peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/stats
/tests
/test_survival.py
import pytest | |
import numpy as np | |
from numpy.testing import assert_equal, assert_allclose | |
from scipy import stats | |
from scipy.stats import _survival | |
def _kaplan_meier_reference(times, censored): | |
# This is a very straightforward implementation of the Kaplan-Meier | |
# estimator that does almost everything differently from the implementation | |
# in stats.ecdf. | |
# Begin by sorting the raw data. Note that the order of death and loss | |
# at a given time matters: death happens first. See [2] page 461: | |
# "These conventions may be paraphrased by saying that deaths recorded as | |
# of an age t are treated as if they occurred slightly before t, and losses | |
# recorded as of an age t are treated as occurring slightly after t." | |
# We implement this by sorting the data first by time, then by `censored`, | |
# (which is 0 when there is a death and 1 when there is only a loss). | |
dtype = [('time', float), ('censored', int)] | |
data = np.array([(t, d) for t, d in zip(times, censored)], dtype=dtype) | |
data = np.sort(data, order=('time', 'censored')) | |
times = data['time'] | |
died = np.logical_not(data['censored']) | |
m = times.size | |
n = np.arange(m, 0, -1) # number at risk | |
sf = np.cumprod((n - died) / n) | |
# Find the indices of the *last* occurrence of unique times. The | |
# corresponding entries of `times` and `sf` are what we want. | |
_, indices = np.unique(times[::-1], return_index=True) | |
ref_times = times[-indices - 1] | |
ref_sf = sf[-indices - 1] | |
return ref_times, ref_sf | |
class TestSurvival: | |
def get_random_sample(rng, n_unique): | |
# generate random sample | |
unique_times = rng.random(n_unique) | |
# convert to `np.int32` to resolve `np.repeat` failure in 32-bit CI | |
repeats = rng.integers(1, 4, n_unique).astype(np.int32) | |
times = rng.permuted(np.repeat(unique_times, repeats)) | |
censored = rng.random(size=times.size) > rng.random() | |
sample = stats.CensoredData.right_censored(times, censored) | |
return sample, times, censored | |
def test_input_validation(self): | |
message = '`sample` must be a one-dimensional sequence.' | |
with pytest.raises(ValueError, match=message): | |
stats.ecdf([[1]]) | |
with pytest.raises(ValueError, match=message): | |
stats.ecdf(1) | |
message = '`sample` must not contain nan' | |
with pytest.raises(ValueError, match=message): | |
stats.ecdf([np.nan]) | |
message = 'Currently, only uncensored and right-censored data...' | |
with pytest.raises(NotImplementedError, match=message): | |
stats.ecdf(stats.CensoredData.left_censored([1], censored=[True])) | |
message = 'method` must be one of...' | |
res = stats.ecdf([1, 2, 3]) | |
with pytest.raises(ValueError, match=message): | |
res.cdf.confidence_interval(method='ekki-ekki') | |
with pytest.raises(ValueError, match=message): | |
res.sf.confidence_interval(method='shrubbery') | |
message = 'confidence_level` must be a scalar between 0 and 1' | |
with pytest.raises(ValueError, match=message): | |
res.cdf.confidence_interval(-1) | |
with pytest.raises(ValueError, match=message): | |
res.sf.confidence_interval([0.5, 0.6]) | |
message = 'The confidence interval is undefined at some observations.' | |
with pytest.warns(RuntimeWarning, match=message): | |
ci = res.cdf.confidence_interval() | |
message = 'Confidence interval bounds do not implement...' | |
with pytest.raises(NotImplementedError, match=message): | |
ci.low.confidence_interval() | |
with pytest.raises(NotImplementedError, match=message): | |
ci.high.confidence_interval() | |
def test_edge_cases(self): | |
res = stats.ecdf([]) | |
assert_equal(res.cdf.quantiles, []) | |
assert_equal(res.cdf.probabilities, []) | |
res = stats.ecdf([1]) | |
assert_equal(res.cdf.quantiles, [1]) | |
assert_equal(res.cdf.probabilities, [1]) | |
def test_unique(self): | |
# Example with unique observations; `stats.ecdf` ref. [1] page 80 | |
sample = [6.23, 5.58, 7.06, 6.42, 5.20] | |
res = stats.ecdf(sample) | |
ref_x = np.sort(np.unique(sample)) | |
ref_cdf = np.arange(1, 6) / 5 | |
ref_sf = 1 - ref_cdf | |
assert_equal(res.cdf.quantiles, ref_x) | |
assert_equal(res.cdf.probabilities, ref_cdf) | |
assert_equal(res.sf.quantiles, ref_x) | |
assert_equal(res.sf.probabilities, ref_sf) | |
def test_nonunique(self): | |
# Example with non-unique observations; `stats.ecdf` ref. [1] page 82 | |
sample = [0, 2, 1, 2, 3, 4] | |
res = stats.ecdf(sample) | |
ref_x = np.sort(np.unique(sample)) | |
ref_cdf = np.array([1/6, 2/6, 4/6, 5/6, 1]) | |
ref_sf = 1 - ref_cdf | |
assert_equal(res.cdf.quantiles, ref_x) | |
assert_equal(res.cdf.probabilities, ref_cdf) | |
assert_equal(res.sf.quantiles, ref_x) | |
assert_equal(res.sf.probabilities, ref_sf) | |
def test_evaluate_methods(self): | |
# Test CDF and SF `evaluate` methods | |
rng = np.random.default_rng(1162729143302572461) | |
sample, _, _ = self.get_random_sample(rng, 15) | |
res = stats.ecdf(sample) | |
x = res.cdf.quantiles | |
xr = x + np.diff(x, append=x[-1]+1)/2 # right shifted points | |
assert_equal(res.cdf.evaluate(x), res.cdf.probabilities) | |
assert_equal(res.cdf.evaluate(xr), res.cdf.probabilities) | |
assert_equal(res.cdf.evaluate(x[0]-1), 0) # CDF starts at 0 | |
assert_equal(res.cdf.evaluate([-np.inf, np.inf]), [0, 1]) | |
assert_equal(res.sf.evaluate(x), res.sf.probabilities) | |
assert_equal(res.sf.evaluate(xr), res.sf.probabilities) | |
assert_equal(res.sf.evaluate(x[0]-1), 1) # SF starts at 1 | |
assert_equal(res.sf.evaluate([-np.inf, np.inf]), [1, 0]) | |
# ref. [1] page 91 | |
t1 = [37, 43, 47, 56, 60, 62, 71, 77, 80, 81] # times | |
d1 = [0, 0, 1, 1, 0, 0, 0, 1, 1, 1] # 1 means deaths (not censored) | |
r1 = [1, 1, 0.875, 0.75, 0.75, 0.75, 0.75, 0.5, 0.25, 0] # reference SF | |
# https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_survival/BS704_Survival5.html | |
t2 = [8, 12, 26, 14, 21, 27, 8, 32, 20, 40] | |
d2 = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0] | |
r2 = [0.9, 0.788, 0.675, 0.675, 0.54, 0.405, 0.27, 0.27, 0.27] | |
t3 = [33, 28, 41, 48, 48, 25, 37, 48, 25, 43] | |
d3 = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0] | |
r3 = [1, 0.875, 0.75, 0.75, 0.6, 0.6, 0.6] | |
# https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_survival/bs704_survival4.html | |
t4 = [24, 3, 11, 19, 24, 13, 14, 2, 18, 17, | |
24, 21, 12, 1, 10, 23, 6, 5, 9, 17] | |
d4 = [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1] | |
r4 = [0.95, 0.95, 0.897, 0.844, 0.844, 0.844, 0.844, 0.844, 0.844, | |
0.844, 0.76, 0.676, 0.676, 0.676, 0.676, 0.507, 0.507] | |
# https://www.real-statistics.com/survival-analysis/kaplan-meier-procedure/confidence-interval-for-the-survival-function/ | |
t5 = [3, 5, 8, 10, 5, 5, 8, 12, 15, 14, 2, 11, 10, 9, 12, 5, 8, 11] | |
d5 = [1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1] | |
r5 = [0.944, 0.889, 0.722, 0.542, 0.542, 0.542, 0.361, 0.181, 0.181, 0.181] | |
def test_right_censored_against_examples(self, case): | |
# test `ecdf` against other implementations on example problems | |
times, died, ref = case | |
sample = stats.CensoredData.right_censored(times, np.logical_not(died)) | |
res = stats.ecdf(sample) | |
assert_allclose(res.sf.probabilities, ref, atol=1e-3) | |
assert_equal(res.sf.quantiles, np.sort(np.unique(times))) | |
# test reference implementation against other implementations | |
res = _kaplan_meier_reference(times, np.logical_not(died)) | |
assert_equal(res[0], np.sort(np.unique(times))) | |
assert_allclose(res[1], ref, atol=1e-3) | |
def test_right_censored_against_reference_implementation(self, seed): | |
# test `ecdf` against reference implementation on random problems | |
rng = np.random.default_rng(seed) | |
n_unique = rng.integers(10, 100) | |
sample, times, censored = self.get_random_sample(rng, n_unique) | |
res = stats.ecdf(sample) | |
ref = _kaplan_meier_reference(times, censored) | |
assert_allclose(res.sf.quantiles, ref[0]) | |
assert_allclose(res.sf.probabilities, ref[1]) | |
# If all observations are uncensored, the KM estimate should match | |
# the usual estimate for uncensored data | |
sample = stats.CensoredData(uncensored=times) | |
res = _survival._ecdf_right_censored(sample) # force Kaplan-Meier | |
ref = stats.ecdf(times) | |
assert_equal(res[0], ref.sf.quantiles) | |
assert_allclose(res[1], ref.cdf.probabilities, rtol=1e-14) | |
assert_allclose(res[2], ref.sf.probabilities, rtol=1e-14) | |
def test_right_censored_ci(self): | |
# test "greenwood" confidence interval against example 4 (URL above). | |
times, died = self.t4, self.d4 | |
sample = stats.CensoredData.right_censored(times, np.logical_not(died)) | |
res = stats.ecdf(sample) | |
ref_allowance = [0.096, 0.096, 0.135, 0.162, 0.162, 0.162, 0.162, | |
0.162, 0.162, 0.162, 0.214, 0.246, 0.246, 0.246, | |
0.246, 0.341, 0.341] | |
sf_ci = res.sf.confidence_interval() | |
cdf_ci = res.cdf.confidence_interval() | |
allowance = res.sf.probabilities - sf_ci.low.probabilities | |
assert_allclose(allowance, ref_allowance, atol=1e-3) | |
assert_allclose(sf_ci.low.probabilities, | |
np.clip(res.sf.probabilities - allowance, 0, 1)) | |
assert_allclose(sf_ci.high.probabilities, | |
np.clip(res.sf.probabilities + allowance, 0, 1)) | |
assert_allclose(cdf_ci.low.probabilities, | |
np.clip(res.cdf.probabilities - allowance, 0, 1)) | |
assert_allclose(cdf_ci.high.probabilities, | |
np.clip(res.cdf.probabilities + allowance, 0, 1)) | |
# test "log-log" confidence interval against Mathematica | |
# e = {24, 3, 11, 19, 24, 13, 14, 2, 18, 17, 24, 21, 12, 1, 10, 23, 6, 5, | |
# 9, 17} | |
# ci = {1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0} | |
# R = EventData[e, ci] | |
# S = SurvivalModelFit[R] | |
# S["PointwiseIntervals", ConfidenceLevel->0.95, | |
# ConfidenceTransform->"LogLog"] | |
ref_low = [0.694743, 0.694743, 0.647529, 0.591142, 0.591142, 0.591142, | |
0.591142, 0.591142, 0.591142, 0.591142, 0.464605, 0.370359, | |
0.370359, 0.370359, 0.370359, 0.160489, 0.160489] | |
ref_high = [0.992802, 0.992802, 0.973299, 0.947073, 0.947073, 0.947073, | |
0.947073, 0.947073, 0.947073, 0.947073, 0.906422, 0.856521, | |
0.856521, 0.856521, 0.856521, 0.776724, 0.776724] | |
sf_ci = res.sf.confidence_interval(method='log-log') | |
assert_allclose(sf_ci.low.probabilities, ref_low, atol=1e-6) | |
assert_allclose(sf_ci.high.probabilities, ref_high, atol=1e-6) | |
def test_right_censored_ci_example_5(self): | |
# test "exponential greenwood" confidence interval against example 5 | |
times, died = self.t5, self.d5 | |
sample = stats.CensoredData.right_censored(times, np.logical_not(died)) | |
res = stats.ecdf(sample) | |
lower = np.array([0.66639, 0.624174, 0.456179, 0.287822, 0.287822, | |
0.287822, 0.128489, 0.030957, 0.030957, 0.030957]) | |
upper = np.array([0.991983, 0.970995, 0.87378, 0.739467, 0.739467, | |
0.739467, 0.603133, 0.430365, 0.430365, 0.430365]) | |
sf_ci = res.sf.confidence_interval(method='log-log') | |
cdf_ci = res.cdf.confidence_interval(method='log-log') | |
assert_allclose(sf_ci.low.probabilities, lower, atol=1e-5) | |
assert_allclose(sf_ci.high.probabilities, upper, atol=1e-5) | |
assert_allclose(cdf_ci.low.probabilities, 1-upper, atol=1e-5) | |
assert_allclose(cdf_ci.high.probabilities, 1-lower, atol=1e-5) | |
# Test against R's `survival` library `survfit` function, 90%CI | |
# library(survival) | |
# options(digits=16) | |
# time = c(3, 5, 8, 10, 5, 5, 8, 12, 15, 14, 2, 11, 10, 9, 12, 5, 8, 11) | |
# status = c(1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1) | |
# res = survfit(Surv(time, status) | |
# ~1, conf.type = "log-log", conf.int = 0.90) | |
# res$time; res$lower; res$upper | |
low = [0.74366748406861172, 0.68582332289196246, 0.50596835651480121, | |
0.32913131413336727, 0.32913131413336727, 0.32913131413336727, | |
0.15986912028781664, 0.04499539918147757, 0.04499539918147757, | |
0.04499539918147757] | |
high = [0.9890291867238429, 0.9638835422144144, 0.8560366823086629, | |
0.7130167643978450, 0.7130167643978450, 0.7130167643978450, | |
0.5678602982997164, 0.3887616766886558, 0.3887616766886558, | |
0.3887616766886558] | |
sf_ci = res.sf.confidence_interval(method='log-log', | |
confidence_level=0.9) | |
assert_allclose(sf_ci.low.probabilities, low) | |
assert_allclose(sf_ci.high.probabilities, high) | |
# And with conf.type = "plain" | |
low = [0.8556383113628162, 0.7670478794850761, 0.5485720663578469, | |
0.3441515412527123, 0.3441515412527123, 0.3441515412527123, | |
0.1449184105424544, 0., 0., 0.] | |
high = [1., 1., 0.8958723780865975, 0.7391817920806210, | |
0.7391817920806210, 0.7391817920806210, 0.5773038116797676, | |
0.3642270254596720, 0.3642270254596720, 0.3642270254596720] | |
sf_ci = res.sf.confidence_interval(confidence_level=0.9) | |
assert_allclose(sf_ci.low.probabilities, low) | |
assert_allclose(sf_ci.high.probabilities, high) | |
def test_right_censored_ci_nans(self): | |
# test `ecdf` confidence interval on a problem that results in NaNs | |
times, died = self.t1, self.d1 | |
sample = stats.CensoredData.right_censored(times, np.logical_not(died)) | |
res = stats.ecdf(sample) | |
# Reference values generated with Matlab | |
# format long | |
# t = [37 43 47 56 60 62 71 77 80 81]; | |
# d = [0 0 1 1 0 0 0 1 1 1]; | |
# censored = ~d1; | |
# [f, x, flo, fup] = ecdf(t, 'Censoring', censored, 'Alpha', 0.05); | |
x = [37, 47, 56, 77, 80, 81] | |
flo = [np.nan, 0, 0, 0.052701464070711, 0.337611126231790, np.nan] | |
fup = [np.nan, 0.35417230377, 0.5500569798, 0.9472985359, 1.0, np.nan] | |
i = np.searchsorted(res.cdf.quantiles, x) | |
message = "The confidence interval is undefined at some observations" | |
with pytest.warns(RuntimeWarning, match=message): | |
ci = res.cdf.confidence_interval() | |
# Matlab gives NaN as the first element of the CIs. Mathematica agrees, | |
# but R's survfit does not. It makes some sense, but it's not what the | |
# formula gives, so skip that element. | |
assert_allclose(ci.low.probabilities[i][1:], flo[1:]) | |
assert_allclose(ci.high.probabilities[i][1:], fup[1:]) | |
# [f, x, flo, fup] = ecdf(t, 'Censoring', censored, 'Function', | |
# 'survivor', 'Alpha', 0.05); | |
flo = [np.nan, 0.64582769623, 0.449943020228, 0.05270146407, 0, np.nan] | |
fup = [np.nan, 1.0, 1.0, 0.947298535929289, 0.662388873768210, np.nan] | |
i = np.searchsorted(res.cdf.quantiles, x) | |
with pytest.warns(RuntimeWarning, match=message): | |
ci = res.sf.confidence_interval() | |
assert_allclose(ci.low.probabilities[i][1:], flo[1:]) | |
assert_allclose(ci.high.probabilities[i][1:], fup[1:]) | |
# With the same data, R's `survival` library `survfit` function | |
# doesn't produce the leading NaN | |
# library(survival) | |
# options(digits=16) | |
# time = c(37, 43, 47, 56, 60, 62, 71, 77, 80, 81) | |
# status = c(0, 0, 1, 1, 0, 0, 0, 1, 1, 1) | |
# res = survfit(Surv(time, status) | |
# ~1, conf.type = "plain", conf.int = 0.95) | |
# res$time | |
# res$lower | |
# res$upper | |
low = [1., 1., 0.64582769623233816, 0.44994302022779326, | |
0.44994302022779326, 0.44994302022779326, 0.44994302022779326, | |
0.05270146407071086, 0., np.nan] | |
high = [1., 1., 1., 1., 1., 1., 1., 0.9472985359292891, | |
0.6623888737682101, np.nan] | |
assert_allclose(ci.low.probabilities, low) | |
assert_allclose(ci.high.probabilities, high) | |
# It does with conf.type="log-log", as do we | |
with pytest.warns(RuntimeWarning, match=message): | |
ci = res.sf.confidence_interval(method='log-log') | |
low = [np.nan, np.nan, 0.38700001403202522, 0.31480711370551911, | |
0.31480711370551911, 0.31480711370551911, 0.31480711370551911, | |
0.08048821148507734, 0.01049958986680601, np.nan] | |
high = [np.nan, np.nan, 0.9813929658789660, 0.9308983170906275, | |
0.9308983170906275, 0.9308983170906275, 0.9308983170906275, | |
0.8263946341076415, 0.6558775085110887, np.nan] | |
assert_allclose(ci.low.probabilities, low) | |
assert_allclose(ci.high.probabilities, high) | |
def test_right_censored_against_uncensored(self): | |
rng = np.random.default_rng(7463952748044886637) | |
sample = rng.integers(10, 100, size=1000) | |
censored = np.zeros_like(sample) | |
censored[np.argmax(sample)] = True | |
res = stats.ecdf(sample) | |
ref = stats.ecdf(stats.CensoredData.right_censored(sample, censored)) | |
assert_equal(res.sf.quantiles, ref.sf.quantiles) | |
assert_equal(res.sf._n, ref.sf._n) | |
assert_equal(res.sf._d[:-1], ref.sf._d[:-1]) # difference @ [-1] | |
assert_allclose(res.sf._sf[:-1], ref.sf._sf[:-1], rtol=1e-14) | |
def test_plot_iv(self): | |
rng = np.random.default_rng(1769658657308472721) | |
n_unique = rng.integers(10, 100) | |
sample, _, _ = self.get_random_sample(rng, n_unique) | |
res = stats.ecdf(sample) | |
try: | |
import matplotlib.pyplot as plt # noqa: F401 | |
res.sf.plot() # no other errors occur | |
except (ModuleNotFoundError, ImportError): | |
# Avoid trying to call MPL with numpy 2.0-dev, because that fails | |
# too often due to ABI mismatches and is hard to avoid. This test | |
# will work fine again once MPL has done a 2.0-compatible release. | |
if not np.__version__.startswith('2.0.0.dev0'): | |
message = r"matplotlib must be installed to use method `plot`." | |
with pytest.raises(ModuleNotFoundError, match=message): | |
res.sf.plot() | |
class TestLogRank: | |
def test_log_rank(self, x, y, statistic, pvalue): | |
x = stats.CensoredData(uncensored=x[0], right=x[1]) | |
y = stats.CensoredData(uncensored=y[0], right=y[1]) | |
for i, alternative in enumerate(["two-sided", "less", "greater"]): | |
res = stats.logrank(x=x, y=y, alternative=alternative) | |
# we return z and use the normal distribution while other framework | |
# return z**2. The p-value are directly comparable, but we have to | |
# square the statistic | |
assert_allclose(res.statistic**2, statistic, atol=1e-10) | |
assert_allclose(res.pvalue, pvalue[i], atol=1e-10) | |
def test_raises(self): | |
sample = stats.CensoredData([1, 2]) | |
msg = r"`y` must be" | |
with pytest.raises(ValueError, match=msg): | |
stats.logrank(x=sample, y=[[1, 2]]) | |
msg = r"`x` must be" | |
with pytest.raises(ValueError, match=msg): | |
stats.logrank(x=[[1, 2]], y=sample) | |