peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/metrics
/_regression.py
"""Metrics to assess performance on regression task. | |
Functions named as ``*_score`` return a scalar value to maximize: the higher | |
the better. | |
Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: | |
the lower the better. | |
""" | |
# Authors: Alexandre Gramfort <[email protected]> | |
# Mathieu Blondel <[email protected]> | |
# Olivier Grisel <[email protected]> | |
# Arnaud Joly <[email protected]> | |
# Jochen Wersdorfer <[email protected]> | |
# Lars Buitinck | |
# Joel Nothman <[email protected]> | |
# Karan Desai <[email protected]> | |
# Noel Dawe <[email protected]> | |
# Manoj Kumar <[email protected]> | |
# Michael Eickenberg <[email protected]> | |
# Konstantin Shmelkov <[email protected]> | |
# Christian Lorentzen <[email protected]> | |
# Ashutosh Hathidara <[email protected]> | |
# Uttam kumar <[email protected]> | |
# Sylvain Marie <[email protected]> | |
# Ohad Michel <[email protected]> | |
# Alejandro Martin Gil <[email protected]> | |
# License: BSD 3 clause | |
import warnings | |
from numbers import Real | |
import numpy as np | |
from scipy.special import xlogy | |
from ..exceptions import UndefinedMetricWarning | |
from ..utils._param_validation import Hidden, Interval, StrOptions, validate_params | |
from ..utils.stats import _weighted_percentile | |
from ..utils.validation import ( | |
_check_sample_weight, | |
_num_samples, | |
check_array, | |
check_consistent_length, | |
column_or_1d, | |
) | |
__ALL__ = [ | |
"max_error", | |
"mean_absolute_error", | |
"mean_squared_error", | |
"mean_squared_log_error", | |
"median_absolute_error", | |
"mean_absolute_percentage_error", | |
"mean_pinball_loss", | |
"r2_score", | |
"root_mean_squared_log_error", | |
"root_mean_squared_error", | |
"explained_variance_score", | |
"mean_tweedie_deviance", | |
"mean_poisson_deviance", | |
"mean_gamma_deviance", | |
"d2_tweedie_score", | |
"d2_pinball_score", | |
"d2_absolute_error_score", | |
] | |
def _check_reg_targets(y_true, y_pred, multioutput, dtype="numeric"): | |
"""Check that y_true and y_pred belong to the same regression task. | |
Parameters | |
---------- | |
y_true : array-like | |
y_pred : array-like | |
multioutput : array-like or string in ['raw_values', uniform_average', | |
'variance_weighted'] or None | |
None is accepted due to backward compatibility of r2_score(). | |
dtype : str or list, default="numeric" | |
the dtype argument passed to check_array. | |
Returns | |
------- | |
type_true : one of {'continuous', continuous-multioutput'} | |
The type of the true target data, as output by | |
'utils.multiclass.type_of_target'. | |
y_true : array-like of shape (n_samples, n_outputs) | |
Ground truth (correct) target values. | |
y_pred : array-like of shape (n_samples, n_outputs) | |
Estimated target values. | |
multioutput : array-like of shape (n_outputs) or string in ['raw_values', | |
uniform_average', 'variance_weighted'] or None | |
Custom output weights if ``multioutput`` is array-like or | |
just the corresponding argument if ``multioutput`` is a | |
correct keyword. | |
""" | |
check_consistent_length(y_true, y_pred) | |
y_true = check_array(y_true, ensure_2d=False, dtype=dtype) | |
y_pred = check_array(y_pred, ensure_2d=False, dtype=dtype) | |
if y_true.ndim == 1: | |
y_true = y_true.reshape((-1, 1)) | |
if y_pred.ndim == 1: | |
y_pred = y_pred.reshape((-1, 1)) | |
if y_true.shape[1] != y_pred.shape[1]: | |
raise ValueError( | |
"y_true and y_pred have different number of output ({0}!={1})".format( | |
y_true.shape[1], y_pred.shape[1] | |
) | |
) | |
n_outputs = y_true.shape[1] | |
allowed_multioutput_str = ("raw_values", "uniform_average", "variance_weighted") | |
if isinstance(multioutput, str): | |
if multioutput not in allowed_multioutput_str: | |
raise ValueError( | |
"Allowed 'multioutput' string values are {}. " | |
"You provided multioutput={!r}".format( | |
allowed_multioutput_str, multioutput | |
) | |
) | |
elif multioutput is not None: | |
multioutput = check_array(multioutput, ensure_2d=False) | |
if n_outputs == 1: | |
raise ValueError("Custom weights are useful only in multi-output cases.") | |
elif n_outputs != len(multioutput): | |
raise ValueError( | |
"There must be equally many custom weights (%d) as outputs (%d)." | |
% (len(multioutput), n_outputs) | |
) | |
y_type = "continuous" if n_outputs == 1 else "continuous-multioutput" | |
return y_type, y_true, y_pred, multioutput | |
def mean_absolute_error( | |
y_true, y_pred, *, sample_weight=None, multioutput="uniform_average" | |
): | |
"""Mean absolute error regression loss. | |
Read more in the :ref:`User Guide <mean_absolute_error>`. | |
Parameters | |
---------- | |
y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Ground truth (correct) target values. | |
y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Estimated target values. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
multioutput : {'raw_values', 'uniform_average'} or array-like of shape \ | |
(n_outputs,), default='uniform_average' | |
Defines aggregating of multiple output values. | |
Array-like value defines weights used to average errors. | |
'raw_values' : | |
Returns a full set of errors in case of multioutput input. | |
'uniform_average' : | |
Errors of all outputs are averaged with uniform weight. | |
Returns | |
------- | |
loss : float or ndarray of floats | |
If multioutput is 'raw_values', then mean absolute error is returned | |
for each output separately. | |
If multioutput is 'uniform_average' or an ndarray of weights, then the | |
weighted average of all output errors is returned. | |
MAE output is non-negative floating point. The best value is 0.0. | |
Examples | |
-------- | |
>>> from sklearn.metrics import mean_absolute_error | |
>>> y_true = [3, -0.5, 2, 7] | |
>>> y_pred = [2.5, 0.0, 2, 8] | |
>>> mean_absolute_error(y_true, y_pred) | |
0.5 | |
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]] | |
>>> y_pred = [[0, 2], [-1, 2], [8, -5]] | |
>>> mean_absolute_error(y_true, y_pred) | |
0.75 | |
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values') | |
array([0.5, 1. ]) | |
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7]) | |
0.85... | |
""" | |
y_type, y_true, y_pred, multioutput = _check_reg_targets( | |
y_true, y_pred, multioutput | |
) | |
check_consistent_length(y_true, y_pred, sample_weight) | |
output_errors = np.average(np.abs(y_pred - y_true), weights=sample_weight, axis=0) | |
if isinstance(multioutput, str): | |
if multioutput == "raw_values": | |
return output_errors | |
elif multioutput == "uniform_average": | |
# pass None as weights to np.average: uniform mean | |
multioutput = None | |
return np.average(output_errors, weights=multioutput) | |
def mean_pinball_loss( | |
y_true, y_pred, *, sample_weight=None, alpha=0.5, multioutput="uniform_average" | |
): | |
"""Pinball loss for quantile regression. | |
Read more in the :ref:`User Guide <pinball_loss>`. | |
Parameters | |
---------- | |
y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Ground truth (correct) target values. | |
y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Estimated target values. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
alpha : float, slope of the pinball loss, default=0.5, | |
This loss is equivalent to :ref:`mean_absolute_error` when `alpha=0.5`, | |
`alpha=0.95` is minimized by estimators of the 95th percentile. | |
multioutput : {'raw_values', 'uniform_average'} or array-like of shape \ | |
(n_outputs,), default='uniform_average' | |
Defines aggregating of multiple output values. | |
Array-like value defines weights used to average errors. | |
'raw_values' : | |
Returns a full set of errors in case of multioutput input. | |
'uniform_average' : | |
Errors of all outputs are averaged with uniform weight. | |
Returns | |
------- | |
loss : float or ndarray of floats | |
If multioutput is 'raw_values', then mean absolute error is returned | |
for each output separately. | |
If multioutput is 'uniform_average' or an ndarray of weights, then the | |
weighted average of all output errors is returned. | |
The pinball loss output is a non-negative floating point. The best | |
value is 0.0. | |
Examples | |
-------- | |
>>> from sklearn.metrics import mean_pinball_loss | |
>>> y_true = [1, 2, 3] | |
>>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.1) | |
0.03... | |
>>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.1) | |
0.3... | |
>>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.9) | |
0.3... | |
>>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.9) | |
0.03... | |
>>> mean_pinball_loss(y_true, y_true, alpha=0.1) | |
0.0 | |
>>> mean_pinball_loss(y_true, y_true, alpha=0.9) | |
0.0 | |
""" | |
y_type, y_true, y_pred, multioutput = _check_reg_targets( | |
y_true, y_pred, multioutput | |
) | |
check_consistent_length(y_true, y_pred, sample_weight) | |
diff = y_true - y_pred | |
sign = (diff >= 0).astype(diff.dtype) | |
loss = alpha * sign * diff - (1 - alpha) * (1 - sign) * diff | |
output_errors = np.average(loss, weights=sample_weight, axis=0) | |
if isinstance(multioutput, str) and multioutput == "raw_values": | |
return output_errors | |
if isinstance(multioutput, str) and multioutput == "uniform_average": | |
# pass None as weights to np.average: uniform mean | |
multioutput = None | |
return np.average(output_errors, weights=multioutput) | |
def mean_absolute_percentage_error( | |
y_true, y_pred, *, sample_weight=None, multioutput="uniform_average" | |
): | |
"""Mean absolute percentage error (MAPE) regression loss. | |
Note here that the output is not a percentage in the range [0, 100] | |
and a value of 100 does not mean 100% but 1e2. Furthermore, the output | |
can be arbitrarily high when `y_true` is small (which is specific to the | |
metric) or when `abs(y_true - y_pred)` is large (which is common for most | |
regression metrics). Read more in the | |
:ref:`User Guide <mean_absolute_percentage_error>`. | |
.. versionadded:: 0.24 | |
Parameters | |
---------- | |
y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Ground truth (correct) target values. | |
y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Estimated target values. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
multioutput : {'raw_values', 'uniform_average'} or array-like | |
Defines aggregating of multiple output values. | |
Array-like value defines weights used to average errors. | |
If input is list then the shape must be (n_outputs,). | |
'raw_values' : | |
Returns a full set of errors in case of multioutput input. | |
'uniform_average' : | |
Errors of all outputs are averaged with uniform weight. | |
Returns | |
------- | |
loss : float or ndarray of floats | |
If multioutput is 'raw_values', then mean absolute percentage error | |
is returned for each output separately. | |
If multioutput is 'uniform_average' or an ndarray of weights, then the | |
weighted average of all output errors is returned. | |
MAPE output is non-negative floating point. The best value is 0.0. | |
But note that bad predictions can lead to arbitrarily large | |
MAPE values, especially if some `y_true` values are very close to zero. | |
Note that we return a large value instead of `inf` when `y_true` is zero. | |
Examples | |
-------- | |
>>> from sklearn.metrics import mean_absolute_percentage_error | |
>>> y_true = [3, -0.5, 2, 7] | |
>>> y_pred = [2.5, 0.0, 2, 8] | |
>>> mean_absolute_percentage_error(y_true, y_pred) | |
0.3273... | |
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]] | |
>>> y_pred = [[0, 2], [-1, 2], [8, -5]] | |
>>> mean_absolute_percentage_error(y_true, y_pred) | |
0.5515... | |
>>> mean_absolute_percentage_error(y_true, y_pred, multioutput=[0.3, 0.7]) | |
0.6198... | |
>>> # the value when some element of the y_true is zero is arbitrarily high because | |
>>> # of the division by epsilon | |
>>> y_true = [1., 0., 2.4, 7.] | |
>>> y_pred = [1.2, 0.1, 2.4, 8.] | |
>>> mean_absolute_percentage_error(y_true, y_pred) | |
112589990684262.48 | |
""" | |
y_type, y_true, y_pred, multioutput = _check_reg_targets( | |
y_true, y_pred, multioutput | |
) | |
check_consistent_length(y_true, y_pred, sample_weight) | |
epsilon = np.finfo(np.float64).eps | |
mape = np.abs(y_pred - y_true) / np.maximum(np.abs(y_true), epsilon) | |
output_errors = np.average(mape, weights=sample_weight, axis=0) | |
if isinstance(multioutput, str): | |
if multioutput == "raw_values": | |
return output_errors | |
elif multioutput == "uniform_average": | |
# pass None as weights to np.average: uniform mean | |
multioutput = None | |
return np.average(output_errors, weights=multioutput) | |
def mean_squared_error( | |
y_true, | |
y_pred, | |
*, | |
sample_weight=None, | |
multioutput="uniform_average", | |
squared="deprecated", | |
): | |
"""Mean squared error regression loss. | |
Read more in the :ref:`User Guide <mean_squared_error>`. | |
Parameters | |
---------- | |
y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Ground truth (correct) target values. | |
y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Estimated target values. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
multioutput : {'raw_values', 'uniform_average'} or array-like of shape \ | |
(n_outputs,), default='uniform_average' | |
Defines aggregating of multiple output values. | |
Array-like value defines weights used to average errors. | |
'raw_values' : | |
Returns a full set of errors in case of multioutput input. | |
'uniform_average' : | |
Errors of all outputs are averaged with uniform weight. | |
squared : bool, default=True | |
If True returns MSE value, if False returns RMSE value. | |
.. deprecated:: 1.4 | |
`squared` is deprecated in 1.4 and will be removed in 1.6. | |
Use :func:`~sklearn.metrics.root_mean_squared_error` | |
instead to calculate the root mean squared error. | |
Returns | |
------- | |
loss : float or ndarray of floats | |
A non-negative floating point value (the best value is 0.0), or an | |
array of floating point values, one for each individual target. | |
Examples | |
-------- | |
>>> from sklearn.metrics import mean_squared_error | |
>>> y_true = [3, -0.5, 2, 7] | |
>>> y_pred = [2.5, 0.0, 2, 8] | |
>>> mean_squared_error(y_true, y_pred) | |
0.375 | |
>>> y_true = [[0.5, 1],[-1, 1],[7, -6]] | |
>>> y_pred = [[0, 2],[-1, 2],[8, -5]] | |
>>> mean_squared_error(y_true, y_pred) | |
0.708... | |
>>> mean_squared_error(y_true, y_pred, multioutput='raw_values') | |
array([0.41666667, 1. ]) | |
>>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7]) | |
0.825... | |
""" | |
# TODO(1.6): remove | |
if squared != "deprecated": | |
warnings.warn( | |
( | |
"'squared' is deprecated in version 1.4 and " | |
"will be removed in 1.6. To calculate the " | |
"root mean squared error, use the function" | |
"'root_mean_squared_error'." | |
), | |
FutureWarning, | |
) | |
if not squared: | |
return root_mean_squared_error( | |
y_true, y_pred, sample_weight=sample_weight, multioutput=multioutput | |
) | |
y_type, y_true, y_pred, multioutput = _check_reg_targets( | |
y_true, y_pred, multioutput | |
) | |
check_consistent_length(y_true, y_pred, sample_weight) | |
output_errors = np.average((y_true - y_pred) ** 2, axis=0, weights=sample_weight) | |
if isinstance(multioutput, str): | |
if multioutput == "raw_values": | |
return output_errors | |
elif multioutput == "uniform_average": | |
# pass None as weights to np.average: uniform mean | |
multioutput = None | |
return np.average(output_errors, weights=multioutput) | |
def root_mean_squared_error( | |
y_true, y_pred, *, sample_weight=None, multioutput="uniform_average" | |
): | |
"""Root mean squared error regression loss. | |
Read more in the :ref:`User Guide <mean_squared_error>`. | |
.. versionadded:: 1.4 | |
Parameters | |
---------- | |
y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Ground truth (correct) target values. | |
y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Estimated target values. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
multioutput : {'raw_values', 'uniform_average'} or array-like of shape \ | |
(n_outputs,), default='uniform_average' | |
Defines aggregating of multiple output values. | |
Array-like value defines weights used to average errors. | |
'raw_values' : | |
Returns a full set of errors in case of multioutput input. | |
'uniform_average' : | |
Errors of all outputs are averaged with uniform weight. | |
Returns | |
------- | |
loss : float or ndarray of floats | |
A non-negative floating point value (the best value is 0.0), or an | |
array of floating point values, one for each individual target. | |
Examples | |
-------- | |
>>> from sklearn.metrics import root_mean_squared_error | |
>>> y_true = [3, -0.5, 2, 7] | |
>>> y_pred = [2.5, 0.0, 2, 8] | |
>>> root_mean_squared_error(y_true, y_pred) | |
0.612... | |
>>> y_true = [[0.5, 1],[-1, 1],[7, -6]] | |
>>> y_pred = [[0, 2],[-1, 2],[8, -5]] | |
>>> root_mean_squared_error(y_true, y_pred) | |
0.822... | |
""" | |
output_errors = np.sqrt( | |
mean_squared_error( | |
y_true, y_pred, sample_weight=sample_weight, multioutput="raw_values" | |
) | |
) | |
if isinstance(multioutput, str): | |
if multioutput == "raw_values": | |
return output_errors | |
elif multioutput == "uniform_average": | |
# pass None as weights to np.average: uniform mean | |
multioutput = None | |
return np.average(output_errors, weights=multioutput) | |
def mean_squared_log_error( | |
y_true, | |
y_pred, | |
*, | |
sample_weight=None, | |
multioutput="uniform_average", | |
squared="deprecated", | |
): | |
"""Mean squared logarithmic error regression loss. | |
Read more in the :ref:`User Guide <mean_squared_log_error>`. | |
Parameters | |
---------- | |
y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Ground truth (correct) target values. | |
y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Estimated target values. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
multioutput : {'raw_values', 'uniform_average'} or array-like of shape \ | |
(n_outputs,), default='uniform_average' | |
Defines aggregating of multiple output values. | |
Array-like value defines weights used to average errors. | |
'raw_values' : | |
Returns a full set of errors when the input is of multioutput | |
format. | |
'uniform_average' : | |
Errors of all outputs are averaged with uniform weight. | |
squared : bool, default=True | |
If True returns MSLE (mean squared log error) value. | |
If False returns RMSLE (root mean squared log error) value. | |
.. deprecated:: 1.4 | |
`squared` is deprecated in 1.4 and will be removed in 1.6. | |
Use :func:`~sklearn.metrics.root_mean_squared_log_error` | |
instead to calculate the root mean squared logarithmic error. | |
Returns | |
------- | |
loss : float or ndarray of floats | |
A non-negative floating point value (the best value is 0.0), or an | |
array of floating point values, one for each individual target. | |
Examples | |
-------- | |
>>> from sklearn.metrics import mean_squared_log_error | |
>>> y_true = [3, 5, 2.5, 7] | |
>>> y_pred = [2.5, 5, 4, 8] | |
>>> mean_squared_log_error(y_true, y_pred) | |
0.039... | |
>>> y_true = [[0.5, 1], [1, 2], [7, 6]] | |
>>> y_pred = [[0.5, 2], [1, 2.5], [8, 8]] | |
>>> mean_squared_log_error(y_true, y_pred) | |
0.044... | |
>>> mean_squared_log_error(y_true, y_pred, multioutput='raw_values') | |
array([0.00462428, 0.08377444]) | |
>>> mean_squared_log_error(y_true, y_pred, multioutput=[0.3, 0.7]) | |
0.060... | |
""" | |
# TODO(1.6): remove | |
if squared != "deprecated": | |
warnings.warn( | |
( | |
"'squared' is deprecated in version 1.4 and " | |
"will be removed in 1.6. To calculate the " | |
"root mean squared logarithmic error, use the function" | |
"'root_mean_squared_log_error'." | |
), | |
FutureWarning, | |
) | |
if not squared: | |
return root_mean_squared_log_error( | |
y_true, y_pred, sample_weight=sample_weight, multioutput=multioutput | |
) | |
y_type, y_true, y_pred, multioutput = _check_reg_targets( | |
y_true, y_pred, multioutput | |
) | |
check_consistent_length(y_true, y_pred, sample_weight) | |
if (y_true < 0).any() or (y_pred < 0).any(): | |
raise ValueError( | |
"Mean Squared Logarithmic Error cannot be used when " | |
"targets contain negative values." | |
) | |
return mean_squared_error( | |
np.log1p(y_true), | |
np.log1p(y_pred), | |
sample_weight=sample_weight, | |
multioutput=multioutput, | |
) | |
def root_mean_squared_log_error( | |
y_true, y_pred, *, sample_weight=None, multioutput="uniform_average" | |
): | |
"""Root mean squared logarithmic error regression loss. | |
Read more in the :ref:`User Guide <mean_squared_log_error>`. | |
.. versionadded:: 1.4 | |
Parameters | |
---------- | |
y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Ground truth (correct) target values. | |
y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Estimated target values. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
multioutput : {'raw_values', 'uniform_average'} or array-like of shape \ | |
(n_outputs,), default='uniform_average' | |
Defines aggregating of multiple output values. | |
Array-like value defines weights used to average errors. | |
'raw_values' : | |
Returns a full set of errors when the input is of multioutput | |
format. | |
'uniform_average' : | |
Errors of all outputs are averaged with uniform weight. | |
Returns | |
------- | |
loss : float or ndarray of floats | |
A non-negative floating point value (the best value is 0.0), or an | |
array of floating point values, one for each individual target. | |
Examples | |
-------- | |
>>> from sklearn.metrics import root_mean_squared_log_error | |
>>> y_true = [3, 5, 2.5, 7] | |
>>> y_pred = [2.5, 5, 4, 8] | |
>>> root_mean_squared_log_error(y_true, y_pred) | |
0.199... | |
""" | |
_, y_true, y_pred, multioutput = _check_reg_targets(y_true, y_pred, multioutput) | |
check_consistent_length(y_true, y_pred, sample_weight) | |
if (y_true < 0).any() or (y_pred < 0).any(): | |
raise ValueError( | |
"Root Mean Squared Logarithmic Error cannot be used when " | |
"targets contain negative values." | |
) | |
return root_mean_squared_error( | |
np.log1p(y_true), | |
np.log1p(y_pred), | |
sample_weight=sample_weight, | |
multioutput=multioutput, | |
) | |
def median_absolute_error( | |
y_true, y_pred, *, multioutput="uniform_average", sample_weight=None | |
): | |
"""Median absolute error regression loss. | |
Median absolute error output is non-negative floating point. The best value | |
is 0.0. Read more in the :ref:`User Guide <median_absolute_error>`. | |
Parameters | |
---------- | |
y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Ground truth (correct) target values. | |
y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Estimated target values. | |
multioutput : {'raw_values', 'uniform_average'} or array-like of shape \ | |
(n_outputs,), default='uniform_average' | |
Defines aggregating of multiple output values. Array-like value defines | |
weights used to average errors. | |
'raw_values' : | |
Returns a full set of errors in case of multioutput input. | |
'uniform_average' : | |
Errors of all outputs are averaged with uniform weight. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
.. versionadded:: 0.24 | |
Returns | |
------- | |
loss : float or ndarray of floats | |
If multioutput is 'raw_values', then mean absolute error is returned | |
for each output separately. | |
If multioutput is 'uniform_average' or an ndarray of weights, then the | |
weighted average of all output errors is returned. | |
Examples | |
-------- | |
>>> from sklearn.metrics import median_absolute_error | |
>>> y_true = [3, -0.5, 2, 7] | |
>>> y_pred = [2.5, 0.0, 2, 8] | |
>>> median_absolute_error(y_true, y_pred) | |
0.5 | |
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]] | |
>>> y_pred = [[0, 2], [-1, 2], [8, -5]] | |
>>> median_absolute_error(y_true, y_pred) | |
0.75 | |
>>> median_absolute_error(y_true, y_pred, multioutput='raw_values') | |
array([0.5, 1. ]) | |
>>> median_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7]) | |
0.85 | |
""" | |
y_type, y_true, y_pred, multioutput = _check_reg_targets( | |
y_true, y_pred, multioutput | |
) | |
if sample_weight is None: | |
output_errors = np.median(np.abs(y_pred - y_true), axis=0) | |
else: | |
sample_weight = _check_sample_weight(sample_weight, y_pred) | |
output_errors = _weighted_percentile( | |
np.abs(y_pred - y_true), sample_weight=sample_weight | |
) | |
if isinstance(multioutput, str): | |
if multioutput == "raw_values": | |
return output_errors | |
elif multioutput == "uniform_average": | |
# pass None as weights to np.average: uniform mean | |
multioutput = None | |
return np.average(output_errors, weights=multioutput) | |
def _assemble_r2_explained_variance( | |
numerator, denominator, n_outputs, multioutput, force_finite | |
): | |
"""Common part used by explained variance score and :math:`R^2` score.""" | |
nonzero_denominator = denominator != 0 | |
if not force_finite: | |
# Standard formula, that may lead to NaN or -Inf | |
output_scores = 1 - (numerator / denominator) | |
else: | |
nonzero_numerator = numerator != 0 | |
# Default = Zero Numerator = perfect predictions. Set to 1.0 | |
# (note: even if denominator is zero, thus avoiding NaN scores) | |
output_scores = np.ones([n_outputs]) | |
# Non-zero Numerator and Non-zero Denominator: use the formula | |
valid_score = nonzero_denominator & nonzero_numerator | |
output_scores[valid_score] = 1 - ( | |
numerator[valid_score] / denominator[valid_score] | |
) | |
# Non-zero Numerator and Zero Denominator: | |
# arbitrary set to 0.0 to avoid -inf scores | |
output_scores[nonzero_numerator & ~nonzero_denominator] = 0.0 | |
if isinstance(multioutput, str): | |
if multioutput == "raw_values": | |
# return scores individually | |
return output_scores | |
elif multioutput == "uniform_average": | |
# Passing None as weights to np.average results is uniform mean | |
avg_weights = None | |
elif multioutput == "variance_weighted": | |
avg_weights = denominator | |
if not np.any(nonzero_denominator): | |
# All weights are zero, np.average would raise a ZeroDiv error. | |
# This only happens when all y are constant (or 1-element long) | |
# Since weights are all equal, fall back to uniform weights. | |
avg_weights = None | |
else: | |
avg_weights = multioutput | |
return np.average(output_scores, weights=avg_weights) | |
def explained_variance_score( | |
y_true, | |
y_pred, | |
*, | |
sample_weight=None, | |
multioutput="uniform_average", | |
force_finite=True, | |
): | |
"""Explained variance regression score function. | |
Best possible score is 1.0, lower values are worse. | |
In the particular case when ``y_true`` is constant, the explained variance | |
score is not finite: it is either ``NaN`` (perfect predictions) or | |
``-Inf`` (imperfect predictions). To prevent such non-finite numbers to | |
pollute higher-level experiments such as a grid search cross-validation, | |
by default these cases are replaced with 1.0 (perfect predictions) or 0.0 | |
(imperfect predictions) respectively. If ``force_finite`` | |
is set to ``False``, this score falls back on the original :math:`R^2` | |
definition. | |
.. note:: | |
The Explained Variance score is similar to the | |
:func:`R^2 score <r2_score>`, with the notable difference that it | |
does not account for systematic offsets in the prediction. Most often | |
the :func:`R^2 score <r2_score>` should be preferred. | |
Read more in the :ref:`User Guide <explained_variance_score>`. | |
Parameters | |
---------- | |
y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Ground truth (correct) target values. | |
y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Estimated target values. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
multioutput : {'raw_values', 'uniform_average', 'variance_weighted'} or \ | |
array-like of shape (n_outputs,), default='uniform_average' | |
Defines aggregating of multiple output scores. | |
Array-like value defines weights used to average scores. | |
'raw_values' : | |
Returns a full set of scores in case of multioutput input. | |
'uniform_average' : | |
Scores of all outputs are averaged with uniform weight. | |
'variance_weighted' : | |
Scores of all outputs are averaged, weighted by the variances | |
of each individual output. | |
force_finite : bool, default=True | |
Flag indicating if ``NaN`` and ``-Inf`` scores resulting from constant | |
data should be replaced with real numbers (``1.0`` if prediction is | |
perfect, ``0.0`` otherwise). Default is ``True``, a convenient setting | |
for hyperparameters' search procedures (e.g. grid search | |
cross-validation). | |
.. versionadded:: 1.1 | |
Returns | |
------- | |
score : float or ndarray of floats | |
The explained variance or ndarray if 'multioutput' is 'raw_values'. | |
See Also | |
-------- | |
r2_score : | |
Similar metric, but accounting for systematic offsets in | |
prediction. | |
Notes | |
----- | |
This is not a symmetric function. | |
Examples | |
-------- | |
>>> from sklearn.metrics import explained_variance_score | |
>>> y_true = [3, -0.5, 2, 7] | |
>>> y_pred = [2.5, 0.0, 2, 8] | |
>>> explained_variance_score(y_true, y_pred) | |
0.957... | |
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]] | |
>>> y_pred = [[0, 2], [-1, 2], [8, -5]] | |
>>> explained_variance_score(y_true, y_pred, multioutput='uniform_average') | |
0.983... | |
>>> y_true = [-2, -2, -2] | |
>>> y_pred = [-2, -2, -2] | |
>>> explained_variance_score(y_true, y_pred) | |
1.0 | |
>>> explained_variance_score(y_true, y_pred, force_finite=False) | |
nan | |
>>> y_true = [-2, -2, -2] | |
>>> y_pred = [-2, -2, -2 + 1e-8] | |
>>> explained_variance_score(y_true, y_pred) | |
0.0 | |
>>> explained_variance_score(y_true, y_pred, force_finite=False) | |
-inf | |
""" | |
y_type, y_true, y_pred, multioutput = _check_reg_targets( | |
y_true, y_pred, multioutput | |
) | |
check_consistent_length(y_true, y_pred, sample_weight) | |
y_diff_avg = np.average(y_true - y_pred, weights=sample_weight, axis=0) | |
numerator = np.average( | |
(y_true - y_pred - y_diff_avg) ** 2, weights=sample_weight, axis=0 | |
) | |
y_true_avg = np.average(y_true, weights=sample_weight, axis=0) | |
denominator = np.average((y_true - y_true_avg) ** 2, weights=sample_weight, axis=0) | |
return _assemble_r2_explained_variance( | |
numerator=numerator, | |
denominator=denominator, | |
n_outputs=y_true.shape[1], | |
multioutput=multioutput, | |
force_finite=force_finite, | |
) | |
def r2_score( | |
y_true, | |
y_pred, | |
*, | |
sample_weight=None, | |
multioutput="uniform_average", | |
force_finite=True, | |
): | |
""":math:`R^2` (coefficient of determination) regression score function. | |
Best possible score is 1.0 and it can be negative (because the | |
model can be arbitrarily worse). In the general case when the true y is | |
non-constant, a constant model that always predicts the average y | |
disregarding the input features would get a :math:`R^2` score of 0.0. | |
In the particular case when ``y_true`` is constant, the :math:`R^2` score | |
is not finite: it is either ``NaN`` (perfect predictions) or ``-Inf`` | |
(imperfect predictions). To prevent such non-finite numbers to pollute | |
higher-level experiments such as a grid search cross-validation, by default | |
these cases are replaced with 1.0 (perfect predictions) or 0.0 (imperfect | |
predictions) respectively. You can set ``force_finite`` to ``False`` to | |
prevent this fix from happening. | |
Note: when the prediction residuals have zero mean, the :math:`R^2` score | |
is identical to the | |
:func:`Explained Variance score <explained_variance_score>`. | |
Read more in the :ref:`User Guide <r2_score>`. | |
Parameters | |
---------- | |
y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Ground truth (correct) target values. | |
y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Estimated target values. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
multioutput : {'raw_values', 'uniform_average', 'variance_weighted'}, \ | |
array-like of shape (n_outputs,) or None, default='uniform_average' | |
Defines aggregating of multiple output scores. | |
Array-like value defines weights used to average scores. | |
Default is "uniform_average". | |
'raw_values' : | |
Returns a full set of scores in case of multioutput input. | |
'uniform_average' : | |
Scores of all outputs are averaged with uniform weight. | |
'variance_weighted' : | |
Scores of all outputs are averaged, weighted by the variances | |
of each individual output. | |
.. versionchanged:: 0.19 | |
Default value of multioutput is 'uniform_average'. | |
force_finite : bool, default=True | |
Flag indicating if ``NaN`` and ``-Inf`` scores resulting from constant | |
data should be replaced with real numbers (``1.0`` if prediction is | |
perfect, ``0.0`` otherwise). Default is ``True``, a convenient setting | |
for hyperparameters' search procedures (e.g. grid search | |
cross-validation). | |
.. versionadded:: 1.1 | |
Returns | |
------- | |
z : float or ndarray of floats | |
The :math:`R^2` score or ndarray of scores if 'multioutput' is | |
'raw_values'. | |
Notes | |
----- | |
This is not a symmetric function. | |
Unlike most other scores, :math:`R^2` score may be negative (it need not | |
actually be the square of a quantity R). | |
This metric is not well-defined for single samples and will return a NaN | |
value if n_samples is less than two. | |
References | |
---------- | |
.. [1] `Wikipedia entry on the Coefficient of determination | |
<https://en.wikipedia.org/wiki/Coefficient_of_determination>`_ | |
Examples | |
-------- | |
>>> from sklearn.metrics import r2_score | |
>>> y_true = [3, -0.5, 2, 7] | |
>>> y_pred = [2.5, 0.0, 2, 8] | |
>>> r2_score(y_true, y_pred) | |
0.948... | |
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]] | |
>>> y_pred = [[0, 2], [-1, 2], [8, -5]] | |
>>> r2_score(y_true, y_pred, | |
... multioutput='variance_weighted') | |
0.938... | |
>>> y_true = [1, 2, 3] | |
>>> y_pred = [1, 2, 3] | |
>>> r2_score(y_true, y_pred) | |
1.0 | |
>>> y_true = [1, 2, 3] | |
>>> y_pred = [2, 2, 2] | |
>>> r2_score(y_true, y_pred) | |
0.0 | |
>>> y_true = [1, 2, 3] | |
>>> y_pred = [3, 2, 1] | |
>>> r2_score(y_true, y_pred) | |
-3.0 | |
>>> y_true = [-2, -2, -2] | |
>>> y_pred = [-2, -2, -2] | |
>>> r2_score(y_true, y_pred) | |
1.0 | |
>>> r2_score(y_true, y_pred, force_finite=False) | |
nan | |
>>> y_true = [-2, -2, -2] | |
>>> y_pred = [-2, -2, -2 + 1e-8] | |
>>> r2_score(y_true, y_pred) | |
0.0 | |
>>> r2_score(y_true, y_pred, force_finite=False) | |
-inf | |
""" | |
y_type, y_true, y_pred, multioutput = _check_reg_targets( | |
y_true, y_pred, multioutput | |
) | |
check_consistent_length(y_true, y_pred, sample_weight) | |
if _num_samples(y_pred) < 2: | |
msg = "R^2 score is not well-defined with less than two samples." | |
warnings.warn(msg, UndefinedMetricWarning) | |
return float("nan") | |
if sample_weight is not None: | |
sample_weight = column_or_1d(sample_weight) | |
weight = sample_weight[:, np.newaxis] | |
else: | |
weight = 1.0 | |
numerator = (weight * (y_true - y_pred) ** 2).sum(axis=0, dtype=np.float64) | |
denominator = ( | |
weight * (y_true - np.average(y_true, axis=0, weights=sample_weight)) ** 2 | |
).sum(axis=0, dtype=np.float64) | |
return _assemble_r2_explained_variance( | |
numerator=numerator, | |
denominator=denominator, | |
n_outputs=y_true.shape[1], | |
multioutput=multioutput, | |
force_finite=force_finite, | |
) | |
def max_error(y_true, y_pred): | |
""" | |
The max_error metric calculates the maximum residual error. | |
Read more in the :ref:`User Guide <max_error>`. | |
Parameters | |
---------- | |
y_true : array-like of shape (n_samples,) | |
Ground truth (correct) target values. | |
y_pred : array-like of shape (n_samples,) | |
Estimated target values. | |
Returns | |
------- | |
max_error : float | |
A positive floating point value (the best value is 0.0). | |
Examples | |
-------- | |
>>> from sklearn.metrics import max_error | |
>>> y_true = [3, 2, 7, 1] | |
>>> y_pred = [4, 2, 7, 1] | |
>>> max_error(y_true, y_pred) | |
1 | |
""" | |
y_type, y_true, y_pred, _ = _check_reg_targets(y_true, y_pred, None) | |
if y_type == "continuous-multioutput": | |
raise ValueError("Multioutput not supported in max_error") | |
return np.max(np.abs(y_true - y_pred)) | |
def _mean_tweedie_deviance(y_true, y_pred, sample_weight, power): | |
"""Mean Tweedie deviance regression loss.""" | |
p = power | |
if p < 0: | |
# 'Extreme stable', y any real number, y_pred > 0 | |
dev = 2 * ( | |
np.power(np.maximum(y_true, 0), 2 - p) / ((1 - p) * (2 - p)) | |
- y_true * np.power(y_pred, 1 - p) / (1 - p) | |
+ np.power(y_pred, 2 - p) / (2 - p) | |
) | |
elif p == 0: | |
# Normal distribution, y and y_pred any real number | |
dev = (y_true - y_pred) ** 2 | |
elif p == 1: | |
# Poisson distribution | |
dev = 2 * (xlogy(y_true, y_true / y_pred) - y_true + y_pred) | |
elif p == 2: | |
# Gamma distribution | |
dev = 2 * (np.log(y_pred / y_true) + y_true / y_pred - 1) | |
else: | |
dev = 2 * ( | |
np.power(y_true, 2 - p) / ((1 - p) * (2 - p)) | |
- y_true * np.power(y_pred, 1 - p) / (1 - p) | |
+ np.power(y_pred, 2 - p) / (2 - p) | |
) | |
return np.average(dev, weights=sample_weight) | |
def mean_tweedie_deviance(y_true, y_pred, *, sample_weight=None, power=0): | |
"""Mean Tweedie deviance regression loss. | |
Read more in the :ref:`User Guide <mean_tweedie_deviance>`. | |
Parameters | |
---------- | |
y_true : array-like of shape (n_samples,) | |
Ground truth (correct) target values. | |
y_pred : array-like of shape (n_samples,) | |
Estimated target values. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
power : float, default=0 | |
Tweedie power parameter. Either power <= 0 or power >= 1. | |
The higher `p` the less weight is given to extreme | |
deviations between true and predicted targets. | |
- power < 0: Extreme stable distribution. Requires: y_pred > 0. | |
- power = 0 : Normal distribution, output corresponds to | |
mean_squared_error. y_true and y_pred can be any real numbers. | |
- power = 1 : Poisson distribution. Requires: y_true >= 0 and | |
y_pred > 0. | |
- 1 < p < 2 : Compound Poisson distribution. Requires: y_true >= 0 | |
and y_pred > 0. | |
- power = 2 : Gamma distribution. Requires: y_true > 0 and y_pred > 0. | |
- power = 3 : Inverse Gaussian distribution. Requires: y_true > 0 | |
and y_pred > 0. | |
- otherwise : Positive stable distribution. Requires: y_true > 0 | |
and y_pred > 0. | |
Returns | |
------- | |
loss : float | |
A non-negative floating point value (the best value is 0.0). | |
Examples | |
-------- | |
>>> from sklearn.metrics import mean_tweedie_deviance | |
>>> y_true = [2, 0, 1, 4] | |
>>> y_pred = [0.5, 0.5, 2., 2.] | |
>>> mean_tweedie_deviance(y_true, y_pred, power=1) | |
1.4260... | |
""" | |
y_type, y_true, y_pred, _ = _check_reg_targets( | |
y_true, y_pred, None, dtype=[np.float64, np.float32] | |
) | |
if y_type == "continuous-multioutput": | |
raise ValueError("Multioutput not supported in mean_tweedie_deviance") | |
check_consistent_length(y_true, y_pred, sample_weight) | |
if sample_weight is not None: | |
sample_weight = column_or_1d(sample_weight) | |
sample_weight = sample_weight[:, np.newaxis] | |
message = f"Mean Tweedie deviance error with power={power} can only be used on " | |
if power < 0: | |
# 'Extreme stable', y any real number, y_pred > 0 | |
if (y_pred <= 0).any(): | |
raise ValueError(message + "strictly positive y_pred.") | |
elif power == 0: | |
# Normal, y and y_pred can be any real number | |
pass | |
elif 1 <= power < 2: | |
# Poisson and compound Poisson distribution, y >= 0, y_pred > 0 | |
if (y_true < 0).any() or (y_pred <= 0).any(): | |
raise ValueError(message + "non-negative y and strictly positive y_pred.") | |
elif power >= 2: | |
# Gamma and Extreme stable distribution, y and y_pred > 0 | |
if (y_true <= 0).any() or (y_pred <= 0).any(): | |
raise ValueError(message + "strictly positive y and y_pred.") | |
else: # pragma: nocover | |
# Unreachable statement | |
raise ValueError | |
return _mean_tweedie_deviance( | |
y_true, y_pred, sample_weight=sample_weight, power=power | |
) | |
def mean_poisson_deviance(y_true, y_pred, *, sample_weight=None): | |
"""Mean Poisson deviance regression loss. | |
Poisson deviance is equivalent to the Tweedie deviance with | |
the power parameter `power=1`. | |
Read more in the :ref:`User Guide <mean_tweedie_deviance>`. | |
Parameters | |
---------- | |
y_true : array-like of shape (n_samples,) | |
Ground truth (correct) target values. Requires y_true >= 0. | |
y_pred : array-like of shape (n_samples,) | |
Estimated target values. Requires y_pred > 0. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
Returns | |
------- | |
loss : float | |
A non-negative floating point value (the best value is 0.0). | |
Examples | |
-------- | |
>>> from sklearn.metrics import mean_poisson_deviance | |
>>> y_true = [2, 0, 1, 4] | |
>>> y_pred = [0.5, 0.5, 2., 2.] | |
>>> mean_poisson_deviance(y_true, y_pred) | |
1.4260... | |
""" | |
return mean_tweedie_deviance(y_true, y_pred, sample_weight=sample_weight, power=1) | |
def mean_gamma_deviance(y_true, y_pred, *, sample_weight=None): | |
"""Mean Gamma deviance regression loss. | |
Gamma deviance is equivalent to the Tweedie deviance with | |
the power parameter `power=2`. It is invariant to scaling of | |
the target variable, and measures relative errors. | |
Read more in the :ref:`User Guide <mean_tweedie_deviance>`. | |
Parameters | |
---------- | |
y_true : array-like of shape (n_samples,) | |
Ground truth (correct) target values. Requires y_true > 0. | |
y_pred : array-like of shape (n_samples,) | |
Estimated target values. Requires y_pred > 0. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
Returns | |
------- | |
loss : float | |
A non-negative floating point value (the best value is 0.0). | |
Examples | |
-------- | |
>>> from sklearn.metrics import mean_gamma_deviance | |
>>> y_true = [2, 0.5, 1, 4] | |
>>> y_pred = [0.5, 0.5, 2., 2.] | |
>>> mean_gamma_deviance(y_true, y_pred) | |
1.0568... | |
""" | |
return mean_tweedie_deviance(y_true, y_pred, sample_weight=sample_weight, power=2) | |
def d2_tweedie_score(y_true, y_pred, *, sample_weight=None, power=0): | |
""" | |
:math:`D^2` regression score function, fraction of Tweedie deviance explained. | |
Best possible score is 1.0 and it can be negative (because the model can be | |
arbitrarily worse). A model that always uses the empirical mean of `y_true` as | |
constant prediction, disregarding the input features, gets a D^2 score of 0.0. | |
Read more in the :ref:`User Guide <d2_score>`. | |
.. versionadded:: 1.0 | |
Parameters | |
---------- | |
y_true : array-like of shape (n_samples,) | |
Ground truth (correct) target values. | |
y_pred : array-like of shape (n_samples,) | |
Estimated target values. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
power : float, default=0 | |
Tweedie power parameter. Either power <= 0 or power >= 1. | |
The higher `p` the less weight is given to extreme | |
deviations between true and predicted targets. | |
- power < 0: Extreme stable distribution. Requires: y_pred > 0. | |
- power = 0 : Normal distribution, output corresponds to r2_score. | |
y_true and y_pred can be any real numbers. | |
- power = 1 : Poisson distribution. Requires: y_true >= 0 and | |
y_pred > 0. | |
- 1 < p < 2 : Compound Poisson distribution. Requires: y_true >= 0 | |
and y_pred > 0. | |
- power = 2 : Gamma distribution. Requires: y_true > 0 and y_pred > 0. | |
- power = 3 : Inverse Gaussian distribution. Requires: y_true > 0 | |
and y_pred > 0. | |
- otherwise : Positive stable distribution. Requires: y_true > 0 | |
and y_pred > 0. | |
Returns | |
------- | |
z : float or ndarray of floats | |
The D^2 score. | |
Notes | |
----- | |
This is not a symmetric function. | |
Like R^2, D^2 score may be negative (it need not actually be the square of | |
a quantity D). | |
This metric is not well-defined for single samples and will return a NaN | |
value if n_samples is less than two. | |
References | |
---------- | |
.. [1] Eq. (3.11) of Hastie, Trevor J., Robert Tibshirani and Martin J. | |
Wainwright. "Statistical Learning with Sparsity: The Lasso and | |
Generalizations." (2015). https://hastie.su.domains/StatLearnSparsity/ | |
Examples | |
-------- | |
>>> from sklearn.metrics import d2_tweedie_score | |
>>> y_true = [0.5, 1, 2.5, 7] | |
>>> y_pred = [1, 1, 5, 3.5] | |
>>> d2_tweedie_score(y_true, y_pred) | |
0.285... | |
>>> d2_tweedie_score(y_true, y_pred, power=1) | |
0.487... | |
>>> d2_tweedie_score(y_true, y_pred, power=2) | |
0.630... | |
>>> d2_tweedie_score(y_true, y_true, power=2) | |
1.0 | |
""" | |
y_type, y_true, y_pred, _ = _check_reg_targets( | |
y_true, y_pred, None, dtype=[np.float64, np.float32] | |
) | |
if y_type == "continuous-multioutput": | |
raise ValueError("Multioutput not supported in d2_tweedie_score") | |
if _num_samples(y_pred) < 2: | |
msg = "D^2 score is not well-defined with less than two samples." | |
warnings.warn(msg, UndefinedMetricWarning) | |
return float("nan") | |
y_true, y_pred = np.squeeze(y_true), np.squeeze(y_pred) | |
numerator = mean_tweedie_deviance( | |
y_true, y_pred, sample_weight=sample_weight, power=power | |
) | |
y_avg = np.average(y_true, weights=sample_weight) | |
denominator = _mean_tweedie_deviance( | |
y_true, y_avg, sample_weight=sample_weight, power=power | |
) | |
return 1 - numerator / denominator | |
def d2_pinball_score( | |
y_true, y_pred, *, sample_weight=None, alpha=0.5, multioutput="uniform_average" | |
): | |
""" | |
:math:`D^2` regression score function, fraction of pinball loss explained. | |
Best possible score is 1.0 and it can be negative (because the model can be | |
arbitrarily worse). A model that always uses the empirical alpha-quantile of | |
`y_true` as constant prediction, disregarding the input features, | |
gets a :math:`D^2` score of 0.0. | |
Read more in the :ref:`User Guide <d2_score>`. | |
.. versionadded:: 1.1 | |
Parameters | |
---------- | |
y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Ground truth (correct) target values. | |
y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Estimated target values. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
alpha : float, default=0.5 | |
Slope of the pinball deviance. It determines the quantile level alpha | |
for which the pinball deviance and also D2 are optimal. | |
The default `alpha=0.5` is equivalent to `d2_absolute_error_score`. | |
multioutput : {'raw_values', 'uniform_average'} or array-like of shape \ | |
(n_outputs,), default='uniform_average' | |
Defines aggregating of multiple output values. | |
Array-like value defines weights used to average scores. | |
'raw_values' : | |
Returns a full set of errors in case of multioutput input. | |
'uniform_average' : | |
Scores of all outputs are averaged with uniform weight. | |
Returns | |
------- | |
score : float or ndarray of floats | |
The :math:`D^2` score with a pinball deviance | |
or ndarray of scores if `multioutput='raw_values'`. | |
Notes | |
----- | |
Like :math:`R^2`, :math:`D^2` score may be negative | |
(it need not actually be the square of a quantity D). | |
This metric is not well-defined for a single point and will return a NaN | |
value if n_samples is less than two. | |
References | |
---------- | |
.. [1] Eq. (7) of `Koenker, Roger; Machado, José A. F. (1999). | |
"Goodness of Fit and Related Inference Processes for Quantile Regression" | |
<https://doi.org/10.1080/01621459.1999.10473882>`_ | |
.. [2] Eq. (3.11) of Hastie, Trevor J., Robert Tibshirani and Martin J. | |
Wainwright. "Statistical Learning with Sparsity: The Lasso and | |
Generalizations." (2015). https://hastie.su.domains/StatLearnSparsity/ | |
Examples | |
-------- | |
>>> from sklearn.metrics import d2_pinball_score | |
>>> y_true = [1, 2, 3] | |
>>> y_pred = [1, 3, 3] | |
>>> d2_pinball_score(y_true, y_pred) | |
0.5 | |
>>> d2_pinball_score(y_true, y_pred, alpha=0.9) | |
0.772... | |
>>> d2_pinball_score(y_true, y_pred, alpha=0.1) | |
-1.045... | |
>>> d2_pinball_score(y_true, y_true, alpha=0.1) | |
1.0 | |
""" | |
y_type, y_true, y_pred, multioutput = _check_reg_targets( | |
y_true, y_pred, multioutput | |
) | |
check_consistent_length(y_true, y_pred, sample_weight) | |
if _num_samples(y_pred) < 2: | |
msg = "D^2 score is not well-defined with less than two samples." | |
warnings.warn(msg, UndefinedMetricWarning) | |
return float("nan") | |
numerator = mean_pinball_loss( | |
y_true, | |
y_pred, | |
sample_weight=sample_weight, | |
alpha=alpha, | |
multioutput="raw_values", | |
) | |
if sample_weight is None: | |
y_quantile = np.tile( | |
np.percentile(y_true, q=alpha * 100, axis=0), (len(y_true), 1) | |
) | |
else: | |
sample_weight = _check_sample_weight(sample_weight, y_true) | |
y_quantile = np.tile( | |
_weighted_percentile( | |
y_true, sample_weight=sample_weight, percentile=alpha * 100 | |
), | |
(len(y_true), 1), | |
) | |
denominator = mean_pinball_loss( | |
y_true, | |
y_quantile, | |
sample_weight=sample_weight, | |
alpha=alpha, | |
multioutput="raw_values", | |
) | |
nonzero_numerator = numerator != 0 | |
nonzero_denominator = denominator != 0 | |
valid_score = nonzero_numerator & nonzero_denominator | |
output_scores = np.ones(y_true.shape[1]) | |
output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) | |
output_scores[nonzero_numerator & ~nonzero_denominator] = 0.0 | |
if isinstance(multioutput, str): | |
if multioutput == "raw_values": | |
# return scores individually | |
return output_scores | |
else: # multioutput == "uniform_average" | |
# passing None as weights to np.average results in uniform mean | |
avg_weights = None | |
else: | |
avg_weights = multioutput | |
return np.average(output_scores, weights=avg_weights) | |
def d2_absolute_error_score( | |
y_true, y_pred, *, sample_weight=None, multioutput="uniform_average" | |
): | |
""" | |
:math:`D^2` regression score function, fraction of absolute error explained. | |
Best possible score is 1.0 and it can be negative (because the model can be | |
arbitrarily worse). A model that always uses the empirical median of `y_true` | |
as constant prediction, disregarding the input features, | |
gets a :math:`D^2` score of 0.0. | |
Read more in the :ref:`User Guide <d2_score>`. | |
.. versionadded:: 1.1 | |
Parameters | |
---------- | |
y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Ground truth (correct) target values. | |
y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Estimated target values. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
multioutput : {'raw_values', 'uniform_average'} or array-like of shape \ | |
(n_outputs,), default='uniform_average' | |
Defines aggregating of multiple output values. | |
Array-like value defines weights used to average scores. | |
'raw_values' : | |
Returns a full set of errors in case of multioutput input. | |
'uniform_average' : | |
Scores of all outputs are averaged with uniform weight. | |
Returns | |
------- | |
score : float or ndarray of floats | |
The :math:`D^2` score with an absolute error deviance | |
or ndarray of scores if 'multioutput' is 'raw_values'. | |
Notes | |
----- | |
Like :math:`R^2`, :math:`D^2` score may be negative | |
(it need not actually be the square of a quantity D). | |
This metric is not well-defined for single samples and will return a NaN | |
value if n_samples is less than two. | |
References | |
---------- | |
.. [1] Eq. (3.11) of Hastie, Trevor J., Robert Tibshirani and Martin J. | |
Wainwright. "Statistical Learning with Sparsity: The Lasso and | |
Generalizations." (2015). https://hastie.su.domains/StatLearnSparsity/ | |
Examples | |
-------- | |
>>> from sklearn.metrics import d2_absolute_error_score | |
>>> y_true = [3, -0.5, 2, 7] | |
>>> y_pred = [2.5, 0.0, 2, 8] | |
>>> d2_absolute_error_score(y_true, y_pred) | |
0.764... | |
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]] | |
>>> y_pred = [[0, 2], [-1, 2], [8, -5]] | |
>>> d2_absolute_error_score(y_true, y_pred, multioutput='uniform_average') | |
0.691... | |
>>> d2_absolute_error_score(y_true, y_pred, multioutput='raw_values') | |
array([0.8125 , 0.57142857]) | |
>>> y_true = [1, 2, 3] | |
>>> y_pred = [1, 2, 3] | |
>>> d2_absolute_error_score(y_true, y_pred) | |
1.0 | |
>>> y_true = [1, 2, 3] | |
>>> y_pred = [2, 2, 2] | |
>>> d2_absolute_error_score(y_true, y_pred) | |
0.0 | |
>>> y_true = [1, 2, 3] | |
>>> y_pred = [3, 2, 1] | |
>>> d2_absolute_error_score(y_true, y_pred) | |
-1.0 | |
""" | |
return d2_pinball_score( | |
y_true, y_pred, sample_weight=sample_weight, alpha=0.5, multioutput=multioutput | |
) | |