peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/covariance
/_elliptic_envelope.py
# Author: Virgile Fritsch <[email protected]> | |
# | |
# License: BSD 3 clause | |
from numbers import Real | |
import numpy as np | |
from ..base import OutlierMixin, _fit_context | |
from ..metrics import accuracy_score | |
from ..utils._param_validation import Interval | |
from ..utils.validation import check_is_fitted | |
from ._robust_covariance import MinCovDet | |
class EllipticEnvelope(OutlierMixin, MinCovDet): | |
"""An object for detecting outliers in a Gaussian distributed dataset. | |
Read more in the :ref:`User Guide <outlier_detection>`. | |
Parameters | |
---------- | |
store_precision : bool, default=True | |
Specify if the estimated precision is stored. | |
assume_centered : bool, default=False | |
If True, the support of robust location and covariance estimates | |
is computed, and a covariance estimate is recomputed from it, | |
without centering the data. | |
Useful to work with data whose mean is significantly equal to | |
zero but is not exactly zero. | |
If False, the robust location and covariance are directly computed | |
with the FastMCD algorithm without additional treatment. | |
support_fraction : float, default=None | |
The proportion of points to be included in the support of the raw | |
MCD estimate. If None, the minimum value of support_fraction will | |
be used within the algorithm: `(n_samples + n_features + 1) / 2 * n_samples`. | |
Range is (0, 1). | |
contamination : float, default=0.1 | |
The amount of contamination of the data set, i.e. the proportion | |
of outliers in the data set. Range is (0, 0.5]. | |
random_state : int, RandomState instance or None, default=None | |
Determines the pseudo random number generator for shuffling | |
the data. Pass an int for reproducible results across multiple function | |
calls. See :term:`Glossary <random_state>`. | |
Attributes | |
---------- | |
location_ : ndarray of shape (n_features,) | |
Estimated robust location. | |
covariance_ : ndarray of shape (n_features, n_features) | |
Estimated robust covariance matrix. | |
precision_ : ndarray of shape (n_features, n_features) | |
Estimated pseudo inverse matrix. | |
(stored only if store_precision is True) | |
support_ : ndarray of shape (n_samples,) | |
A mask of the observations that have been used to compute the | |
robust estimates of location and shape. | |
offset_ : float | |
Offset used to define the decision function from the raw scores. | |
We have the relation: ``decision_function = score_samples - offset_``. | |
The offset depends on the contamination parameter and is defined in | |
such a way we obtain the expected number of outliers (samples with | |
decision function < 0) in training. | |
.. versionadded:: 0.20 | |
raw_location_ : ndarray of shape (n_features,) | |
The raw robust estimated location before correction and re-weighting. | |
raw_covariance_ : ndarray of shape (n_features, n_features) | |
The raw robust estimated covariance before correction and re-weighting. | |
raw_support_ : ndarray of shape (n_samples,) | |
A mask of the observations that have been used to compute | |
the raw robust estimates of location and shape, before correction | |
and re-weighting. | |
dist_ : ndarray of shape (n_samples,) | |
Mahalanobis distances of the training set (on which :meth:`fit` is | |
called) observations. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
EmpiricalCovariance : Maximum likelihood covariance estimator. | |
GraphicalLasso : Sparse inverse covariance estimation | |
with an l1-penalized estimator. | |
LedoitWolf : LedoitWolf Estimator. | |
MinCovDet : Minimum Covariance Determinant | |
(robust estimator of covariance). | |
OAS : Oracle Approximating Shrinkage Estimator. | |
ShrunkCovariance : Covariance estimator with shrinkage. | |
Notes | |
----- | |
Outlier detection from covariance estimation may break or not | |
perform well in high-dimensional settings. In particular, one will | |
always take care to work with ``n_samples > n_features ** 2``. | |
References | |
---------- | |
.. [1] Rousseeuw, P.J., Van Driessen, K. "A fast algorithm for the | |
minimum covariance determinant estimator" Technometrics 41(3), 212 | |
(1999) | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from sklearn.covariance import EllipticEnvelope | |
>>> true_cov = np.array([[.8, .3], | |
... [.3, .4]]) | |
>>> X = np.random.RandomState(0).multivariate_normal(mean=[0, 0], | |
... cov=true_cov, | |
... size=500) | |
>>> cov = EllipticEnvelope(random_state=0).fit(X) | |
>>> # predict returns 1 for an inlier and -1 for an outlier | |
>>> cov.predict([[0, 0], | |
... [3, 3]]) | |
array([ 1, -1]) | |
>>> cov.covariance_ | |
array([[0.7411..., 0.2535...], | |
[0.2535..., 0.3053...]]) | |
>>> cov.location_ | |
array([0.0813... , 0.0427...]) | |
""" | |
_parameter_constraints: dict = { | |
**MinCovDet._parameter_constraints, | |
"contamination": [Interval(Real, 0, 0.5, closed="right")], | |
} | |
def __init__( | |
self, | |
*, | |
store_precision=True, | |
assume_centered=False, | |
support_fraction=None, | |
contamination=0.1, | |
random_state=None, | |
): | |
super().__init__( | |
store_precision=store_precision, | |
assume_centered=assume_centered, | |
support_fraction=support_fraction, | |
random_state=random_state, | |
) | |
self.contamination = contamination | |
def fit(self, X, y=None): | |
"""Fit the EllipticEnvelope model. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
Training data. | |
y : Ignored | |
Not used, present for API consistency by convention. | |
Returns | |
------- | |
self : object | |
Returns the instance itself. | |
""" | |
super().fit(X) | |
self.offset_ = np.percentile(-self.dist_, 100.0 * self.contamination) | |
return self | |
def decision_function(self, X): | |
"""Compute the decision function of the given observations. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
The data matrix. | |
Returns | |
------- | |
decision : ndarray of shape (n_samples,) | |
Decision function of the samples. | |
It is equal to the shifted Mahalanobis distances. | |
The threshold for being an outlier is 0, which ensures a | |
compatibility with other outlier detection algorithms. | |
""" | |
check_is_fitted(self) | |
negative_mahal_dist = self.score_samples(X) | |
return negative_mahal_dist - self.offset_ | |
def score_samples(self, X): | |
"""Compute the negative Mahalanobis distances. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
The data matrix. | |
Returns | |
------- | |
negative_mahal_distances : array-like of shape (n_samples,) | |
Opposite of the Mahalanobis distances. | |
""" | |
check_is_fitted(self) | |
return -self.mahalanobis(X) | |
def predict(self, X): | |
""" | |
Predict labels (1 inlier, -1 outlier) of X according to fitted model. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
The data matrix. | |
Returns | |
------- | |
is_inlier : ndarray of shape (n_samples,) | |
Returns -1 for anomalies/outliers and +1 for inliers. | |
""" | |
values = self.decision_function(X) | |
is_inlier = np.full(values.shape[0], -1, dtype=int) | |
is_inlier[values >= 0] = 1 | |
return is_inlier | |
def score(self, X, y, sample_weight=None): | |
"""Return the mean accuracy on the given test data and labels. | |
In multi-label classification, this is the subset accuracy | |
which is a harsh metric since you require for each sample that | |
each label set be correctly predicted. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
Test samples. | |
y : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
True labels for X. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
Returns | |
------- | |
score : float | |
Mean accuracy of self.predict(X) w.r.t. y. | |
""" | |
return accuracy_score(y, self.predict(X), sample_weight=sample_weight) | |