), np.eye(1), 1).rvs(size=size) | |
assert (res.shape == (size,)) | |
def test_default_arguments(self): | |
dist = multivariate_t() | |
assert_equal(dist.loc, [0]) | |
assert_equal(dist.shape, [[1]]) | |
assert (dist.df == 1) | |
DEFAULT_ARGS_TESTS = [ | |
(None, None, None, 0, 1, 1), | |
(None, None, 7, 0, 1, 7), | |
(None, [[7, 0], [0, 7]], None, [0, 0], [[7, 0], [0, 7]], 1), | |
(None, [[7, 0], [0, 7]], 7, [0, 0], [[7, 0], [0, 7]], 7), | |
([7, 7], None, None, [7, 7], [[1, 0], [0, 1]], 1), | |
([7, 7], None, 7, [7, 7], [[1, 0], [0, 1]], 7), | |
([7, 7], [[7, 0], [0, 7]], None, [7, 7], [[7, 0], [0, 7]], 1), | |
([7, 7], [[7, 0], [0, 7]], 7, [7, 7], [[7, 0], [0, 7]], 7) | |
] | |
def test_default_args(self, loc, shape, df, loc_ans, shape_ans, df_ans): | |
dist = multivariate_t(loc=loc, shape=shape, df=df) | |
assert_equal(dist.loc, loc_ans) | |
assert_equal(dist.shape, shape_ans) | |
assert (dist.df == df_ans) | |
ARGS_SHAPES_TESTS = [ | |
(-1, 2, 3, [-1], [[2]], 3), | |
([-1], [2], 3, [-1], [[2]], 3), | |
(np.array([-1]), np.array([2]), 3, [-1], [[2]], 3) | |
] | |
def test_scalar_list_and_ndarray_arguments(self, loc, shape, df, loc_ans, | |
shape_ans, df_ans): | |
dist = multivariate_t(loc, shape, df) | |
assert_equal(dist.loc, loc_ans) | |
assert_equal(dist.shape, shape_ans) | |
assert_equal(dist.df, df_ans) | |
def test_argument_error_handling(self): | |
# `loc` should be a one-dimensional vector. | |
loc = [[1, 1]] | |
assert_raises(ValueError, | |
multivariate_t, | |
**dict(loc=loc)) | |
# `shape` should be scalar or square matrix. | |
shape = [[1, 1], [2, 2], [3, 3]] | |
assert_raises(ValueError, | |
multivariate_t, | |
**dict(loc=loc, shape=shape)) | |
# `df` should be greater than zero. | |
loc = np.zeros(2) | |
shape = np.eye(2) | |
df = -1 | |
assert_raises(ValueError, | |
multivariate_t, | |
**dict(loc=loc, shape=shape, df=df)) | |
df = 0 | |
assert_raises(ValueError, | |
multivariate_t, | |
**dict(loc=loc, shape=shape, df=df)) | |
def test_reproducibility(self): | |
rng = np.random.RandomState(4) | |
loc = rng.uniform(size=3) | |
shape = np.eye(3) | |
dist1 = multivariate_t(loc, shape, df=3, seed=2) | |
dist2 = multivariate_t(loc, shape, df=3, seed=2) | |
samples1 = dist1.rvs(size=10) | |
samples2 = dist2.rvs(size=10) | |
assert_equal(samples1, samples2) | |
def test_allow_singular(self): | |
# Make shape singular and verify error was raised. | |
args = dict(loc=[0,0], shape=[[0,0],[0,1]], df=1, allow_singular=False) | |
assert_raises(np.linalg.LinAlgError, multivariate_t, **args) | |
def test_rvs(self, size, dim, df): | |
dist = multivariate_t(np.zeros(dim), np.eye(dim), df) | |
rvs = dist.rvs(size=size) | |
assert rvs.shape == size + (dim, ) | |
def test_cdf_signs(self): | |
# check that sign of output is correct when np.any(lower > x) | |
mean = np.zeros(3) | |
cov = np.eye(3) | |
df = 10 | |
b = [[1, 1, 1], [0, 0, 0], [1, 0, 1], [0, 1, 0]] | |
a = [[0, 0, 0], [1, 1, 1], [0, 1, 0], [1, 0, 1]] | |
# when odd number of elements of b < a, output is negative | |
expected_signs = np.array([1, -1, -1, 1]) | |
cdf = multivariate_normal.cdf(b, mean, cov, df, lower_limit=a) | |
assert_allclose(cdf, cdf[0]*expected_signs) | |
def test_cdf_against_multivariate_normal(self, dim): | |
# Check accuracy against MVN randomly-generated cases | |
self.cdf_against_mvn_test(dim) | |
def test_cdf_against_multivariate_normal_singular(self, dim): | |
# Check accuracy against MVN for randomly-generated singular cases | |
self.cdf_against_mvn_test(3, True) | |
def cdf_against_mvn_test(self, dim, singular=False): | |
# Check for accuracy in the limit that df -> oo and MVT -> MVN | |
rng = np.random.default_rng(413722918996573) | |
n = 3 | |
w = 10**rng.uniform(-2, 1, size=dim) | |
cov = _random_covariance(dim, w, rng, singular) | |
mean = 10**rng.uniform(-1, 2, size=dim) * np.sign(rng.normal(size=dim)) | |
a = -10**rng.uniform(-1, 2, size=(n, dim)) + mean | |
b = 10**rng.uniform(-1, 2, size=(n, dim)) + mean | |
res = stats.multivariate_t.cdf(b, mean, cov, df=10000, lower_limit=a, | |
allow_singular=True, random_state=rng) | |
ref = stats.multivariate_normal.cdf(b, mean, cov, allow_singular=True, | |
lower_limit=a) | |
assert_allclose(res, ref, atol=5e-4) | |
def test_cdf_against_univariate_t(self): | |
rng = np.random.default_rng(413722918996573) | |
cov = 2 | |
mean = 0 | |
x = rng.normal(size=10, scale=np.sqrt(cov)) | |
df = 3 | |
res = stats.multivariate_t.cdf(x, mean, cov, df, lower_limit=-np.inf, | |
random_state=rng) | |
ref = stats.t.cdf(x, df, mean, np.sqrt(cov)) | |
incorrect = stats.norm.cdf(x, mean, np.sqrt(cov)) | |
assert_allclose(res, ref, atol=5e-4) # close to t | |
assert np.all(np.abs(res - incorrect) > 1e-3) # not close to normal | |
def test_cdf_against_qsimvtv(self, dim, seed, singular): | |
if singular and seed != 3363958638: | |
pytest.skip('Agreement with qsimvtv is not great in singular case') | |
rng = np.random.default_rng(seed) | |
w = 10**rng.uniform(-2, 2, size=dim) | |
cov = _random_covariance(dim, w, rng, singular) | |
mean = rng.random(dim) | |
a = -rng.random(dim) | |
b = rng.random(dim) | |
df = rng.random() * 5 | |
# no lower limit | |
res = stats.multivariate_t.cdf(b, mean, cov, df, random_state=rng, | |
allow_singular=True) | |
with np.errstate(invalid='ignore'): | |
ref = _qsimvtv(20000, df, cov, np.inf*a, b - mean, rng)[0] | |
assert_allclose(res, ref, atol=2e-4, rtol=1e-3) | |
# with lower limit | |
res = stats.multivariate_t.cdf(b, mean, cov, df, lower_limit=a, | |
random_state=rng, allow_singular=True) | |
with np.errstate(invalid='ignore'): | |
ref = _qsimvtv(20000, df, cov, a - mean, b - mean, rng)[0] | |
assert_allclose(res, ref, atol=1e-4, rtol=1e-3) | |
def test_cdf_against_generic_integrators(self): | |
# Compare result against generic numerical integrators | |
dim = 3 | |
rng = np.random.default_rng(41372291899657) | |
w = 10 ** rng.uniform(-1, 1, size=dim) | |
cov = _random_covariance(dim, w, rng, singular=True) | |
mean = rng.random(dim) | |
a = -rng.random(dim) | |
b = rng.random(dim) | |
df = rng.random() * 5 | |
res = stats.multivariate_t.cdf(b, mean, cov, df, random_state=rng, | |
lower_limit=a) | |
def integrand(x): | |
return stats.multivariate_t.pdf(x.T, mean, cov, df) | |
ref = qmc_quad(integrand, a, b, qrng=stats.qmc.Halton(d=dim, seed=rng)) | |
assert_allclose(res, ref.integral, rtol=1e-3) | |
def integrand(*zyx): | |
return stats.multivariate_t.pdf(zyx[::-1], mean, cov, df) | |
ref = tplquad(integrand, a[0], b[0], a[1], b[1], a[2], b[2]) | |
assert_allclose(res, ref[0], rtol=1e-3) | |
def test_against_matlab(self): | |
# Test against matlab mvtcdf: | |
# C = [6.21786909 0.2333667 7.95506077; | |
# 0.2333667 29.67390923 16.53946426; | |
# 7.95506077 16.53946426 19.17725252] | |
# df = 1.9559939787727658 | |
# mvtcdf([0, 0, 0], C, df) % 0.2523 | |
rng = np.random.default_rng(2967390923) | |
cov = np.array([[ 6.21786909, 0.2333667 , 7.95506077], | |
[ 0.2333667 , 29.67390923, 16.53946426], | |
[ 7.95506077, 16.53946426, 19.17725252]]) | |
df = 1.9559939787727658 | |
dist = stats.multivariate_t(shape=cov, df=df) | |
res = dist.cdf([0, 0, 0], random_state=rng) | |
ref = 0.2523 | |
assert_allclose(res, ref, rtol=1e-3) | |
def test_frozen(self): | |
seed = 4137229573 | |
rng = np.random.default_rng(seed) | |
loc = rng.uniform(size=3) | |
x = rng.uniform(size=3) + loc | |
shape = np.eye(3) | |
df = rng.random() | |
args = (loc, shape, df) | |
rng_frozen = np.random.default_rng(seed) | |
rng_unfrozen = np.random.default_rng(seed) | |
dist = stats.multivariate_t(*args, seed=rng_frozen) | |
assert_equal(dist.cdf(x), | |
multivariate_t.cdf(x, *args, random_state=rng_unfrozen)) | |
def test_vectorized(self): | |
dim = 4 | |
n = (2, 3) | |
rng = np.random.default_rng(413722918996573) | |
A = rng.random(size=(dim, dim)) | |
cov = A @ A.T | |
mean = rng.random(dim) | |
x = rng.random(n + (dim,)) | |
df = rng.random() * 5 | |
res = stats.multivariate_t.cdf(x, mean, cov, df, random_state=rng) | |
def _cdf_1d(x): | |
return _qsimvtv(10000, df, cov, -np.inf*x, x-mean, rng)[0] | |
ref = np.apply_along_axis(_cdf_1d, -1, x) | |
assert_allclose(res, ref, atol=1e-4, rtol=1e-3) | |
def test_against_analytical(self, dim): | |
rng = np.random.default_rng(413722918996573) | |
A = scipy.linalg.toeplitz(c=[1] + [0.5] * (dim - 1)) | |
res = stats.multivariate_t(shape=A).cdf([0] * dim, random_state=rng) | |
ref = 1 / (dim + 1) | |
assert_allclose(res, ref, rtol=5e-5) | |
def test_entropy_inf_df(self): | |
cov = np.eye(3, 3) | |
df = np.inf | |
mvt_entropy = stats.multivariate_t.entropy(shape=cov, df=df) | |
mvn_entropy = stats.multivariate_normal.entropy(None, cov) | |
assert mvt_entropy == mvn_entropy | |
def test_entropy_1d(self, df): | |
mvt_entropy = stats.multivariate_t.entropy(shape=1., df=df) | |
t_entropy = stats.t.entropy(df=df) | |
assert_allclose(mvt_entropy, t_entropy, rtol=1e-13) | |
# entropy reference values were computed via numerical integration | |
# | |
# def integrand(x, y, mvt): | |
# vec = np.array([x, y]) | |
# return mvt.logpdf(vec) * mvt.pdf(vec) | |
# def multivariate_t_entropy_quad_2d(df, cov): | |
# dim = cov.shape[0] | |
# loc = np.zeros((dim, )) | |
# mvt = stats.multivariate_t(loc, cov, df) | |
# limit = 100 | |
# return -integrate.dblquad(integrand, -limit, limit, -limit, limit, | |
# args=(mvt, ))[0] | |
def test_entropy_vs_numerical_integration(self, df, cov, ref, tol): | |
loc = np.zeros((2, )) | |
mvt = stats.multivariate_t(loc, cov, df) | |
assert_allclose(mvt.entropy(), ref, rtol=tol) | |
def test_extreme_entropy(self, df, dim, ref, tol): | |
# Reference values were calculated with mpmath: | |
# from mpmath import mp | |
# mp.dps = 500 | |
# | |
# def mul_t_mpmath_entropy(dim, df=1): | |
# dim = mp.mpf(dim) | |
# df = mp.mpf(df) | |
# halfsum = (dim + df)/2 | |
# half_df = df/2 | |
# | |
# return float( | |
# -mp.loggamma(halfsum) + mp.loggamma(half_df) | |
# + dim / 2 * mp.log(df * mp.pi) | |
# + halfsum * (mp.digamma(halfsum) - mp.digamma(half_df)) | |
# + 0.0 | |
# ) | |
mvt = stats.multivariate_t(shape=np.eye(dim), df=df) | |
assert_allclose(mvt.entropy(), ref, rtol=tol) | |
def test_entropy_with_covariance(self): | |
# Generated using np.randn(5, 5) and then rounding | |
# to two decimal places | |
_A = np.array([ | |
[1.42, 0.09, -0.49, 0.17, 0.74], | |
[-1.13, -0.01, 0.71, 0.4, -0.56], | |
[1.07, 0.44, -0.28, -0.44, 0.29], | |
[-1.5, -0.94, -0.67, 0.73, -1.1], | |
[0.17, -0.08, 1.46, -0.32, 1.36] | |
]) | |
# Set cov to be a symmetric positive semi-definite matrix | |
cov = _A @ _A.T | |
# Test the asymptotic case. For large degrees of freedom | |
# the entropy approaches the multivariate normal entropy. | |
df = 1e20 | |
mul_t_entropy = stats.multivariate_t.entropy(shape=cov, df=df) | |
mul_norm_entropy = multivariate_normal(None, cov=cov).entropy() | |
assert_allclose(mul_t_entropy, mul_norm_entropy, rtol=1e-15) | |
# Test the regular case. For a dim of 5 the threshold comes out | |
# to be approximately 766.45. So using slightly | |
# different dfs on each site of the threshold, the entropies | |
# are being compared. | |
df1 = 765 | |
df2 = 768 | |
_entropy1 = stats.multivariate_t.entropy(shape=cov, df=df1) | |
_entropy2 = stats.multivariate_t.entropy(shape=cov, df=df2) | |
assert_allclose(_entropy1, _entropy2, rtol=1e-5) | |
class TestMultivariateHypergeom: | |
def test_logpmf(self, x, m, n, expected): | |
vals = multivariate_hypergeom.logpmf(x, m, n) | |
assert_allclose(vals, expected, rtol=1e-6) | |
def test_reduces_hypergeom(self): | |
# test that the multivariate_hypergeom pmf reduces to the | |
# hypergeom pmf in the 2d case. | |
val1 = multivariate_hypergeom.pmf(x=[3, 1], m=[10, 5], n=4) | |
val2 = hypergeom.pmf(k=3, M=15, n=4, N=10) | |
assert_allclose(val1, val2, rtol=1e-8) | |
val1 = multivariate_hypergeom.pmf(x=[7, 3], m=[15, 10], n=10) | |
val2 = hypergeom.pmf(k=7, M=25, n=10, N=15) | |
assert_allclose(val1, val2, rtol=1e-8) | |
def test_rvs(self): | |
# test if `rvs` is unbiased and large sample size converges | |
# to the true mean. | |
rv = multivariate_hypergeom(m=[3, 5], n=4) | |
rvs = rv.rvs(size=1000, random_state=123) | |
assert_allclose(rvs.mean(0), rv.mean(), rtol=1e-2) | |
def test_rvs_broadcasting(self): | |
rv = multivariate_hypergeom(m=[[3, 5], [5, 10]], n=[4, 9]) | |
rvs = rv.rvs(size=(1000, 2), random_state=123) | |
assert_allclose(rvs.mean(0), rv.mean(), rtol=1e-2) | |
def test_rvs_gh16171(self, m, n): | |
res = multivariate_hypergeom.rvs(m, n) | |
m = np.asarray(m) | |
res_ex = m.copy() | |
res_ex[m != 0] = n | |
assert_equal(res, res_ex) | |
def test_pmf(self, x, m, n, expected): | |
vals = multivariate_hypergeom.pmf(x, m, n) | |
assert_allclose(vals, expected, rtol=1e-7) | |
def test_pmf_broadcasting(self, x, m, n, expected): | |
vals = multivariate_hypergeom.pmf(x, m, n) | |
assert_allclose(vals, expected, rtol=1e-7) | |
def test_cov(self): | |
cov1 = multivariate_hypergeom.cov(m=[3, 7, 10], n=12) | |
cov2 = [[0.64421053, -0.26526316, -0.37894737], | |
[-0.26526316, 1.14947368, -0.88421053], | |
[-0.37894737, -0.88421053, 1.26315789]] | |
assert_allclose(cov1, cov2, rtol=1e-8) | |
def test_cov_broadcasting(self): | |
cov1 = multivariate_hypergeom.cov(m=[[7, 9], [10, 15]], n=[8, 12]) | |
cov2 = [[[1.05, -1.05], [-1.05, 1.05]], | |
[[1.56, -1.56], [-1.56, 1.56]]] | |
assert_allclose(cov1, cov2, rtol=1e-8) | |
cov3 = multivariate_hypergeom.cov(m=[[4], [5]], n=[4, 5]) | |
cov4 = [[[0.]], [[0.]]] | |
assert_allclose(cov3, cov4, rtol=1e-8) | |
cov5 = multivariate_hypergeom.cov(m=[7, 9], n=[8, 12]) | |
cov6 = [[[1.05, -1.05], [-1.05, 1.05]], | |
[[0.7875, -0.7875], [-0.7875, 0.7875]]] | |
assert_allclose(cov5, cov6, rtol=1e-8) | |
def test_var(self): | |
# test with hypergeom | |
var0 = multivariate_hypergeom.var(m=[10, 5], n=4) | |
var1 = hypergeom.var(M=15, n=4, N=10) | |
assert_allclose(var0, var1, rtol=1e-8) | |
def test_var_broadcasting(self): | |
var0 = multivariate_hypergeom.var(m=[10, 5], n=[4, 8]) | |
var1 = multivariate_hypergeom.var(m=[10, 5], n=4) | |
var2 = multivariate_hypergeom.var(m=[10, 5], n=8) | |
assert_allclose(var0[0], var1, rtol=1e-8) | |
assert_allclose(var0[1], var2, rtol=1e-8) | |
var3 = multivariate_hypergeom.var(m=[[10, 5], [10, 14]], n=[4, 8]) | |
var4 = [[0.6984127, 0.6984127], [1.352657, 1.352657]] | |
assert_allclose(var3, var4, rtol=1e-8) | |
var5 = multivariate_hypergeom.var(m=[[5], [10]], n=[5, 10]) | |
var6 = [[0.], [0.]] | |
assert_allclose(var5, var6, rtol=1e-8) | |
def test_mean(self): | |
# test with hypergeom | |
mean0 = multivariate_hypergeom.mean(m=[10, 5], n=4) | |
mean1 = hypergeom.mean(M=15, n=4, N=10) | |
assert_allclose(mean0[0], mean1, rtol=1e-8) | |
mean2 = multivariate_hypergeom.mean(m=[12, 8], n=10) | |
mean3 = [12.*10./20., 8.*10./20.] | |
assert_allclose(mean2, mean3, rtol=1e-8) | |
def test_mean_broadcasting(self): | |
mean0 = multivariate_hypergeom.mean(m=[[3, 5], [10, 5]], n=[4, 8]) | |
mean1 = [[3.*4./8., 5.*4./8.], [10.*8./15., 5.*8./15.]] | |
assert_allclose(mean0, mean1, rtol=1e-8) | |
def test_mean_edge_cases(self): | |
mean0 = multivariate_hypergeom.mean(m=[0, 0, 0], n=0) | |
assert_equal(mean0, [0., 0., 0.]) | |
mean1 = multivariate_hypergeom.mean(m=[1, 0, 0], n=2) | |
assert_equal(mean1, [np.nan, np.nan, np.nan]) | |
mean2 = multivariate_hypergeom.mean(m=[[1, 0, 0], [1, 0, 1]], n=2) | |
assert_allclose(mean2, [[np.nan, np.nan, np.nan], [1., 0., 1.]], | |
rtol=1e-17) | |
mean3 = multivariate_hypergeom.mean(m=np.array([], dtype=int), n=0) | |
assert_equal(mean3, []) | |
assert_(mean3.shape == (0, )) | |
def test_var_edge_cases(self): | |
var0 = multivariate_hypergeom.var(m=[0, 0, 0], n=0) | |
assert_allclose(var0, [0., 0., 0.], rtol=1e-16) | |
var1 = multivariate_hypergeom.var(m=[1, 0, 0], n=2) | |
assert_equal(var1, [np.nan, np.nan, np.nan]) | |
var2 = multivariate_hypergeom.var(m=[[1, 0, 0], [1, 0, 1]], n=2) | |
assert_allclose(var2, [[np.nan, np.nan, np.nan], [0., 0., 0.]], | |
rtol=1e-17) | |
var3 = multivariate_hypergeom.var(m=np.array([], dtype=int), n=0) | |
assert_equal(var3, []) | |
assert_(var3.shape == (0, )) | |
def test_cov_edge_cases(self): | |
cov0 = multivariate_hypergeom.cov(m=[1, 0, 0], n=1) | |
cov1 = [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]] | |
assert_allclose(cov0, cov1, rtol=1e-17) | |
cov3 = multivariate_hypergeom.cov(m=[0, 0, 0], n=0) | |
cov4 = [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]] | |
assert_equal(cov3, cov4) | |
cov5 = multivariate_hypergeom.cov(m=np.array([], dtype=int), n=0) | |
cov6 = np.array([], dtype=np.float64).reshape(0, 0) | |
assert_allclose(cov5, cov6, rtol=1e-17) | |
assert_(cov5.shape == (0, 0)) | |
def test_frozen(self): | |
# The frozen distribution should agree with the regular one | |
np.random.seed(1234) | |
n = 12 | |
m = [7, 9, 11, 13] | |
x = [[0, 0, 0, 12], [0, 0, 1, 11], [0, 1, 1, 10], | |
[1, 1, 1, 9], [1, 1, 2, 8]] | |
x = np.asarray(x, dtype=int) | |
mhg_frozen = multivariate_hypergeom(m, n) | |
assert_allclose(mhg_frozen.pmf(x), | |
multivariate_hypergeom.pmf(x, m, n)) | |
assert_allclose(mhg_frozen.logpmf(x), | |
multivariate_hypergeom.logpmf(x, m, n)) | |
assert_allclose(mhg_frozen.var(), multivariate_hypergeom.var(m, n)) | |
assert_allclose(mhg_frozen.cov(), multivariate_hypergeom.cov(m, n)) | |
def test_invalid_params(self): | |
assert_raises(ValueError, multivariate_hypergeom.pmf, 5, 10, 5) | |
assert_raises(ValueError, multivariate_hypergeom.pmf, 5, [10], 5) | |
assert_raises(ValueError, multivariate_hypergeom.pmf, [5, 4], [10], 5) | |
assert_raises(TypeError, multivariate_hypergeom.pmf, [5.5, 4.5], | |
[10, 15], 5) | |
assert_raises(TypeError, multivariate_hypergeom.pmf, [5, 4], | |
[10.5, 15.5], 5) | |
assert_raises(TypeError, multivariate_hypergeom.pmf, [5, 4], | |
[10, 15], 5.5) | |
class TestRandomTable: | |
def get_rng(self): | |
return np.random.default_rng(628174795866951638) | |
def test_process_parameters(self): | |
message = "`row` must be one-dimensional" | |
with pytest.raises(ValueError, match=message): | |
random_table([[1, 2]], [1, 2]) | |
message = "`col` must be one-dimensional" | |
with pytest.raises(ValueError, match=message): | |
random_table([1, 2], [[1, 2]]) | |
message = "each element of `row` must be non-negative" | |
with pytest.raises(ValueError, match=message): | |
random_table([1, -1], [1, 2]) | |
message = "each element of `col` must be non-negative" | |
with pytest.raises(ValueError, match=message): | |
random_table([1, 2], [1, -2]) | |
message = "sums over `row` and `col` must be equal" | |
with pytest.raises(ValueError, match=message): | |
random_table([1, 2], [1, 0]) | |
message = "each element of `row` must be an integer" | |
with pytest.raises(ValueError, match=message): | |
random_table([2.1, 2.1], [1, 1, 2]) | |
message = "each element of `col` must be an integer" | |
with pytest.raises(ValueError, match=message): | |
random_table([1, 2], [1.1, 1.1, 1]) | |
row = [1, 3] | |
col = [2, 1, 1] | |
r, c, n = random_table._process_parameters([1, 3], [2, 1, 1]) | |
assert_equal(row, r) | |
assert_equal(col, c) | |
assert n == np.sum(row) | |
def test_process_rvs_method_on_None(self, scale, method): | |
row = np.array([1, 3]) * scale | |
col = np.array([2, 1, 1]) * scale | |
ct = random_table | |
expected = ct.rvs(row, col, method=method, random_state=1) | |
got = ct.rvs(row, col, method=None, random_state=1) | |
assert_equal(expected, got) | |
def test_process_rvs_method_bad_argument(self): | |
row = [1, 3] | |
col = [2, 1, 1] | |
# order of items in set is random, so cannot check that | |
message = "'foo' not recognized, must be one of" | |
with pytest.raises(ValueError, match=message): | |
random_table.rvs(row, col, method="foo") | |
def test_pmf_logpmf(self, frozen, log): | |
# The pmf is tested through random sample generation | |
# with Boyett's algorithm, whose implementation is simple | |
# enough to verify manually for correctness. | |
rng = self.get_rng() | |
row = [2, 6] | |
col = [1, 3, 4] | |
rvs = random_table.rvs(row, col, size=1000, | |
method="boyett", random_state=rng) | |
obj = random_table(row, col) if frozen else random_table | |
method = getattr(obj, "logpmf" if log else "pmf") | |
if not frozen: | |
original_method = method | |
def method(x): | |
return original_method(x, row, col) | |
pmf = (lambda x: np.exp(method(x))) if log else method | |
unique_rvs, counts = np.unique(rvs, axis=0, return_counts=True) | |
# rough accuracy check | |
p = pmf(unique_rvs) | |
assert_allclose(p * len(rvs), counts, rtol=0.1) | |
# accept any iterable | |
p2 = pmf(list(unique_rvs[0])) | |
assert_equal(p2, p[0]) | |
# accept high-dimensional input and 2d input | |
rvs_nd = rvs.reshape((10, 100) + rvs.shape[1:]) | |
p = pmf(rvs_nd) | |
assert p.shape == (10, 100) | |
for i in range(p.shape[0]): | |
for j in range(p.shape[1]): | |
pij = p[i, j] | |
rvij = rvs_nd[i, j] | |
qij = pmf(rvij) | |
assert_equal(pij, qij) | |
# probability is zero if column marginal does not match | |
x = [[0, 1, 1], [2, 1, 3]] | |
assert_equal(np.sum(x, axis=-1), row) | |
p = pmf(x) | |
assert p == 0 | |
# probability is zero if row marginal does not match | |
x = [[0, 1, 2], [1, 2, 2]] | |
assert_equal(np.sum(x, axis=-2), col) | |
p = pmf(x) | |
assert p == 0 | |
# response to invalid inputs | |
message = "`x` must be at least two-dimensional" | |
with pytest.raises(ValueError, match=message): | |
pmf([1]) | |
message = "`x` must contain only integral values" | |
with pytest.raises(ValueError, match=message): | |
pmf([[1.1]]) | |
message = "`x` must contain only integral values" | |
with pytest.raises(ValueError, match=message): | |
pmf([[np.nan]]) | |
message = "`x` must contain only non-negative values" | |
with pytest.raises(ValueError, match=message): | |
pmf([[-1]]) | |
message = "shape of `x` must agree with `row`" | |
with pytest.raises(ValueError, match=message): | |
pmf([[1, 2, 3]]) | |
message = "shape of `x` must agree with `col`" | |
with pytest.raises(ValueError, match=message): | |
pmf([[1, 2], | |
[3, 4]]) | |
def test_rvs_mean(self, method): | |
# test if `rvs` is unbiased and large sample size converges | |
# to the true mean. | |
rng = self.get_rng() | |
row = [2, 6] | |
col = [1, 3, 4] | |
rvs = random_table.rvs(row, col, size=1000, method=method, | |
random_state=rng) | |
mean = random_table.mean(row, col) | |
assert_equal(np.sum(mean), np.sum(row)) | |
assert_allclose(rvs.mean(0), mean, atol=0.05) | |
assert_equal(rvs.sum(axis=-1), np.broadcast_to(row, (1000, 2))) | |
assert_equal(rvs.sum(axis=-2), np.broadcast_to(col, (1000, 3))) | |
def test_rvs_cov(self): | |
# test if `rvs` generated with patefield and boyett algorithms | |
# produce approximately the same covariance matrix | |
rng = self.get_rng() | |
row = [2, 6] | |
col = [1, 3, 4] | |
rvs1 = random_table.rvs(row, col, size=10000, method="boyett", | |
random_state=rng) | |
rvs2 = random_table.rvs(row, col, size=10000, method="patefield", | |
random_state=rng) | |
cov1 = np.var(rvs1, axis=0) | |
cov2 = np.var(rvs2, axis=0) | |
assert_allclose(cov1, cov2, atol=0.02) | |
def test_rvs_size(self, method): | |
row = [2, 6] | |
col = [1, 3, 4] | |
# test size `None` | |
rv = random_table.rvs(row, col, method=method, | |
random_state=self.get_rng()) | |
assert rv.shape == (2, 3) | |
# test size 1 | |
rv2 = random_table.rvs(row, col, size=1, method=method, | |
random_state=self.get_rng()) | |
assert rv2.shape == (1, 2, 3) | |
assert_equal(rv, rv2[0]) | |
# test size 0 | |
rv3 = random_table.rvs(row, col, size=0, method=method, | |
random_state=self.get_rng()) | |
assert rv3.shape == (0, 2, 3) | |
# test other valid size | |
rv4 = random_table.rvs(row, col, size=20, method=method, | |
random_state=self.get_rng()) | |
assert rv4.shape == (20, 2, 3) | |
rv5 = random_table.rvs(row, col, size=(4, 5), method=method, | |
random_state=self.get_rng()) | |
assert rv5.shape == (4, 5, 2, 3) | |
assert_allclose(rv5.reshape(20, 2, 3), rv4, rtol=1e-15) | |
# test invalid size | |
message = "`size` must be a non-negative integer or `None`" | |
with pytest.raises(ValueError, match=message): | |
random_table.rvs(row, col, size=-1, method=method, | |
random_state=self.get_rng()) | |
with pytest.raises(ValueError, match=message): | |
random_table.rvs(row, col, size=np.nan, method=method, | |
random_state=self.get_rng()) | |
def test_rvs_method(self, method): | |
# This test assumes that pmf is correct and checks that random samples | |
# follow this probability distribution. This seems like a circular | |
# argument, since pmf is checked in test_pmf_logpmf with random samples | |
# generated with the rvs method. This test is not redundant, because | |
# test_pmf_logpmf intentionally uses rvs generation with Boyett only, | |
# but here we test both Boyett and Patefield. | |
row = [2, 6] | |
col = [1, 3, 4] | |
ct = random_table | |
rvs = ct.rvs(row, col, size=100000, method=method, | |
random_state=self.get_rng()) | |
unique_rvs, counts = np.unique(rvs, axis=0, return_counts=True) | |
# generated frequencies should match expected frequencies | |
p = ct.pmf(unique_rvs, row, col) | |
assert_allclose(p * len(rvs), counts, rtol=0.02) | |
def test_rvs_with_zeros_in_col_row(self, method): | |
row = [0, 1, 0] | |
col = [1, 0, 0, 0] | |
d = random_table(row, col) | |
rv = d.rvs(1000, method=method, random_state=self.get_rng()) | |
expected = np.zeros((1000, len(row), len(col))) | |
expected[...] = [[0, 0, 0, 0], | |
[1, 0, 0, 0], | |
[0, 0, 0, 0]] | |
assert_equal(rv, expected) | |
def test_rvs_with_edge_cases(self, method, row, col): | |
d = random_table(row, col) | |
rv = d.rvs(10, method=method, random_state=self.get_rng()) | |
expected = np.zeros((10, len(row), len(col))) | |
assert_equal(rv, expected) | |
def test_rvs_rcont(self, v): | |
# This test checks the internal low-level interface. | |
# It is implicitly also checked by the other test_rvs* calls. | |
import scipy.stats._rcont as _rcont | |
row = np.array([1, 3], dtype=np.int64) | |
col = np.array([2, 1, 1], dtype=np.int64) | |
rvs = getattr(_rcont, f"rvs_rcont{v}") | |
ntot = np.sum(row) | |
result = rvs(row, col, ntot, 1, self.get_rng()) | |
assert result.shape == (1, len(row), len(col)) | |
assert np.sum(result) == ntot | |
def test_frozen(self): | |
row = [2, 6] | |
col = [1, 3, 4] | |
d = random_table(row, col, seed=self.get_rng()) | |
sample = d.rvs() | |
expected = random_table.mean(row, col) | |
assert_equal(expected, d.mean()) | |
expected = random_table.pmf(sample, row, col) | |
assert_equal(expected, d.pmf(sample)) | |
expected = random_table.logpmf(sample, row, col) | |
assert_equal(expected, d.logpmf(sample)) | |
def test_rvs_frozen(self, method): | |
row = [2, 6] | |
col = [1, 3, 4] | |
d = random_table(row, col, seed=self.get_rng()) | |
expected = random_table.rvs(row, col, size=10, method=method, | |
random_state=self.get_rng()) | |
got = d.rvs(size=10, method=method) | |
assert_equal(expected, got) | |
def check_pickling(distfn, args): | |
# check that a distribution instance pickles and unpickles | |
# pay special attention to the random_state property | |
# save the random_state (restore later) | |
rndm = distfn.random_state | |
distfn.random_state = 1234 | |
distfn.rvs(*args, size=8) | |
s = pickle.dumps(distfn) | |
r0 = distfn.rvs(*args, size=8) | |
unpickled = pickle.loads(s) | |
r1 = unpickled.rvs(*args, size=8) | |
assert_equal(r0, r1) | |
# restore the random_state | |
distfn.random_state = rndm | |
def test_random_state_property(): | |
scale = np.eye(3) | |
scale[0, 1] = 0.5 | |
scale[1, 0] = 0.5 | |
dists = [ | |
[multivariate_normal, ()], | |
[dirichlet, (np.array([1.]), )], | |
[wishart, (10, scale)], | |
[invwishart, (10, scale)], | |
[multinomial, (5, [0.5, 0.4, 0.1])], | |
[ortho_group, (2,)], | |
[special_ortho_group, (2,)] | |
] | |
for distfn, args in dists: | |
check_random_state_property(distfn, args) | |
check_pickling(distfn, args) | |
class TestVonMises_Fisher: | |
def test_samples(self, dim, size): | |
# test that samples have correct shape and norm 1 | |
rng = np.random.default_rng(2777937887058094419) | |
mu = np.full((dim, ), 1/np.sqrt(dim)) | |
vmf_dist = vonmises_fisher(mu, 1, seed=rng) | |
samples = vmf_dist.rvs(size) | |
mean, cov = np.zeros(dim), np.eye(dim) | |
expected_shape = rng.multivariate_normal(mean, cov, size=size).shape | |
assert samples.shape == expected_shape | |
norms = np.linalg.norm(samples, axis=-1) | |
assert_allclose(norms, 1.) | |
def test_sampling_high_concentration(self, dim, kappa): | |
# test that no warnings are encountered for high values | |
rng = np.random.default_rng(2777937887058094419) | |
mu = np.full((dim, ), 1/np.sqrt(dim)) | |
vmf_dist = vonmises_fisher(mu, kappa, seed=rng) | |
vmf_dist.rvs(10) | |
def test_two_dimensional_mu(self): | |
mu = np.ones((2, 2)) | |
msg = "'mu' must have one-dimensional shape." | |
with pytest.raises(ValueError, match=msg): | |
vonmises_fisher(mu, 1) | |
def test_wrong_norm_mu(self): | |
mu = np.ones((2, )) | |
msg = "'mu' must be a unit vector of norm 1." | |
with pytest.raises(ValueError, match=msg): | |
vonmises_fisher(mu, 1) | |
def test_one_entry_mu(self): | |
mu = np.ones((1, )) | |
msg = "'mu' must have at least two entries." | |
with pytest.raises(ValueError, match=msg): | |
vonmises_fisher(mu, 1) | |
def test_kappa_validation(self, kappa): | |
msg = "'kappa' must be a positive scalar." | |
with pytest.raises(ValueError, match=msg): | |
vonmises_fisher([1, 0], kappa) | |
def test_kappa_zero(self, kappa): | |
msg = ("For 'kappa=0' the von Mises-Fisher distribution " | |
"becomes the uniform distribution on the sphere " | |
"surface. Consider using 'scipy.stats.uniform_direction' " | |
"instead.") | |
with pytest.raises(ValueError, match=msg): | |
vonmises_fisher([1, 0], kappa) | |
def test_invalid_shapes_pdf_logpdf(self, method): | |
x = np.array([1., 0., 0]) | |
msg = ("The dimensionality of the last axis of 'x' must " | |
"match the dimensionality of the von Mises Fisher " | |
"distribution.") | |
with pytest.raises(ValueError, match=msg): | |
method(x, [1, 0], 1) | |
def test_unnormalized_input(self, method): | |
x = np.array([0.5, 0.]) | |
msg = "'x' must be unit vectors of norm 1 along last dimension." | |
with pytest.raises(ValueError, match=msg): | |
method(x, [1, 0], 1) | |
# Expected values of the vonmises-fisher logPDF were computed via mpmath | |
# from mpmath import mp | |
# import numpy as np | |
# mp.dps = 50 | |
# def logpdf_mpmath(x, mu, kappa): | |
# dim = mu.size | |
# halfdim = mp.mpf(0.5 * dim) | |
# kappa = mp.mpf(kappa) | |
# const = (kappa**(halfdim - mp.one)/((2*mp.pi)**halfdim * \ | |
# mp.besseli(halfdim -mp.one, kappa))) | |
# return float(const * mp.exp(kappa*mp.fdot(x, mu))) | |
def test_pdf_accuracy(self, x, mu, kappa, reference): | |
pdf = vonmises_fisher(mu, kappa).pdf(x) | |
assert_allclose(pdf, reference, rtol=1e-13) | |
# Expected values of the vonmises-fisher logPDF were computed via mpmath | |
# from mpmath import mp | |
# import numpy as np | |
# mp.dps = 50 | |
# def logpdf_mpmath(x, mu, kappa): | |
# dim = mu.size | |
# halfdim = mp.mpf(0.5 * dim) | |
# kappa = mp.mpf(kappa) | |
# two = mp.mpf(2.) | |
# const = (kappa**(halfdim - mp.one)/((two*mp.pi)**halfdim * \ | |
# mp.besseli(halfdim - mp.one, kappa))) | |
# return float(mp.log(const * mp.exp(kappa*mp.fdot(x, mu)))) | |
def test_logpdf_accuracy(self, x, mu, kappa, reference): | |
logpdf = vonmises_fisher(mu, kappa).logpdf(x) | |
assert_allclose(logpdf, reference, rtol=1e-14) | |
# Expected values of the vonmises-fisher entropy were computed via mpmath | |
# from mpmath import mp | |
# import numpy as np | |
# mp.dps = 50 | |
# def entropy_mpmath(dim, kappa): | |
# mu = np.full((dim, ), 1/np.sqrt(dim)) | |
# kappa = mp.mpf(kappa) | |
# halfdim = mp.mpf(0.5 * dim) | |
# logconstant = (mp.log(kappa**(halfdim - mp.one) | |
# /((2*mp.pi)**halfdim | |
# * mp.besseli(halfdim -mp.one, kappa))) | |
# return float(-logconstant - kappa * mp.besseli(halfdim, kappa)/ | |
# mp.besseli(halfdim -1, kappa)) | |
def test_entropy_accuracy(self, dim, kappa, reference): | |
mu = np.full((dim, ), 1/np.sqrt(dim)) | |
entropy = vonmises_fisher(mu, kappa).entropy() | |
assert_allclose(entropy, reference, rtol=2e-14) | |
def test_broadcasting(self, method): | |
# test that pdf and logpdf values are correctly broadcasted | |
testshape = (2, 2) | |
rng = np.random.default_rng(2777937887058094419) | |
x = uniform_direction(3).rvs(testshape, random_state=rng) | |
mu = np.full((3, ), 1/np.sqrt(3)) | |
kappa = 5 | |
result_all = method(x, mu, kappa) | |
assert result_all.shape == testshape | |
for i in range(testshape[0]): | |
for j in range(testshape[1]): | |
current_val = method(x[i, j, :], mu, kappa) | |
assert_allclose(current_val, result_all[i, j], rtol=1e-15) | |
def test_vs_vonmises_2d(self): | |
# test that in 2D, von Mises-Fisher yields the same results | |
# as the von Mises distribution | |
rng = np.random.default_rng(2777937887058094419) | |
mu = np.array([0, 1]) | |
mu_angle = np.arctan2(mu[1], mu[0]) | |
kappa = 20 | |
vmf = vonmises_fisher(mu, kappa) | |
vonmises_dist = vonmises(loc=mu_angle, kappa=kappa) | |
vectors = uniform_direction(2).rvs(10, random_state=rng) | |
angles = np.arctan2(vectors[:, 1], vectors[:, 0]) | |
assert_allclose(vonmises_dist.entropy(), vmf.entropy()) | |
assert_allclose(vonmises_dist.pdf(angles), vmf.pdf(vectors)) | |
assert_allclose(vonmises_dist.logpdf(angles), vmf.logpdf(vectors)) | |
def test_fit_accuracy(self, dim, kappa, mu_tol, kappa_tol): | |
mu = np.full((dim, ), 1/np.sqrt(dim)) | |
vmf_dist = vonmises_fisher(mu, kappa) | |
rng = np.random.default_rng(2777937887058094419) | |
n_samples = 10000 | |
samples = vmf_dist.rvs(n_samples, random_state=rng) | |
mu_fit, kappa_fit = vonmises_fisher.fit(samples) | |
angular_error = np.arccos(mu.dot(mu_fit)) | |
assert_allclose(angular_error, 0., atol=mu_tol, rtol=0) | |
assert_allclose(kappa, kappa_fit, rtol=kappa_tol) | |
def test_fit_error_one_dimensional_data(self): | |
x = np.zeros((3, )) | |
msg = "'x' must be two dimensional." | |
with pytest.raises(ValueError, match=msg): | |
vonmises_fisher.fit(x) | |
def test_fit_error_unnormalized_data(self): | |
x = np.ones((3, 3)) | |
msg = "'x' must be unit vectors of norm 1 along last dimension." | |
with pytest.raises(ValueError, match=msg): | |
vonmises_fisher.fit(x) | |
def test_frozen_distribution(self): | |
mu = np.array([0, 0, 1]) | |
kappa = 5 | |
frozen = vonmises_fisher(mu, kappa) | |
frozen_seed = vonmises_fisher(mu, kappa, seed=514) | |
rvs1 = frozen.rvs(random_state=514) | |
rvs2 = vonmises_fisher.rvs(mu, kappa, random_state=514) | |
rvs3 = frozen_seed.rvs() | |
assert_equal(rvs1, rvs2) | |
assert_equal(rvs1, rvs3) | |
class TestDirichletMultinomial: | |
def get_params(self, m): | |
rng = np.random.default_rng(28469824356873456) | |
alpha = rng.uniform(0, 100, size=2) | |
x = rng.integers(1, 20, size=(m, 2)) | |
n = x.sum(axis=-1) | |
return rng, m, alpha, n, x | |
def test_frozen(self): | |
rng = np.random.default_rng(28469824356873456) | |
alpha = rng.uniform(0, 100, 10) | |
x = rng.integers(0, 10, 10) | |
n = np.sum(x, axis=-1) | |
d = dirichlet_multinomial(alpha, n) | |
assert_equal(d.logpmf(x), dirichlet_multinomial.logpmf(x, alpha, n)) | |
assert_equal(d.pmf(x), dirichlet_multinomial.pmf(x, alpha, n)) | |
assert_equal(d.mean(), dirichlet_multinomial.mean(alpha, n)) | |
assert_equal(d.var(), dirichlet_multinomial.var(alpha, n)) | |
assert_equal(d.cov(), dirichlet_multinomial.cov(alpha, n)) | |
def test_pmf_logpmf_against_R(self): | |
# # Compare PMF against R's extraDistr ddirmnon | |
# # library(extraDistr) | |
# # options(digits=16) | |
# ddirmnom(c(1, 2, 3), 6, c(3, 4, 5)) | |
x = np.array([1, 2, 3]) | |
n = np.sum(x) | |
alpha = np.array([3, 4, 5]) | |
res = dirichlet_multinomial.pmf(x, alpha, n) | |
logres = dirichlet_multinomial.logpmf(x, alpha, n) | |
ref = 0.08484162895927638 | |
assert_allclose(res, ref) | |
assert_allclose(logres, np.log(ref)) | |
assert res.shape == logres.shape == () | |
# library(extraDistr) | |
# options(digits=16) | |
# ddirmnom(c(4, 3, 2, 0, 2, 3, 5, 7, 4, 7), 37, | |
# c(45.01025314, 21.98739582, 15.14851365, 80.21588671, | |
# 52.84935481, 25.20905262, 53.85373737, 4.88568118, | |
# 89.06440654, 20.11359466)) | |
rng = np.random.default_rng(28469824356873456) | |
alpha = rng.uniform(0, 100, 10) | |
x = rng.integers(0, 10, 10) | |
n = np.sum(x, axis=-1) | |
res = dirichlet_multinomial(alpha, n).pmf(x) | |
logres = dirichlet_multinomial.logpmf(x, alpha, n) | |
ref = 3.65409306285992e-16 | |
assert_allclose(res, ref) | |
assert_allclose(logres, np.log(ref)) | |
def test_pmf_logpmf_support(self): | |
# when the sum of the category counts does not equal the number of | |
# trials, the PMF is zero | |
rng, m, alpha, n, x = self.get_params(1) | |
n += 1 | |
assert_equal(dirichlet_multinomial(alpha, n).pmf(x), 0) | |
assert_equal(dirichlet_multinomial(alpha, n).logpmf(x), -np.inf) | |
rng, m, alpha, n, x = self.get_params(10) | |
i = rng.random(size=10) > 0.5 | |
x[i] = np.round(x[i] * 2) # sum of these x does not equal n | |
assert_equal(dirichlet_multinomial(alpha, n).pmf(x)[i], 0) | |
assert_equal(dirichlet_multinomial(alpha, n).logpmf(x)[i], -np.inf) | |
assert np.all(dirichlet_multinomial(alpha, n).pmf(x)[~i] > 0) | |
assert np.all(dirichlet_multinomial(alpha, n).logpmf(x)[~i] > -np.inf) | |
def test_dimensionality_one(self): | |
# if the dimensionality is one, there is only one possible outcome | |
n = 6 # number of trials | |
alpha = [10] # concentration parameters | |
x = np.asarray([n]) # counts | |
dist = dirichlet_multinomial(alpha, n) | |
assert_equal(dist.pmf(x), 1) | |
assert_equal(dist.pmf(x+1), 0) | |
assert_equal(dist.logpmf(x), 0) | |
assert_equal(dist.logpmf(x+1), -np.inf) | |
assert_equal(dist.mean(), n) | |
assert_equal(dist.var(), 0) | |
assert_equal(dist.cov(), 0) | |
def test_against_betabinom_pmf(self, method_name): | |
rng, m, alpha, n, x = self.get_params(100) | |
method = getattr(dirichlet_multinomial(alpha, n), method_name) | |
ref_method = getattr(stats.betabinom(n, *alpha.T), method_name) | |
res = method(x) | |
ref = ref_method(x.T[0]) | |
assert_allclose(res, ref) | |
def test_against_betabinom_moments(self, method_name): | |
rng, m, alpha, n, x = self.get_params(100) | |
method = getattr(dirichlet_multinomial(alpha, n), method_name) | |
ref_method = getattr(stats.betabinom(n, *alpha.T), method_name) | |
res = method()[:, 0] | |
ref = ref_method() | |
assert_allclose(res, ref) | |
def test_moments(self): | |
message = 'Needs NumPy 1.22.0 for multinomial broadcasting' | |
if Version(np.__version__) < Version("1.22.0"): | |
pytest.skip(reason=message) | |
rng = np.random.default_rng(28469824356873456) | |
dim = 5 | |
n = rng.integers(1, 100) | |
alpha = rng.random(size=dim) * 10 | |
dist = dirichlet_multinomial(alpha, n) | |
# Generate a random sample from the distribution using NumPy | |
m = 100000 | |
p = rng.dirichlet(alpha, size=m) | |
x = rng.multinomial(n, p, size=m) | |
assert_allclose(dist.mean(), np.mean(x, axis=0), rtol=5e-3) | |
assert_allclose(dist.var(), np.var(x, axis=0), rtol=1e-2) | |
assert dist.mean().shape == dist.var().shape == (dim,) | |
cov = dist.cov() | |
assert cov.shape == (dim, dim) | |
assert_allclose(cov, np.cov(x.T), rtol=2e-2) | |
assert_equal(np.diag(cov), dist.var()) | |
assert np.all(scipy.linalg.eigh(cov)[0] > 0) # positive definite | |
def test_input_validation(self): | |
# valid inputs | |
x0 = np.array([1, 2, 3]) | |
n0 = np.sum(x0) | |
alpha0 = np.array([3, 4, 5]) | |
text = "`x` must contain only non-negative integers." | |
with assert_raises(ValueError, match=text): | |
dirichlet_multinomial.logpmf([1, -1, 3], alpha0, n0) | |
with assert_raises(ValueError, match=text): | |
dirichlet_multinomial.logpmf([1, 2.1, 3], alpha0, n0) | |
text = "`alpha` must contain only positive values." | |
with assert_raises(ValueError, match=text): | |
dirichlet_multinomial.logpmf(x0, [3, 0, 4], n0) | |
with assert_raises(ValueError, match=text): | |
dirichlet_multinomial.logpmf(x0, [3, -1, 4], n0) | |
text = "`n` must be a positive integer." | |
with assert_raises(ValueError, match=text): | |
dirichlet_multinomial.logpmf(x0, alpha0, 49.1) | |
with assert_raises(ValueError, match=text): | |
dirichlet_multinomial.logpmf(x0, alpha0, 0) | |
x = np.array([1, 2, 3, 4]) | |
alpha = np.array([3, 4, 5]) | |
text = "`x` and `alpha` must be broadcastable." | |
with assert_raises(ValueError, match=text): | |
dirichlet_multinomial.logpmf(x, alpha, x.sum()) | |
def test_broadcasting_pmf(self, method): | |
alpha = np.array([[3, 4, 5], [4, 5, 6], [5, 5, 7], [8, 9, 10]]) | |
n = np.array([[6], [7], [8]]) | |
x = np.array([[1, 2, 3], [2, 2, 3]]).reshape((2, 1, 1, 3)) | |
method = getattr(dirichlet_multinomial, method) | |
res = method(x, alpha, n) | |
assert res.shape == (2, 3, 4) | |
for i in range(len(x)): | |
for j in range(len(n)): | |
for k in range(len(alpha)): | |
res_ijk = res[i, j, k] | |
ref = method(x[i].squeeze(), alpha[k].squeeze(), n[j].squeeze()) | |
assert_allclose(res_ijk, ref) | |
def test_broadcasting_moments(self, method_name): | |
alpha = np.array([[3, 4, 5], [4, 5, 6], [5, 5, 7], [8, 9, 10]]) | |
n = np.array([[6], [7], [8]]) | |
method = getattr(dirichlet_multinomial, method_name) | |
res = method(alpha, n) | |
assert res.shape == (3, 4, 3) if method_name != 'cov' else (3, 4, 3, 3) | |
for j in range(len(n)): | |
for k in range(len(alpha)): | |
res_ijk = res[j, k] | |
ref = method(alpha[k].squeeze(), n[j].squeeze()) | |
assert_allclose(res_ijk, ref) | |