peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/stats
/tests
/test_rank.py
import numpy as np | |
from numpy.testing import assert_equal, assert_array_equal | |
import pytest | |
from scipy.stats import rankdata, tiecorrect | |
from scipy._lib._util import np_long | |
class TestTieCorrect: | |
def test_empty(self): | |
"""An empty array requires no correction, should return 1.0.""" | |
ranks = np.array([], dtype=np.float64) | |
c = tiecorrect(ranks) | |
assert_equal(c, 1.0) | |
def test_one(self): | |
"""A single element requires no correction, should return 1.0.""" | |
ranks = np.array([1.0], dtype=np.float64) | |
c = tiecorrect(ranks) | |
assert_equal(c, 1.0) | |
def test_no_correction(self): | |
"""Arrays with no ties require no correction.""" | |
ranks = np.arange(2.0) | |
c = tiecorrect(ranks) | |
assert_equal(c, 1.0) | |
ranks = np.arange(3.0) | |
c = tiecorrect(ranks) | |
assert_equal(c, 1.0) | |
def test_basic(self): | |
"""Check a few basic examples of the tie correction factor.""" | |
# One tie of two elements | |
ranks = np.array([1.0, 2.5, 2.5]) | |
c = tiecorrect(ranks) | |
T = 2.0 | |
N = ranks.size | |
expected = 1.0 - (T**3 - T) / (N**3 - N) | |
assert_equal(c, expected) | |
# One tie of two elements (same as above, but tie is not at the end) | |
ranks = np.array([1.5, 1.5, 3.0]) | |
c = tiecorrect(ranks) | |
T = 2.0 | |
N = ranks.size | |
expected = 1.0 - (T**3 - T) / (N**3 - N) | |
assert_equal(c, expected) | |
# One tie of three elements | |
ranks = np.array([1.0, 3.0, 3.0, 3.0]) | |
c = tiecorrect(ranks) | |
T = 3.0 | |
N = ranks.size | |
expected = 1.0 - (T**3 - T) / (N**3 - N) | |
assert_equal(c, expected) | |
# Two ties, lengths 2 and 3. | |
ranks = np.array([1.5, 1.5, 4.0, 4.0, 4.0]) | |
c = tiecorrect(ranks) | |
T1 = 2.0 | |
T2 = 3.0 | |
N = ranks.size | |
expected = 1.0 - ((T1**3 - T1) + (T2**3 - T2)) / (N**3 - N) | |
assert_equal(c, expected) | |
def test_overflow(self): | |
ntie, k = 2000, 5 | |
a = np.repeat(np.arange(k), ntie) | |
n = a.size # ntie * k | |
out = tiecorrect(rankdata(a)) | |
assert_equal(out, 1.0 - k * (ntie**3 - ntie) / float(n**3 - n)) | |
class TestRankData: | |
def test_empty(self): | |
"""stats.rankdata([]) should return an empty array.""" | |
a = np.array([], dtype=int) | |
r = rankdata(a) | |
assert_array_equal(r, np.array([], dtype=np.float64)) | |
r = rankdata([]) | |
assert_array_equal(r, np.array([], dtype=np.float64)) | |
def test_empty_multidim(self, shape, axis): | |
a = np.empty(shape, dtype=int) | |
r = rankdata(a, axis=axis) | |
expected_shape = (0,) if axis is None else shape | |
assert_equal(r.shape, expected_shape) | |
assert_equal(r.dtype, np.float64) | |
def test_one(self): | |
"""Check stats.rankdata with an array of length 1.""" | |
data = [100] | |
a = np.array(data, dtype=int) | |
r = rankdata(a) | |
assert_array_equal(r, np.array([1.0], dtype=np.float64)) | |
r = rankdata(data) | |
assert_array_equal(r, np.array([1.0], dtype=np.float64)) | |
def test_basic(self): | |
"""Basic tests of stats.rankdata.""" | |
data = [100, 10, 50] | |
expected = np.array([3.0, 1.0, 2.0], dtype=np.float64) | |
a = np.array(data, dtype=int) | |
r = rankdata(a) | |
assert_array_equal(r, expected) | |
r = rankdata(data) | |
assert_array_equal(r, expected) | |
data = [40, 10, 30, 10, 50] | |
expected = np.array([4.0, 1.5, 3.0, 1.5, 5.0], dtype=np.float64) | |
a = np.array(data, dtype=int) | |
r = rankdata(a) | |
assert_array_equal(r, expected) | |
r = rankdata(data) | |
assert_array_equal(r, expected) | |
data = [20, 20, 20, 10, 10, 10] | |
expected = np.array([5.0, 5.0, 5.0, 2.0, 2.0, 2.0], dtype=np.float64) | |
a = np.array(data, dtype=int) | |
r = rankdata(a) | |
assert_array_equal(r, expected) | |
r = rankdata(data) | |
assert_array_equal(r, expected) | |
# The docstring states explicitly that the argument is flattened. | |
a2d = a.reshape(2, 3) | |
r = rankdata(a2d) | |
assert_array_equal(r, expected) | |
def test_rankdata_object_string(self): | |
def min_rank(a): | |
return [1 + sum(i < j for i in a) for j in a] | |
def max_rank(a): | |
return [sum(i <= j for i in a) for j in a] | |
def ordinal_rank(a): | |
return min_rank([(x, i) for i, x in enumerate(a)]) | |
def average_rank(a): | |
return [(i + j) / 2.0 for i, j in zip(min_rank(a), max_rank(a))] | |
def dense_rank(a): | |
b = np.unique(a) | |
return [1 + sum(i < j for i in b) for j in a] | |
rankf = dict(min=min_rank, max=max_rank, ordinal=ordinal_rank, | |
average=average_rank, dense=dense_rank) | |
def check_ranks(a): | |
for method in 'min', 'max', 'dense', 'ordinal', 'average': | |
out = rankdata(a, method=method) | |
assert_array_equal(out, rankf[method](a)) | |
val = ['foo', 'bar', 'qux', 'xyz', 'abc', 'efg', 'ace', 'qwe', 'qaz'] | |
check_ranks(np.random.choice(val, 200)) | |
check_ranks(np.random.choice(val, 200).astype('object')) | |
val = np.array([0, 1, 2, 2.718, 3, 3.141], dtype='object') | |
check_ranks(np.random.choice(val, 200).astype('object')) | |
def test_large_int(self): | |
data = np.array([2**60, 2**60+1], dtype=np.uint64) | |
r = rankdata(data) | |
assert_array_equal(r, [1.0, 2.0]) | |
data = np.array([2**60, 2**60+1], dtype=np.int64) | |
r = rankdata(data) | |
assert_array_equal(r, [1.0, 2.0]) | |
data = np.array([2**60, -2**60+1], dtype=np.int64) | |
r = rankdata(data) | |
assert_array_equal(r, [2.0, 1.0]) | |
def test_big_tie(self): | |
for n in [10000, 100000, 1000000]: | |
data = np.ones(n, dtype=int) | |
r = rankdata(data) | |
expected_rank = 0.5 * (n + 1) | |
assert_array_equal(r, expected_rank * data, | |
"test failed with n=%d" % n) | |
def test_axis(self): | |
data = [[0, 2, 1], | |
[4, 2, 2]] | |
expected0 = [[1., 1.5, 1.], | |
[2., 1.5, 2.]] | |
r0 = rankdata(data, axis=0) | |
assert_array_equal(r0, expected0) | |
expected1 = [[1., 3., 2.], | |
[3., 1.5, 1.5]] | |
r1 = rankdata(data, axis=1) | |
assert_array_equal(r1, expected1) | |
methods = ["average", "min", "max", "dense", "ordinal"] | |
dtypes = [np.float64] + [np_long]*4 | |
def test_size_0_axis(self, axis, method, dtype): | |
shape = (3, 0) | |
data = np.zeros(shape) | |
r = rankdata(data, method=method, axis=axis) | |
assert_equal(r.shape, shape) | |
assert_equal(r.dtype, dtype) | |
def test_nan_policy_omit_3d(self, axis, method): | |
shape = (20, 21, 22) | |
rng = np.random.RandomState(23983242) | |
a = rng.random(size=shape) | |
i = rng.random(size=shape) < 0.4 | |
j = rng.random(size=shape) < 0.1 | |
k = rng.random(size=shape) < 0.1 | |
a[i] = np.nan | |
a[j] = -np.inf | |
a[k] - np.inf | |
def rank_1d_omit(a, method): | |
out = np.zeros_like(a) | |
i = np.isnan(a) | |
a_compressed = a[~i] | |
res = rankdata(a_compressed, method) | |
out[~i] = res | |
out[i] = np.nan | |
return out | |
def rank_omit(a, method, axis): | |
return np.apply_along_axis(lambda a: rank_1d_omit(a, method), | |
axis, a) | |
res = rankdata(a, method, axis=axis, nan_policy='omit') | |
res0 = rank_omit(a, method, axis=axis) | |
assert_array_equal(res, res0) | |
def test_nan_policy_2d_axis_none(self): | |
# 2 2d-array test with axis=None | |
data = [[0, np.nan, 3], | |
[4, 2, np.nan], | |
[1, 2, 2]] | |
assert_array_equal(rankdata(data, axis=None, nan_policy='omit'), | |
[1., np.nan, 6., 7., 4., np.nan, 2., 4., 4.]) | |
assert_array_equal(rankdata(data, axis=None, nan_policy='propagate'), | |
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, | |
np.nan, np.nan, np.nan]) | |
def test_nan_policy_raise(self): | |
# 1 1d-array test | |
data = [0, 2, 3, -2, np.nan, np.nan] | |
with pytest.raises(ValueError, match="The input contains nan"): | |
rankdata(data, nan_policy='raise') | |
# 2 2d-array test | |
data = [[0, np.nan, 3], | |
[4, 2, np.nan], | |
[np.nan, 2, 2]] | |
with pytest.raises(ValueError, match="The input contains nan"): | |
rankdata(data, axis=0, nan_policy="raise") | |
with pytest.raises(ValueError, match="The input contains nan"): | |
rankdata(data, axis=1, nan_policy="raise") | |
def test_nan_policy_propagate(self): | |
# 1 1d-array test | |
data = [0, 2, 3, -2, np.nan, np.nan] | |
assert_array_equal(rankdata(data, nan_policy='propagate'), | |
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]) | |
# 2 2d-array test | |
data = [[0, np.nan, 3], | |
[4, 2, np.nan], | |
[1, 2, 2]] | |
assert_array_equal(rankdata(data, axis=0, nan_policy='propagate'), | |
[[1, np.nan, np.nan], | |
[3, np.nan, np.nan], | |
[2, np.nan, np.nan]]) | |
assert_array_equal(rankdata(data, axis=1, nan_policy='propagate'), | |
[[np.nan, np.nan, np.nan], | |
[np.nan, np.nan, np.nan], | |
[1, 2.5, 2.5]]) | |
_cases = ( | |
# values, method, expected | |
([], 'average', []), | |
([], 'min', []), | |
([], 'max', []), | |
([], 'dense', []), | |
([], 'ordinal', []), | |
# | |
([100], 'average', [1.0]), | |
([100], 'min', [1.0]), | |
([100], 'max', [1.0]), | |
([100], 'dense', [1.0]), | |
([100], 'ordinal', [1.0]), | |
# | |
([100, 100, 100], 'average', [2.0, 2.0, 2.0]), | |
([100, 100, 100], 'min', [1.0, 1.0, 1.0]), | |
([100, 100, 100], 'max', [3.0, 3.0, 3.0]), | |
([100, 100, 100], 'dense', [1.0, 1.0, 1.0]), | |
([100, 100, 100], 'ordinal', [1.0, 2.0, 3.0]), | |
# | |
([100, 300, 200], 'average', [1.0, 3.0, 2.0]), | |
([100, 300, 200], 'min', [1.0, 3.0, 2.0]), | |
([100, 300, 200], 'max', [1.0, 3.0, 2.0]), | |
([100, 300, 200], 'dense', [1.0, 3.0, 2.0]), | |
([100, 300, 200], 'ordinal', [1.0, 3.0, 2.0]), | |
# | |
([100, 200, 300, 200], 'average', [1.0, 2.5, 4.0, 2.5]), | |
([100, 200, 300, 200], 'min', [1.0, 2.0, 4.0, 2.0]), | |
([100, 200, 300, 200], 'max', [1.0, 3.0, 4.0, 3.0]), | |
([100, 200, 300, 200], 'dense', [1.0, 2.0, 3.0, 2.0]), | |
([100, 200, 300, 200], 'ordinal', [1.0, 2.0, 4.0, 3.0]), | |
# | |
([100, 200, 300, 200, 100], 'average', [1.5, 3.5, 5.0, 3.5, 1.5]), | |
([100, 200, 300, 200, 100], 'min', [1.0, 3.0, 5.0, 3.0, 1.0]), | |
([100, 200, 300, 200, 100], 'max', [2.0, 4.0, 5.0, 4.0, 2.0]), | |
([100, 200, 300, 200, 100], 'dense', [1.0, 2.0, 3.0, 2.0, 1.0]), | |
([100, 200, 300, 200, 100], 'ordinal', [1.0, 3.0, 5.0, 4.0, 2.0]), | |
# | |
([10] * 30, 'ordinal', np.arange(1.0, 31.0)), | |
) | |
def test_cases(): | |
for values, method, expected in _cases: | |
r = rankdata(values, method=method) | |
assert_array_equal(r, expected) | |