peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/metrics
/cluster
/_unsupervised.py
"""Unsupervised evaluation metrics.""" | |
# Authors: Robert Layton <[email protected]> | |
# Arnaud Fouchet <[email protected]> | |
# Thierry Guillemot <[email protected]> | |
# License: BSD 3 clause | |
import functools | |
from numbers import Integral | |
import numpy as np | |
from scipy.sparse import issparse | |
from ...preprocessing import LabelEncoder | |
from ...utils import _safe_indexing, check_random_state, check_X_y | |
from ...utils._param_validation import ( | |
Interval, | |
StrOptions, | |
validate_params, | |
) | |
from ..pairwise import _VALID_METRICS, pairwise_distances, pairwise_distances_chunked | |
def check_number_of_labels(n_labels, n_samples): | |
"""Check that number of labels are valid. | |
Parameters | |
---------- | |
n_labels : int | |
Number of labels. | |
n_samples : int | |
Number of samples. | |
""" | |
if not 1 < n_labels < n_samples: | |
raise ValueError( | |
"Number of labels is %d. Valid values are 2 to n_samples - 1 (inclusive)" | |
% n_labels | |
) | |
def silhouette_score( | |
X, labels, *, metric="euclidean", sample_size=None, random_state=None, **kwds | |
): | |
"""Compute the mean Silhouette Coefficient of all samples. | |
The Silhouette Coefficient is calculated using the mean intra-cluster | |
distance (``a``) and the mean nearest-cluster distance (``b``) for each | |
sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, | |
b)``. To clarify, ``b`` is the distance between a sample and the nearest | |
cluster that the sample is not a part of. | |
Note that Silhouette Coefficient is only defined if number of labels | |
is ``2 <= n_labels <= n_samples - 1``. | |
This function returns the mean Silhouette Coefficient over all samples. | |
To obtain the values for each sample, use :func:`silhouette_samples`. | |
The best value is 1 and the worst value is -1. Values near 0 indicate | |
overlapping clusters. Negative values generally indicate that a sample has | |
been assigned to the wrong cluster, as a different cluster is more similar. | |
Read more in the :ref:`User Guide <silhouette_coefficient>`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples_a, n_samples_a) if metric == \ | |
"precomputed" or (n_samples_a, n_features) otherwise | |
An array of pairwise distances between samples, or a feature array. | |
labels : array-like of shape (n_samples,) | |
Predicted labels for each sample. | |
metric : str or callable, default='euclidean' | |
The metric to use when calculating distance between instances in a | |
feature array. If metric is a string, it must be one of the options | |
allowed by :func:`~sklearn.metrics.pairwise_distances`. If ``X`` is | |
the distance array itself, use ``metric="precomputed"``. | |
sample_size : int, default=None | |
The size of the sample to use when computing the Silhouette Coefficient | |
on a random subset of the data. | |
If ``sample_size is None``, no sampling is used. | |
random_state : int, RandomState instance or None, default=None | |
Determines random number generation for selecting a subset of samples. | |
Used when ``sample_size is not None``. | |
Pass an int for reproducible results across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
**kwds : optional keyword parameters | |
Any further parameters are passed directly to the distance function. | |
If using a scipy.spatial.distance metric, the parameters are still | |
metric dependent. See the scipy docs for usage examples. | |
Returns | |
------- | |
silhouette : float | |
Mean Silhouette Coefficient for all samples. | |
References | |
---------- | |
.. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the | |
Interpretation and Validation of Cluster Analysis". Computational | |
and Applied Mathematics 20: 53-65. | |
<https://www.sciencedirect.com/science/article/pii/0377042787901257>`_ | |
.. [2] `Wikipedia entry on the Silhouette Coefficient | |
<https://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ | |
Examples | |
-------- | |
>>> from sklearn.datasets import make_blobs | |
>>> from sklearn.cluster import KMeans | |
>>> from sklearn.metrics import silhouette_score | |
>>> X, y = make_blobs(random_state=42) | |
>>> kmeans = KMeans(n_clusters=2, random_state=42) | |
>>> silhouette_score(X, kmeans.fit_predict(X)) | |
0.49... | |
""" | |
if sample_size is not None: | |
X, labels = check_X_y(X, labels, accept_sparse=["csc", "csr"]) | |
random_state = check_random_state(random_state) | |
indices = random_state.permutation(X.shape[0])[:sample_size] | |
if metric == "precomputed": | |
X, labels = X[indices].T[indices].T, labels[indices] | |
else: | |
X, labels = X[indices], labels[indices] | |
return np.mean(silhouette_samples(X, labels, metric=metric, **kwds)) | |
def _silhouette_reduce(D_chunk, start, labels, label_freqs): | |
"""Accumulate silhouette statistics for vertical chunk of X. | |
Parameters | |
---------- | |
D_chunk : {array-like, sparse matrix} of shape (n_chunk_samples, n_samples) | |
Precomputed distances for a chunk. If a sparse matrix is provided, | |
only CSR format is accepted. | |
start : int | |
First index in the chunk. | |
labels : array-like of shape (n_samples,) | |
Corresponding cluster labels, encoded as {0, ..., n_clusters-1}. | |
label_freqs : array-like | |
Distribution of cluster labels in ``labels``. | |
""" | |
n_chunk_samples = D_chunk.shape[0] | |
# accumulate distances from each sample to each cluster | |
cluster_distances = np.zeros( | |
(n_chunk_samples, len(label_freqs)), dtype=D_chunk.dtype | |
) | |
if issparse(D_chunk): | |
if D_chunk.format != "csr": | |
raise TypeError( | |
"Expected CSR matrix. Please pass sparse matrix in CSR format." | |
) | |
for i in range(n_chunk_samples): | |
indptr = D_chunk.indptr | |
indices = D_chunk.indices[indptr[i] : indptr[i + 1]] | |
sample_weights = D_chunk.data[indptr[i] : indptr[i + 1]] | |
sample_labels = np.take(labels, indices) | |
cluster_distances[i] += np.bincount( | |
sample_labels, weights=sample_weights, minlength=len(label_freqs) | |
) | |
else: | |
for i in range(n_chunk_samples): | |
sample_weights = D_chunk[i] | |
sample_labels = labels | |
cluster_distances[i] += np.bincount( | |
sample_labels, weights=sample_weights, minlength=len(label_freqs) | |
) | |
# intra_index selects intra-cluster distances within cluster_distances | |
end = start + n_chunk_samples | |
intra_index = (np.arange(n_chunk_samples), labels[start:end]) | |
# intra_cluster_distances are averaged over cluster size outside this function | |
intra_cluster_distances = cluster_distances[intra_index] | |
# of the remaining distances we normalise and extract the minimum | |
cluster_distances[intra_index] = np.inf | |
cluster_distances /= label_freqs | |
inter_cluster_distances = cluster_distances.min(axis=1) | |
return intra_cluster_distances, inter_cluster_distances | |
def silhouette_samples(X, labels, *, metric="euclidean", **kwds): | |
"""Compute the Silhouette Coefficient for each sample. | |
The Silhouette Coefficient is a measure of how well samples are clustered | |
with samples that are similar to themselves. Clustering models with a high | |
Silhouette Coefficient are said to be dense, where samples in the same | |
cluster are similar to each other, and well separated, where samples in | |
different clusters are not very similar to each other. | |
The Silhouette Coefficient is calculated using the mean intra-cluster | |
distance (``a``) and the mean nearest-cluster distance (``b``) for each | |
sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, | |
b)``. | |
Note that Silhouette Coefficient is only defined if number of labels | |
is 2 ``<= n_labels <= n_samples - 1``. | |
This function returns the Silhouette Coefficient for each sample. | |
The best value is 1 and the worst value is -1. Values near 0 indicate | |
overlapping clusters. | |
Read more in the :ref:`User Guide <silhouette_coefficient>`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples_a, n_samples_a) if metric == \ | |
"precomputed" or (n_samples_a, n_features) otherwise | |
An array of pairwise distances between samples, or a feature array. If | |
a sparse matrix is provided, CSR format should be favoured avoiding | |
an additional copy. | |
labels : array-like of shape (n_samples,) | |
Label values for each sample. | |
metric : str or callable, default='euclidean' | |
The metric to use when calculating distance between instances in a | |
feature array. If metric is a string, it must be one of the options | |
allowed by :func:`~sklearn.metrics.pairwise_distances`. | |
If ``X`` is the distance array itself, use "precomputed" as the metric. | |
Precomputed distance matrices must have 0 along the diagonal. | |
**kwds : optional keyword parameters | |
Any further parameters are passed directly to the distance function. | |
If using a ``scipy.spatial.distance`` metric, the parameters are still | |
metric dependent. See the scipy docs for usage examples. | |
Returns | |
------- | |
silhouette : array-like of shape (n_samples,) | |
Silhouette Coefficients for each sample. | |
References | |
---------- | |
.. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the | |
Interpretation and Validation of Cluster Analysis". Computational | |
and Applied Mathematics 20: 53-65. | |
<https://www.sciencedirect.com/science/article/pii/0377042787901257>`_ | |
.. [2] `Wikipedia entry on the Silhouette Coefficient | |
<https://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ | |
Examples | |
-------- | |
>>> from sklearn.metrics import silhouette_samples | |
>>> from sklearn.datasets import make_blobs | |
>>> from sklearn.cluster import KMeans | |
>>> X, y = make_blobs(n_samples=50, random_state=42) | |
>>> kmeans = KMeans(n_clusters=3, random_state=42) | |
>>> labels = kmeans.fit_predict(X) | |
>>> silhouette_samples(X, labels) | |
array([...]) | |
""" | |
X, labels = check_X_y(X, labels, accept_sparse=["csr"]) | |
# Check for non-zero diagonal entries in precomputed distance matrix | |
if metric == "precomputed": | |
error_msg = ValueError( | |
"The precomputed distance matrix contains non-zero " | |
"elements on the diagonal. Use np.fill_diagonal(X, 0)." | |
) | |
if X.dtype.kind == "f": | |
atol = np.finfo(X.dtype).eps * 100 | |
if np.any(np.abs(X.diagonal()) > atol): | |
raise error_msg | |
elif np.any(X.diagonal() != 0): # integral dtype | |
raise error_msg | |
le = LabelEncoder() | |
labels = le.fit_transform(labels) | |
n_samples = len(labels) | |
label_freqs = np.bincount(labels) | |
check_number_of_labels(len(le.classes_), n_samples) | |
kwds["metric"] = metric | |
reduce_func = functools.partial( | |
_silhouette_reduce, labels=labels, label_freqs=label_freqs | |
) | |
results = zip(*pairwise_distances_chunked(X, reduce_func=reduce_func, **kwds)) | |
intra_clust_dists, inter_clust_dists = results | |
intra_clust_dists = np.concatenate(intra_clust_dists) | |
inter_clust_dists = np.concatenate(inter_clust_dists) | |
denom = (label_freqs - 1).take(labels, mode="clip") | |
with np.errstate(divide="ignore", invalid="ignore"): | |
intra_clust_dists /= denom | |
sil_samples = inter_clust_dists - intra_clust_dists | |
with np.errstate(divide="ignore", invalid="ignore"): | |
sil_samples /= np.maximum(intra_clust_dists, inter_clust_dists) | |
# nan values are for clusters of size 1, and should be 0 | |
return np.nan_to_num(sil_samples) | |
def calinski_harabasz_score(X, labels): | |
"""Compute the Calinski and Harabasz score. | |
It is also known as the Variance Ratio Criterion. | |
The score is defined as ratio of the sum of between-cluster dispersion and | |
of within-cluster dispersion. | |
Read more in the :ref:`User Guide <calinski_harabasz_index>`. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
A list of ``n_features``-dimensional data points. Each row corresponds | |
to a single data point. | |
labels : array-like of shape (n_samples,) | |
Predicted labels for each sample. | |
Returns | |
------- | |
score : float | |
The resulting Calinski-Harabasz score. | |
References | |
---------- | |
.. [1] `T. Calinski and J. Harabasz, 1974. "A dendrite method for cluster | |
analysis". Communications in Statistics | |
<https://www.tandfonline.com/doi/abs/10.1080/03610927408827101>`_ | |
Examples | |
-------- | |
>>> from sklearn.datasets import make_blobs | |
>>> from sklearn.cluster import KMeans | |
>>> from sklearn.metrics import calinski_harabasz_score | |
>>> X, _ = make_blobs(random_state=0) | |
>>> kmeans = KMeans(n_clusters=3, random_state=0,).fit(X) | |
>>> calinski_harabasz_score(X, kmeans.labels_) | |
114.8... | |
""" | |
X, labels = check_X_y(X, labels) | |
le = LabelEncoder() | |
labels = le.fit_transform(labels) | |
n_samples, _ = X.shape | |
n_labels = len(le.classes_) | |
check_number_of_labels(n_labels, n_samples) | |
extra_disp, intra_disp = 0.0, 0.0 | |
mean = np.mean(X, axis=0) | |
for k in range(n_labels): | |
cluster_k = X[labels == k] | |
mean_k = np.mean(cluster_k, axis=0) | |
extra_disp += len(cluster_k) * np.sum((mean_k - mean) ** 2) | |
intra_disp += np.sum((cluster_k - mean_k) ** 2) | |
return ( | |
1.0 | |
if intra_disp == 0.0 | |
else extra_disp * (n_samples - n_labels) / (intra_disp * (n_labels - 1.0)) | |
) | |
def davies_bouldin_score(X, labels): | |
"""Compute the Davies-Bouldin score. | |
The score is defined as the average similarity measure of each cluster with | |
its most similar cluster, where similarity is the ratio of within-cluster | |
distances to between-cluster distances. Thus, clusters which are farther | |
apart and less dispersed will result in a better score. | |
The minimum score is zero, with lower values indicating better clustering. | |
Read more in the :ref:`User Guide <davies-bouldin_index>`. | |
.. versionadded:: 0.20 | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
A list of ``n_features``-dimensional data points. Each row corresponds | |
to a single data point. | |
labels : array-like of shape (n_samples,) | |
Predicted labels for each sample. | |
Returns | |
------- | |
score: float | |
The resulting Davies-Bouldin score. | |
References | |
---------- | |
.. [1] Davies, David L.; Bouldin, Donald W. (1979). | |
`"A Cluster Separation Measure" | |
<https://ieeexplore.ieee.org/document/4766909>`__. | |
IEEE Transactions on Pattern Analysis and Machine Intelligence. | |
PAMI-1 (2): 224-227 | |
Examples | |
-------- | |
>>> from sklearn.metrics import davies_bouldin_score | |
>>> X = [[0, 1], [1, 1], [3, 4]] | |
>>> labels = [0, 0, 1] | |
>>> davies_bouldin_score(X, labels) | |
0.12... | |
""" | |
X, labels = check_X_y(X, labels) | |
le = LabelEncoder() | |
labels = le.fit_transform(labels) | |
n_samples, _ = X.shape | |
n_labels = len(le.classes_) | |
check_number_of_labels(n_labels, n_samples) | |
intra_dists = np.zeros(n_labels) | |
centroids = np.zeros((n_labels, len(X[0])), dtype=float) | |
for k in range(n_labels): | |
cluster_k = _safe_indexing(X, labels == k) | |
centroid = cluster_k.mean(axis=0) | |
centroids[k] = centroid | |
intra_dists[k] = np.average(pairwise_distances(cluster_k, [centroid])) | |
centroid_distances = pairwise_distances(centroids) | |
if np.allclose(intra_dists, 0) or np.allclose(centroid_distances, 0): | |
return 0.0 | |
centroid_distances[centroid_distances == 0] = np.inf | |
combined_intra_dists = intra_dists[:, None] + intra_dists | |
scores = np.max(combined_intra_dists / centroid_distances, axis=1) | |
return np.mean(scores) | |