peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/tests
/test_validation.py
"""Tests for input validation functions""" | |
import numbers | |
import re | |
import warnings | |
from itertools import product | |
from operator import itemgetter | |
from tempfile import NamedTemporaryFile | |
import numpy as np | |
import pytest | |
import scipy.sparse as sp | |
from pytest import importorskip | |
import sklearn | |
from sklearn._config import config_context | |
from sklearn._min_dependencies import dependent_packages | |
from sklearn.base import BaseEstimator | |
from sklearn.datasets import make_blobs | |
from sklearn.ensemble import RandomForestRegressor | |
from sklearn.exceptions import NotFittedError, PositiveSpectrumWarning | |
from sklearn.linear_model import ARDRegression | |
# TODO: add this estimator into the _mocking module in a further refactoring | |
from sklearn.metrics.tests.test_score_objects import EstimatorWithFit | |
from sklearn.neighbors import KNeighborsClassifier | |
from sklearn.random_projection import _sparse_random_matrix | |
from sklearn.svm import SVR | |
from sklearn.utils import ( | |
_safe_indexing, | |
as_float_array, | |
check_array, | |
check_symmetric, | |
check_X_y, | |
deprecated, | |
) | |
from sklearn.utils._mocking import ( | |
MockDataFrame, | |
_MockEstimatorOnOffPrediction, | |
) | |
from sklearn.utils._testing import ( | |
SkipTest, | |
TempMemmap, | |
_convert_container, | |
assert_allclose, | |
assert_allclose_dense_sparse, | |
assert_array_equal, | |
assert_no_warnings, | |
ignore_warnings, | |
skip_if_array_api_compat_not_configured, | |
) | |
from sklearn.utils.estimator_checks import _NotAnArray | |
from sklearn.utils.fixes import ( | |
COO_CONTAINERS, | |
CSC_CONTAINERS, | |
CSR_CONTAINERS, | |
DIA_CONTAINERS, | |
DOK_CONTAINERS, | |
parse_version, | |
) | |
from sklearn.utils.validation import ( | |
FLOAT_DTYPES, | |
_allclose_dense_sparse, | |
_check_feature_names_in, | |
_check_method_params, | |
_check_psd_eigenvalues, | |
_check_response_method, | |
_check_sample_weight, | |
_check_y, | |
_deprecate_positional_args, | |
_get_feature_names, | |
_is_fitted, | |
_is_pandas_df, | |
_is_polars_df, | |
_num_features, | |
_num_samples, | |
assert_all_finite, | |
check_consistent_length, | |
check_is_fitted, | |
check_memory, | |
check_non_negative, | |
check_scalar, | |
has_fit_parameter, | |
) | |
def test_as_float_array(): | |
# Test function for as_float_array | |
X = np.ones((3, 10), dtype=np.int32) | |
X = X + np.arange(10, dtype=np.int32) | |
X2 = as_float_array(X, copy=False) | |
assert X2.dtype == np.float32 | |
# Another test | |
X = X.astype(np.int64) | |
X2 = as_float_array(X, copy=True) | |
# Checking that the array wasn't overwritten | |
assert as_float_array(X, copy=False) is not X | |
assert X2.dtype == np.float64 | |
# Test int dtypes <= 32bit | |
tested_dtypes = [bool, np.int8, np.int16, np.int32, np.uint8, np.uint16, np.uint32] | |
for dtype in tested_dtypes: | |
X = X.astype(dtype) | |
X2 = as_float_array(X) | |
assert X2.dtype == np.float32 | |
# Test object dtype | |
X = X.astype(object) | |
X2 = as_float_array(X, copy=True) | |
assert X2.dtype == np.float64 | |
# Here, X is of the right type, it shouldn't be modified | |
X = np.ones((3, 2), dtype=np.float32) | |
assert as_float_array(X, copy=False) is X | |
# Test that if X is fortran ordered it stays | |
X = np.asfortranarray(X) | |
assert np.isfortran(as_float_array(X, copy=True)) | |
# Test the copy parameter with some matrices | |
matrices = [ | |
sp.csc_matrix(np.arange(5)).toarray(), | |
_sparse_random_matrix(10, 10, density=0.10).toarray(), | |
] | |
for M in matrices: | |
N = as_float_array(M, copy=True) | |
N[0, 0] = np.nan | |
assert not np.isnan(M).any() | |
def test_as_float_array_nan(X): | |
X[5, 0] = np.nan | |
X[6, 1] = np.nan | |
X_converted = as_float_array(X, force_all_finite="allow-nan") | |
assert_allclose_dense_sparse(X_converted, X) | |
def test_np_matrix(): | |
# Confirm that input validation code does not return np.matrix | |
X = np.arange(12).reshape(3, 4) | |
assert not isinstance(as_float_array(X), np.matrix) | |
assert not isinstance(as_float_array(sp.csc_matrix(X)), np.matrix) | |
def test_memmap(): | |
# Confirm that input validation code doesn't copy memory mapped arrays | |
asflt = lambda x: as_float_array(x, copy=False) | |
with NamedTemporaryFile(prefix="sklearn-test") as tmp: | |
M = np.memmap(tmp, shape=(10, 10), dtype=np.float32) | |
M[:] = 0 | |
for f in (check_array, np.asarray, asflt): | |
X = f(M) | |
X[:] = 1 | |
assert_array_equal(X.ravel(), M.ravel()) | |
X[:] = 0 | |
def test_ordering(): | |
# Check that ordering is enforced correctly by validation utilities. | |
# We need to check each validation utility, because a 'copy' without | |
# 'order=K' will kill the ordering. | |
X = np.ones((10, 5)) | |
for A in X, X.T: | |
for copy in (True, False): | |
B = check_array(A, order="C", copy=copy) | |
assert B.flags["C_CONTIGUOUS"] | |
B = check_array(A, order="F", copy=copy) | |
assert B.flags["F_CONTIGUOUS"] | |
if copy: | |
assert A is not B | |
X = sp.csr_matrix(X) | |
X.data = X.data[::-1] | |
assert not X.data.flags["C_CONTIGUOUS"] | |
def test_check_array_force_all_finite_valid(value, force_all_finite, retype): | |
X = retype(np.arange(4).reshape(2, 2).astype(float)) | |
X[0, 0] = value | |
X_checked = check_array(X, force_all_finite=force_all_finite, accept_sparse=True) | |
assert_allclose_dense_sparse(X, X_checked) | |
def test_check_array_force_all_finiteinvalid( | |
value, input_name, force_all_finite, match_msg, retype | |
): | |
X = retype(np.arange(4).reshape(2, 2).astype(np.float64)) | |
X[0, 0] = value | |
with pytest.raises(ValueError, match=match_msg): | |
check_array( | |
X, | |
input_name=input_name, | |
force_all_finite=force_all_finite, | |
accept_sparse=True, | |
) | |
def test_check_array_links_to_imputer_doc_only_for_X(input_name, retype): | |
data = retype(np.arange(4).reshape(2, 2).astype(np.float64)) | |
data[0, 0] = np.nan | |
estimator = SVR() | |
extended_msg = ( | |
f"\n{estimator.__class__.__name__} does not accept missing values" | |
" encoded as NaN natively. For supervised learning, you might want" | |
" to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor" | |
" which accept missing values encoded as NaNs natively." | |
" Alternatively, it is possible to preprocess the" | |
" data, for instance by using an imputer transformer in a pipeline" | |
" or drop samples with missing values. See" | |
" https://scikit-learn.org/stable/modules/impute.html" | |
" You can find a list of all estimators that handle NaN values" | |
" at the following page:" | |
" https://scikit-learn.org/stable/modules/impute.html" | |
"#estimators-that-handle-nan-values" | |
) | |
with pytest.raises(ValueError, match=f"Input {input_name} contains NaN") as ctx: | |
check_array( | |
data, | |
estimator=estimator, | |
input_name=input_name, | |
accept_sparse=True, | |
) | |
if input_name == "X": | |
assert extended_msg in ctx.value.args[0] | |
else: | |
assert extended_msg not in ctx.value.args[0] | |
if input_name == "X": | |
# Veriy that _validate_data is automatically called with the right argument | |
# to generate the same exception: | |
with pytest.raises(ValueError, match=f"Input {input_name} contains NaN") as ctx: | |
SVR().fit(data, np.ones(data.shape[0])) | |
assert extended_msg in ctx.value.args[0] | |
def test_check_array_force_all_finite_object(): | |
X = np.array([["a", "b", np.nan]], dtype=object).T | |
X_checked = check_array(X, dtype=None, force_all_finite="allow-nan") | |
assert X is X_checked | |
X_checked = check_array(X, dtype=None, force_all_finite=False) | |
assert X is X_checked | |
with pytest.raises(ValueError, match="Input contains NaN"): | |
check_array(X, dtype=None, force_all_finite=True) | |
def test_check_array_force_all_finite_object_unsafe_casting( | |
X, err_msg, force_all_finite | |
): | |
# casting a float array containing NaN or inf to int dtype should | |
# raise an error irrespective of the force_all_finite parameter. | |
with pytest.raises(ValueError, match=err_msg): | |
check_array(X, dtype=int, force_all_finite=force_all_finite) | |
def test_check_array_series_err_msg(): | |
""" | |
Check that we raise a proper error message when passing a Series and we expect a | |
2-dimensional container. | |
Non-regression test for: | |
https://github.com/scikit-learn/scikit-learn/issues/27498 | |
""" | |
pd = pytest.importorskip("pandas") | |
ser = pd.Series([1, 2, 3]) | |
msg = f"Expected a 2-dimensional container but got {type(ser)} instead." | |
with pytest.raises(ValueError, match=msg): | |
check_array(ser, ensure_2d=True) | |
def test_check_array(): | |
# accept_sparse == False | |
# raise error on sparse inputs | |
X = [[1, 2], [3, 4]] | |
X_csr = sp.csr_matrix(X) | |
with pytest.raises(TypeError): | |
check_array(X_csr) | |
# ensure_2d=False | |
X_array = check_array([0, 1, 2], ensure_2d=False) | |
assert X_array.ndim == 1 | |
# ensure_2d=True with 1d array | |
with pytest.raises(ValueError, match="Expected 2D array, got 1D array instead"): | |
check_array([0, 1, 2], ensure_2d=True) | |
# ensure_2d=True with scalar array | |
with pytest.raises(ValueError, match="Expected 2D array, got scalar array instead"): | |
check_array(10, ensure_2d=True) | |
# don't allow ndim > 3 | |
X_ndim = np.arange(8).reshape(2, 2, 2) | |
with pytest.raises(ValueError): | |
check_array(X_ndim) | |
check_array(X_ndim, allow_nd=True) # doesn't raise | |
# dtype and order enforcement. | |
X_C = np.arange(4).reshape(2, 2).copy("C") | |
X_F = X_C.copy("F") | |
X_int = X_C.astype(int) | |
X_float = X_C.astype(float) | |
Xs = [X_C, X_F, X_int, X_float] | |
dtypes = [np.int32, int, float, np.float32, None, bool, object] | |
orders = ["C", "F", None] | |
copys = [True, False] | |
for X, dtype, order, copy in product(Xs, dtypes, orders, copys): | |
X_checked = check_array(X, dtype=dtype, order=order, copy=copy) | |
if dtype is not None: | |
assert X_checked.dtype == dtype | |
else: | |
assert X_checked.dtype == X.dtype | |
if order == "C": | |
assert X_checked.flags["C_CONTIGUOUS"] | |
assert not X_checked.flags["F_CONTIGUOUS"] | |
elif order == "F": | |
assert X_checked.flags["F_CONTIGUOUS"] | |
assert not X_checked.flags["C_CONTIGUOUS"] | |
if copy: | |
assert X is not X_checked | |
else: | |
# doesn't copy if it was already good | |
if ( | |
X.dtype == X_checked.dtype | |
and X_checked.flags["C_CONTIGUOUS"] == X.flags["C_CONTIGUOUS"] | |
and X_checked.flags["F_CONTIGUOUS"] == X.flags["F_CONTIGUOUS"] | |
): | |
assert X is X_checked | |
# allowed sparse != None | |
# try different type of sparse format | |
Xs = [] | |
Xs.extend( | |
[ | |
sparse_container(X_C) | |
for sparse_container in CSR_CONTAINERS | |
+ CSC_CONTAINERS | |
+ COO_CONTAINERS | |
+ DOK_CONTAINERS | |
] | |
) | |
Xs.extend([Xs[0].astype(np.int64), Xs[0].astype(np.float64)]) | |
accept_sparses = [["csr", "coo"], ["coo", "dok"]] | |
# scipy sparse matrices do not support the object dtype so | |
# this dtype is skipped in this loop | |
non_object_dtypes = [dt for dt in dtypes if dt is not object] | |
for X, dtype, accept_sparse, copy in product( | |
Xs, non_object_dtypes, accept_sparses, copys | |
): | |
X_checked = check_array(X, dtype=dtype, accept_sparse=accept_sparse, copy=copy) | |
if dtype is not None: | |
assert X_checked.dtype == dtype | |
else: | |
assert X_checked.dtype == X.dtype | |
if X.format in accept_sparse: | |
# no change if allowed | |
assert X.format == X_checked.format | |
else: | |
# got converted | |
assert X_checked.format == accept_sparse[0] | |
if copy: | |
assert X is not X_checked | |
else: | |
# doesn't copy if it was already good | |
if X.dtype == X_checked.dtype and X.format == X_checked.format: | |
assert X is X_checked | |
# other input formats | |
# convert lists to arrays | |
X_dense = check_array([[1, 2], [3, 4]]) | |
assert isinstance(X_dense, np.ndarray) | |
# raise on too deep lists | |
with pytest.raises(ValueError): | |
check_array(X_ndim.tolist()) | |
check_array(X_ndim.tolist(), allow_nd=True) # doesn't raise | |
# convert weird stuff to arrays | |
X_no_array = _NotAnArray(X_dense) | |
result = check_array(X_no_array) | |
assert isinstance(result, np.ndarray) | |
def test_check_array_numeric_error(X): | |
"""Test that check_array errors when it receives an array of bytes/string | |
while a numeric dtype is required.""" | |
expected_msg = r"dtype='numeric' is not compatible with arrays of bytes/strings" | |
with pytest.raises(ValueError, match=expected_msg): | |
check_array(X, dtype="numeric") | |
def test_check_array_pandas_na_support(pd_dtype, dtype, expected_dtype): | |
# Test pandas numerical extension arrays with pd.NA | |
pd = pytest.importorskip("pandas") | |
if pd_dtype in {"Float32", "Float64"}: | |
# Extension dtypes with Floats was added in 1.2 | |
pd = pytest.importorskip("pandas", minversion="1.2") | |
X_np = np.array( | |
[[1, 2, 3, np.nan, np.nan], [np.nan, np.nan, 8, 4, 6], [1, 2, 3, 4, 5]] | |
).T | |
# Creates dataframe with numerical extension arrays with pd.NA | |
X = pd.DataFrame(X_np, dtype=pd_dtype, columns=["a", "b", "c"]) | |
# column c has no nans | |
X["c"] = X["c"].astype("float") | |
X_checked = check_array(X, force_all_finite="allow-nan", dtype=dtype) | |
assert_allclose(X_checked, X_np) | |
assert X_checked.dtype == expected_dtype | |
X_checked = check_array(X, force_all_finite=False, dtype=dtype) | |
assert_allclose(X_checked, X_np) | |
assert X_checked.dtype == expected_dtype | |
msg = "Input contains NaN" | |
with pytest.raises(ValueError, match=msg): | |
check_array(X, force_all_finite=True) | |
def test_check_array_panadas_na_support_series(): | |
"""Check check_array is correct with pd.NA in a series.""" | |
pd = pytest.importorskip("pandas") | |
X_int64 = pd.Series([1, 2, pd.NA], dtype="Int64") | |
msg = "Input contains NaN" | |
with pytest.raises(ValueError, match=msg): | |
check_array(X_int64, force_all_finite=True, ensure_2d=False) | |
X_out = check_array(X_int64, force_all_finite=False, ensure_2d=False) | |
assert_allclose(X_out, [1, 2, np.nan]) | |
assert X_out.dtype == np.float64 | |
X_out = check_array( | |
X_int64, force_all_finite=False, ensure_2d=False, dtype=np.float32 | |
) | |
assert_allclose(X_out, [1, 2, np.nan]) | |
assert X_out.dtype == np.float32 | |
def test_check_array_pandas_dtype_casting(): | |
# test that data-frames with homogeneous dtype are not upcast | |
pd = pytest.importorskip("pandas") | |
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32) | |
X_df = pd.DataFrame(X) | |
assert check_array(X_df).dtype == np.float32 | |
assert check_array(X_df, dtype=FLOAT_DTYPES).dtype == np.float32 | |
X_df = X_df.astype({0: np.float16}) | |
assert_array_equal(X_df.dtypes, (np.float16, np.float32, np.float32)) | |
assert check_array(X_df).dtype == np.float32 | |
assert check_array(X_df, dtype=FLOAT_DTYPES).dtype == np.float32 | |
X_df = X_df.astype({0: np.int16}) | |
# float16, int16, float32 casts to float32 | |
assert check_array(X_df).dtype == np.float32 | |
assert check_array(X_df, dtype=FLOAT_DTYPES).dtype == np.float32 | |
X_df = X_df.astype({2: np.float16}) | |
# float16, int16, float16 casts to float32 | |
assert check_array(X_df).dtype == np.float32 | |
assert check_array(X_df, dtype=FLOAT_DTYPES).dtype == np.float32 | |
X_df = X_df.astype(np.int16) | |
assert check_array(X_df).dtype == np.int16 | |
# we're not using upcasting rules for determining | |
# the target type yet, so we cast to the default of float64 | |
assert check_array(X_df, dtype=FLOAT_DTYPES).dtype == np.float64 | |
# check that we handle pandas dtypes in a semi-reasonable way | |
# this is actually tricky because we can't really know that this | |
# should be integer ahead of converting it. | |
cat_df = pd.DataFrame({"cat_col": pd.Categorical([1, 2, 3])}) | |
assert check_array(cat_df).dtype == np.int64 | |
assert check_array(cat_df, dtype=FLOAT_DTYPES).dtype == np.float64 | |
def test_check_array_on_mock_dataframe(): | |
arr = np.array([[0.2, 0.7], [0.6, 0.5], [0.4, 0.1], [0.7, 0.2]]) | |
mock_df = MockDataFrame(arr) | |
checked_arr = check_array(mock_df) | |
assert checked_arr.dtype == arr.dtype | |
checked_arr = check_array(mock_df, dtype=np.float32) | |
assert checked_arr.dtype == np.dtype(np.float32) | |
def test_check_array_dtype_stability(): | |
# test that lists with ints don't get converted to floats | |
X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] | |
assert check_array(X).dtype.kind == "i" | |
assert check_array(X, ensure_2d=False).dtype.kind == "i" | |
def test_check_array_dtype_warning(): | |
X_int_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] | |
X_float32 = np.asarray(X_int_list, dtype=np.float32) | |
X_int64 = np.asarray(X_int_list, dtype=np.int64) | |
X_csr_float32 = sp.csr_matrix(X_float32) | |
X_csc_float32 = sp.csc_matrix(X_float32) | |
X_csc_int32 = sp.csc_matrix(X_int64, dtype=np.int32) | |
integer_data = [X_int64, X_csc_int32] | |
float32_data = [X_float32, X_csr_float32, X_csc_float32] | |
for X in integer_data: | |
X_checked = assert_no_warnings( | |
check_array, X, dtype=np.float64, accept_sparse=True | |
) | |
assert X_checked.dtype == np.float64 | |
for X in float32_data: | |
X_checked = assert_no_warnings( | |
check_array, X, dtype=[np.float64, np.float32], accept_sparse=True | |
) | |
assert X_checked.dtype == np.float32 | |
assert X_checked is X | |
X_checked = assert_no_warnings( | |
check_array, | |
X, | |
dtype=[np.float64, np.float32], | |
accept_sparse=["csr", "dok"], | |
copy=True, | |
) | |
assert X_checked.dtype == np.float32 | |
assert X_checked is not X | |
X_checked = assert_no_warnings( | |
check_array, | |
X_csc_float32, | |
dtype=[np.float64, np.float32], | |
accept_sparse=["csr", "dok"], | |
copy=False, | |
) | |
assert X_checked.dtype == np.float32 | |
assert X_checked is not X_csc_float32 | |
assert X_checked.format == "csr" | |
def test_check_array_accept_sparse_type_exception(): | |
X = [[1, 2], [3, 4]] | |
X_csr = sp.csr_matrix(X) | |
invalid_type = SVR() | |
msg = ( | |
"Sparse data was passed, but dense data is required. " | |
r"Use '.toarray\(\)' to convert to a dense numpy array." | |
) | |
with pytest.raises(TypeError, match=msg): | |
check_array(X_csr, accept_sparse=False) | |
msg = ( | |
"Parameter 'accept_sparse' should be a string, " | |
"boolean or list of strings. You provided 'accept_sparse=.*'." | |
) | |
with pytest.raises(ValueError, match=msg): | |
check_array(X_csr, accept_sparse=invalid_type) | |
msg = ( | |
"When providing 'accept_sparse' as a tuple or list, " | |
"it must contain at least one string value." | |
) | |
with pytest.raises(ValueError, match=msg): | |
check_array(X_csr, accept_sparse=[]) | |
with pytest.raises(ValueError, match=msg): | |
check_array(X_csr, accept_sparse=()) | |
with pytest.raises(TypeError, match="SVR"): | |
check_array(X_csr, accept_sparse=[invalid_type]) | |
def test_check_array_accept_sparse_no_exception(): | |
X = [[1, 2], [3, 4]] | |
X_csr = sp.csr_matrix(X) | |
check_array(X_csr, accept_sparse=True) | |
check_array(X_csr, accept_sparse="csr") | |
check_array(X_csr, accept_sparse=["csr"]) | |
check_array(X_csr, accept_sparse=("csr",)) | |
def X_64bit(request): | |
X = sp.rand(20, 10, format=request.param) | |
if request.param == "coo": | |
if hasattr(X, "coords"): | |
# for scipy >= 1.13 .coords is a new attribute and is a tuple. The | |
# .col and .row attributes do not seem to be able to change the | |
# dtype, for more details see https://github.com/scipy/scipy/pull/18530/ | |
# and https://github.com/scipy/scipy/pull/20003 where .indices was | |
# renamed to .coords | |
X.coords = tuple(v.astype("int64") for v in X.coords) | |
else: | |
# scipy < 1.13 | |
X.row = X.row.astype("int64") | |
X.col = X.col.astype("int64") | |
else: | |
X.indices = X.indices.astype("int64") | |
X.indptr = X.indptr.astype("int64") | |
yield X | |
def test_check_array_accept_large_sparse_no_exception(X_64bit): | |
# When large sparse are allowed | |
check_array(X_64bit, accept_large_sparse=True, accept_sparse=True) | |
def test_check_array_accept_large_sparse_raise_exception(X_64bit): | |
# When large sparse are not allowed | |
msg = ( | |
"Only sparse matrices with 32-bit integer indices " | |
"are accepted. Got int64 indices. Please do report" | |
) | |
with pytest.raises(ValueError, match=msg): | |
check_array(X_64bit, accept_sparse=True, accept_large_sparse=False) | |
def test_check_array_min_samples_and_features_messages(): | |
# empty list is considered 2D by default: | |
msg = r"0 feature\(s\) \(shape=\(1, 0\)\) while a minimum of 1 is" " required." | |
with pytest.raises(ValueError, match=msg): | |
check_array([[]]) | |
# If considered a 1D collection when ensure_2d=False, then the minimum | |
# number of samples will break: | |
msg = r"0 sample\(s\) \(shape=\(0,\)\) while a minimum of 1 is required." | |
with pytest.raises(ValueError, match=msg): | |
check_array([], ensure_2d=False) | |
# Invalid edge case when checking the default minimum sample of a scalar | |
msg = r"Singleton array array\(42\) cannot be considered a valid" " collection." | |
with pytest.raises(TypeError, match=msg): | |
check_array(42, ensure_2d=False) | |
# Simulate a model that would need at least 2 samples to be well defined | |
X = np.ones((1, 10)) | |
y = np.ones(1) | |
msg = r"1 sample\(s\) \(shape=\(1, 10\)\) while a minimum of 2 is" " required." | |
with pytest.raises(ValueError, match=msg): | |
check_X_y(X, y, ensure_min_samples=2) | |
# The same message is raised if the data has 2 dimensions even if this is | |
# not mandatory | |
with pytest.raises(ValueError, match=msg): | |
check_X_y(X, y, ensure_min_samples=2, ensure_2d=False) | |
# Simulate a model that would require at least 3 features (e.g. SelectKBest | |
# with k=3) | |
X = np.ones((10, 2)) | |
y = np.ones(2) | |
msg = r"2 feature\(s\) \(shape=\(10, 2\)\) while a minimum of 3 is" " required." | |
with pytest.raises(ValueError, match=msg): | |
check_X_y(X, y, ensure_min_features=3) | |
# Only the feature check is enabled whenever the number of dimensions is 2 | |
# even if allow_nd is enabled: | |
with pytest.raises(ValueError, match=msg): | |
check_X_y(X, y, ensure_min_features=3, allow_nd=True) | |
# Simulate a case where a pipeline stage as trimmed all the features of a | |
# 2D dataset. | |
X = np.empty(0).reshape(10, 0) | |
y = np.ones(10) | |
msg = r"0 feature\(s\) \(shape=\(10, 0\)\) while a minimum of 1 is" " required." | |
with pytest.raises(ValueError, match=msg): | |
check_X_y(X, y) | |
# nd-data is not checked for any minimum number of features by default: | |
X = np.ones((10, 0, 28, 28)) | |
y = np.ones(10) | |
X_checked, y_checked = check_X_y(X, y, allow_nd=True) | |
assert_array_equal(X, X_checked) | |
assert_array_equal(y, y_checked) | |
def test_check_array_complex_data_error(): | |
X = np.array([[1 + 2j, 3 + 4j, 5 + 7j], [2 + 3j, 4 + 5j, 6 + 7j]]) | |
with pytest.raises(ValueError, match="Complex data not supported"): | |
check_array(X) | |
# list of lists | |
X = [[1 + 2j, 3 + 4j, 5 + 7j], [2 + 3j, 4 + 5j, 6 + 7j]] | |
with pytest.raises(ValueError, match="Complex data not supported"): | |
check_array(X) | |
# tuple of tuples | |
X = ((1 + 2j, 3 + 4j, 5 + 7j), (2 + 3j, 4 + 5j, 6 + 7j)) | |
with pytest.raises(ValueError, match="Complex data not supported"): | |
check_array(X) | |
# list of np arrays | |
X = [np.array([1 + 2j, 3 + 4j, 5 + 7j]), np.array([2 + 3j, 4 + 5j, 6 + 7j])] | |
with pytest.raises(ValueError, match="Complex data not supported"): | |
check_array(X) | |
# tuple of np arrays | |
X = (np.array([1 + 2j, 3 + 4j, 5 + 7j]), np.array([2 + 3j, 4 + 5j, 6 + 7j])) | |
with pytest.raises(ValueError, match="Complex data not supported"): | |
check_array(X) | |
# dataframe | |
X = MockDataFrame(np.array([[1 + 2j, 3 + 4j, 5 + 7j], [2 + 3j, 4 + 5j, 6 + 7j]])) | |
with pytest.raises(ValueError, match="Complex data not supported"): | |
check_array(X) | |
# sparse matrix | |
X = sp.coo_matrix([[0, 1 + 2j], [0, 0]]) | |
with pytest.raises(ValueError, match="Complex data not supported"): | |
check_array(X) | |
# target variable does not always go through check_array but should | |
# never accept complex data either. | |
y = np.array([1 + 2j, 3 + 4j, 5 + 7j, 2 + 3j, 4 + 5j, 6 + 7j]) | |
with pytest.raises(ValueError, match="Complex data not supported"): | |
_check_y(y) | |
def test_has_fit_parameter(): | |
assert not has_fit_parameter(KNeighborsClassifier, "sample_weight") | |
assert has_fit_parameter(RandomForestRegressor, "sample_weight") | |
assert has_fit_parameter(SVR, "sample_weight") | |
assert has_fit_parameter(SVR(), "sample_weight") | |
class TestClassWithDeprecatedFitMethod: | |
def fit(self, X, y, sample_weight=None): | |
pass | |
assert has_fit_parameter( | |
TestClassWithDeprecatedFitMethod, "sample_weight" | |
), "has_fit_parameter fails for class with deprecated fit method." | |
def test_check_symmetric(): | |
arr_sym = np.array([[0, 1], [1, 2]]) | |
arr_bad = np.ones(2) | |
arr_asym = np.array([[0, 2], [0, 2]]) | |
test_arrays = { | |
"dense": arr_asym, | |
"dok": sp.dok_matrix(arr_asym), | |
"csr": sp.csr_matrix(arr_asym), | |
"csc": sp.csc_matrix(arr_asym), | |
"coo": sp.coo_matrix(arr_asym), | |
"lil": sp.lil_matrix(arr_asym), | |
"bsr": sp.bsr_matrix(arr_asym), | |
} | |
# check error for bad inputs | |
with pytest.raises(ValueError): | |
check_symmetric(arr_bad) | |
# check that asymmetric arrays are properly symmetrized | |
for arr_format, arr in test_arrays.items(): | |
# Check for warnings and errors | |
with pytest.warns(UserWarning): | |
check_symmetric(arr) | |
with pytest.raises(ValueError): | |
check_symmetric(arr, raise_exception=True) | |
output = check_symmetric(arr, raise_warning=False) | |
if sp.issparse(output): | |
assert output.format == arr_format | |
assert_array_equal(output.toarray(), arr_sym) | |
else: | |
assert_array_equal(output, arr_sym) | |
def test_check_is_fitted_with_is_fitted(): | |
class Estimator(BaseEstimator): | |
def fit(self, **kwargs): | |
self._is_fitted = True | |
return self | |
def __sklearn_is_fitted__(self): | |
return hasattr(self, "_is_fitted") and self._is_fitted | |
with pytest.raises(NotFittedError): | |
check_is_fitted(Estimator()) | |
check_is_fitted(Estimator().fit()) | |
def test_check_is_fitted(): | |
# Check is TypeError raised when non estimator instance passed | |
with pytest.raises(TypeError): | |
check_is_fitted(ARDRegression) | |
with pytest.raises(TypeError): | |
check_is_fitted("SVR") | |
ard = ARDRegression() | |
svr = SVR() | |
try: | |
with pytest.raises(NotFittedError): | |
check_is_fitted(ard) | |
with pytest.raises(NotFittedError): | |
check_is_fitted(svr) | |
except ValueError: | |
assert False, "check_is_fitted failed with ValueError" | |
# NotFittedError is a subclass of both ValueError and AttributeError | |
msg = "Random message %(name)s, %(name)s" | |
match = "Random message ARDRegression, ARDRegression" | |
with pytest.raises(ValueError, match=match): | |
check_is_fitted(ard, msg=msg) | |
msg = "Another message %(name)s, %(name)s" | |
match = "Another message SVR, SVR" | |
with pytest.raises(AttributeError, match=match): | |
check_is_fitted(svr, msg=msg) | |
ard.fit(*make_blobs()) | |
svr.fit(*make_blobs()) | |
assert check_is_fitted(ard) is None | |
assert check_is_fitted(svr) is None | |
def test_check_is_fitted_attributes(): | |
class MyEstimator: | |
def fit(self, X, y): | |
return self | |
msg = "not fitted" | |
est = MyEstimator() | |
assert not _is_fitted(est, attributes=["a_", "b_"]) | |
with pytest.raises(NotFittedError, match=msg): | |
check_is_fitted(est, attributes=["a_", "b_"]) | |
assert not _is_fitted(est, attributes=["a_", "b_"], all_or_any=all) | |
with pytest.raises(NotFittedError, match=msg): | |
check_is_fitted(est, attributes=["a_", "b_"], all_or_any=all) | |
assert not _is_fitted(est, attributes=["a_", "b_"], all_or_any=any) | |
with pytest.raises(NotFittedError, match=msg): | |
check_is_fitted(est, attributes=["a_", "b_"], all_or_any=any) | |
est.a_ = "a" | |
assert not _is_fitted(est, attributes=["a_", "b_"]) | |
with pytest.raises(NotFittedError, match=msg): | |
check_is_fitted(est, attributes=["a_", "b_"]) | |
assert not _is_fitted(est, attributes=["a_", "b_"], all_or_any=all) | |
with pytest.raises(NotFittedError, match=msg): | |
check_is_fitted(est, attributes=["a_", "b_"], all_or_any=all) | |
assert _is_fitted(est, attributes=["a_", "b_"], all_or_any=any) | |
check_is_fitted(est, attributes=["a_", "b_"], all_or_any=any) | |
est.b_ = "b" | |
assert _is_fitted(est, attributes=["a_", "b_"]) | |
check_is_fitted(est, attributes=["a_", "b_"]) | |
assert _is_fitted(est, attributes=["a_", "b_"], all_or_any=all) | |
check_is_fitted(est, attributes=["a_", "b_"], all_or_any=all) | |
assert _is_fitted(est, attributes=["a_", "b_"], all_or_any=any) | |
check_is_fitted(est, attributes=["a_", "b_"], all_or_any=any) | |
def test_check_is_fitted_with_attributes(wrap): | |
ard = ARDRegression() | |
with pytest.raises(NotFittedError, match="is not fitted yet"): | |
check_is_fitted(ard, wrap(["coef_"])) | |
ard.fit(*make_blobs()) | |
# Does not raise | |
check_is_fitted(ard, wrap(["coef_"])) | |
# Raises when using attribute that is not defined | |
with pytest.raises(NotFittedError, match="is not fitted yet"): | |
check_is_fitted(ard, wrap(["coef_bad_"])) | |
def test_check_consistent_length(): | |
check_consistent_length([1], [2], [3], [4], [5]) | |
check_consistent_length([[1, 2], [[1, 2]]], [1, 2], ["a", "b"]) | |
check_consistent_length([1], (2,), np.array([3]), sp.csr_matrix((1, 2))) | |
with pytest.raises(ValueError, match="inconsistent numbers of samples"): | |
check_consistent_length([1, 2], [1]) | |
with pytest.raises(TypeError, match=r"got <\w+ 'int'>"): | |
check_consistent_length([1, 2], 1) | |
with pytest.raises(TypeError, match=r"got <\w+ 'object'>"): | |
check_consistent_length([1, 2], object()) | |
with pytest.raises(TypeError): | |
check_consistent_length([1, 2], np.array(1)) | |
# Despite ensembles having __len__ they must raise TypeError | |
with pytest.raises(TypeError, match="Expected sequence or array-like"): | |
check_consistent_length([1, 2], RandomForestRegressor()) | |
# XXX: We should have a test with a string, but what is correct behaviour? | |
def test_check_dataframe_fit_attribute(): | |
# check pandas dataframe with 'fit' column does not raise error | |
# https://github.com/scikit-learn/scikit-learn/issues/8415 | |
try: | |
import pandas as pd | |
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) | |
X_df = pd.DataFrame(X, columns=["a", "b", "fit"]) | |
check_consistent_length(X_df) | |
except ImportError: | |
raise SkipTest("Pandas not found") | |
def test_suppress_validation(): | |
X = np.array([0, np.inf]) | |
with pytest.raises(ValueError): | |
assert_all_finite(X) | |
sklearn.set_config(assume_finite=True) | |
assert_all_finite(X) | |
sklearn.set_config(assume_finite=False) | |
with pytest.raises(ValueError): | |
assert_all_finite(X) | |
def test_check_array_series(): | |
# regression test that check_array works on pandas Series | |
pd = importorskip("pandas") | |
res = check_array(pd.Series([1, 2, 3]), ensure_2d=False) | |
assert_array_equal(res, np.array([1, 2, 3])) | |
# with categorical dtype (not a numpy dtype) (GH12699) | |
s = pd.Series(["a", "b", "c"]).astype("category") | |
res = check_array(s, dtype=None, ensure_2d=False) | |
assert_array_equal(res, np.array(["a", "b", "c"], dtype=object)) | |
def test_check_dataframe_mixed_float_dtypes(dtype, bool_dtype): | |
# pandas dataframe will coerce a boolean into a object, this is a mismatch | |
# with np.result_type which will return a float | |
# check_array needs to explicitly check for bool dtype in a dataframe for | |
# this situation | |
# https://github.com/scikit-learn/scikit-learn/issues/15787 | |
if bool_dtype == "boolean": | |
# boolean extension arrays was introduced in 1.0 | |
pd = importorskip("pandas", minversion="1.0") | |
else: | |
pd = importorskip("pandas") | |
df = pd.DataFrame( | |
{ | |
"int": [1, 2, 3], | |
"float": [0, 0.1, 2.1], | |
"bool": pd.Series([True, False, True], dtype=bool_dtype), | |
}, | |
columns=["int", "float", "bool"], | |
) | |
array = check_array(df, dtype=dtype) | |
assert array.dtype == np.float64 | |
expected_array = np.array( | |
[[1.0, 0.0, 1.0], [2.0, 0.1, 0.0], [3.0, 2.1, 1.0]], dtype=float | |
) | |
assert_allclose_dense_sparse(array, expected_array) | |
def test_check_dataframe_with_only_bool(): | |
"""Check that dataframe with bool return a boolean arrays.""" | |
pd = importorskip("pandas") | |
df = pd.DataFrame({"bool": [True, False, True]}) | |
array = check_array(df, dtype=None) | |
assert array.dtype == np.bool_ | |
assert_array_equal(array, [[True], [False], [True]]) | |
# common dtype is int for bool + int | |
df = pd.DataFrame( | |
{"bool": [True, False, True], "int": [1, 2, 3]}, | |
columns=["bool", "int"], | |
) | |
array = check_array(df, dtype="numeric") | |
assert array.dtype == np.int64 | |
assert_array_equal(array, [[1, 1], [0, 2], [1, 3]]) | |
def test_check_dataframe_with_only_boolean(): | |
"""Check that dataframe with boolean return a float array with dtype=None""" | |
pd = importorskip("pandas", minversion="1.0") | |
df = pd.DataFrame({"bool": pd.Series([True, False, True], dtype="boolean")}) | |
array = check_array(df, dtype=None) | |
assert array.dtype == np.float64 | |
assert_array_equal(array, [[True], [False], [True]]) | |
class DummyMemory: | |
def cache(self, func): | |
return func | |
class WrongDummyMemory: | |
pass | |
def test_check_memory(): | |
memory = check_memory("cache_directory") | |
assert memory.location == "cache_directory" | |
memory = check_memory(None) | |
assert memory.location is None | |
dummy = DummyMemory() | |
memory = check_memory(dummy) | |
assert memory is dummy | |
msg = ( | |
"'memory' should be None, a string or have the same interface as" | |
" joblib.Memory. Got memory='1' instead." | |
) | |
with pytest.raises(ValueError, match=msg): | |
check_memory(1) | |
dummy = WrongDummyMemory() | |
msg = ( | |
"'memory' should be None, a string or have the same interface as" | |
" joblib.Memory. Got memory='{}' instead.".format(dummy) | |
) | |
with pytest.raises(ValueError, match=msg): | |
check_memory(dummy) | |
def test_check_array_memmap(copy): | |
X = np.ones((4, 4)) | |
with TempMemmap(X, mmap_mode="r") as X_memmap: | |
X_checked = check_array(X_memmap, copy=copy) | |
assert np.may_share_memory(X_memmap, X_checked) == (not copy) | |
assert X_checked.flags["WRITEABLE"] == copy | |
def test_check_non_negative(retype): | |
A = np.array([[1, 1, 0, 0], [1, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) | |
X = retype(A) | |
check_non_negative(X, "") | |
X = retype([[0, 0], [0, 0]]) | |
check_non_negative(X, "") | |
A[0, 0] = -1 | |
X = retype(A) | |
with pytest.raises(ValueError, match="Negative "): | |
check_non_negative(X, "") | |
def test_check_X_y_informative_error(): | |
X = np.ones((2, 2)) | |
y = None | |
msg = "estimator requires y to be passed, but the target y is None" | |
with pytest.raises(ValueError, match=msg): | |
check_X_y(X, y) | |
msg = "RandomForestRegressor requires y to be passed, but the target y is None" | |
with pytest.raises(ValueError, match=msg): | |
check_X_y(X, y, estimator=RandomForestRegressor()) | |
def test_retrieve_samples_from_non_standard_shape(): | |
class TestNonNumericShape: | |
def __init__(self): | |
self.shape = ("not numeric",) | |
def __len__(self): | |
return len([1, 2, 3]) | |
X = TestNonNumericShape() | |
assert _num_samples(X) == len(X) | |
# check that it gives a good error if there's no __len__ | |
class TestNoLenWeirdShape: | |
def __init__(self): | |
self.shape = ("not numeric",) | |
with pytest.raises(TypeError, match="Expected sequence or array-like"): | |
_num_samples(TestNoLenWeirdShape()) | |
def test_check_scalar_valid(x): | |
"""Test that check_scalar returns no error/warning if valid inputs are | |
provided""" | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error") | |
scalar = check_scalar( | |
x, | |
"test_name", | |
target_type=numbers.Real, | |
min_val=2, | |
max_val=5, | |
include_boundaries="both", | |
) | |
assert scalar == x | |
def test_check_scalar_invalid( | |
x, target_name, target_type, min_val, max_val, include_boundaries, err_msg | |
): | |
"""Test that check_scalar returns the right error if a wrong input is | |
given""" | |
with pytest.raises(Exception) as raised_error: | |
check_scalar( | |
x, | |
target_name, | |
target_type=target_type, | |
min_val=min_val, | |
max_val=max_val, | |
include_boundaries=include_boundaries, | |
) | |
assert str(raised_error.value) == str(err_msg) | |
assert type(raised_error.value) == type(err_msg) | |
_psd_cases_valid = { | |
"nominal": ((1, 2), np.array([1, 2]), None, ""), | |
"nominal_np_array": (np.array([1, 2]), np.array([1, 2]), None, ""), | |
"insignificant_imag": ( | |
(5, 5e-5j), | |
np.array([5, 0]), | |
PositiveSpectrumWarning, | |
"There are imaginary parts in eigenvalues \\(1e\\-05 of the maximum real part", | |
), | |
"insignificant neg": ((5, -5e-5), np.array([5, 0]), PositiveSpectrumWarning, ""), | |
"insignificant neg float32": ( | |
np.array([1, -1e-6], dtype=np.float32), | |
np.array([1, 0], dtype=np.float32), | |
PositiveSpectrumWarning, | |
"There are negative eigenvalues \\(1e\\-06 of the maximum positive", | |
), | |
"insignificant neg float64": ( | |
np.array([1, -1e-10], dtype=np.float64), | |
np.array([1, 0], dtype=np.float64), | |
PositiveSpectrumWarning, | |
"There are negative eigenvalues \\(1e\\-10 of the maximum positive", | |
), | |
"insignificant pos": ( | |
(5, 4e-12), | |
np.array([5, 0]), | |
PositiveSpectrumWarning, | |
"the largest eigenvalue is more than 1e\\+12 times the smallest", | |
), | |
} | |
def test_check_psd_eigenvalues_valid( | |
lambdas, expected_lambdas, w_type, w_msg, enable_warnings | |
): | |
# Test that ``_check_psd_eigenvalues`` returns the right output for valid | |
# input, possibly raising the right warning | |
if not enable_warnings: | |
w_type = None | |
if w_type is None: | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", PositiveSpectrumWarning) | |
lambdas_fixed = _check_psd_eigenvalues( | |
lambdas, enable_warnings=enable_warnings | |
) | |
else: | |
with pytest.warns(w_type, match=w_msg): | |
lambdas_fixed = _check_psd_eigenvalues( | |
lambdas, enable_warnings=enable_warnings | |
) | |
assert_allclose(expected_lambdas, lambdas_fixed) | |
_psd_cases_invalid = { | |
"significant_imag": ( | |
(5, 5j), | |
ValueError, | |
"There are significant imaginary parts in eigenv", | |
), | |
"all negative": ( | |
(-5, -1), | |
ValueError, | |
"All eigenvalues are negative \\(maximum is -1", | |
), | |
"significant neg": ( | |
(5, -1), | |
ValueError, | |
"There are significant negative eigenvalues", | |
), | |
"significant neg float32": ( | |
np.array([3e-4, -2e-6], dtype=np.float32), | |
ValueError, | |
"There are significant negative eigenvalues", | |
), | |
"significant neg float64": ( | |
np.array([1e-5, -2e-10], dtype=np.float64), | |
ValueError, | |
"There are significant negative eigenvalues", | |
), | |
} | |
def test_check_psd_eigenvalues_invalid(lambdas, err_type, err_msg): | |
# Test that ``_check_psd_eigenvalues`` raises the right error for invalid | |
# input | |
with pytest.raises(err_type, match=err_msg): | |
_check_psd_eigenvalues(lambdas) | |
def test_check_sample_weight(): | |
# check array order | |
sample_weight = np.ones(10)[::2] | |
assert not sample_weight.flags["C_CONTIGUOUS"] | |
sample_weight = _check_sample_weight(sample_weight, X=np.ones((5, 1))) | |
assert sample_weight.flags["C_CONTIGUOUS"] | |
# check None input | |
sample_weight = _check_sample_weight(None, X=np.ones((5, 2))) | |
assert_allclose(sample_weight, np.ones(5)) | |
# check numbers input | |
sample_weight = _check_sample_weight(2.0, X=np.ones((5, 2))) | |
assert_allclose(sample_weight, 2 * np.ones(5)) | |
# check wrong number of dimensions | |
with pytest.raises(ValueError, match="Sample weights must be 1D array or scalar"): | |
_check_sample_weight(np.ones((2, 4)), X=np.ones((2, 2))) | |
# check incorrect n_samples | |
msg = r"sample_weight.shape == \(4,\), expected \(2,\)!" | |
with pytest.raises(ValueError, match=msg): | |
_check_sample_weight(np.ones(4), X=np.ones((2, 2))) | |
# float32 dtype is preserved | |
X = np.ones((5, 2)) | |
sample_weight = np.ones(5, dtype=np.float32) | |
sample_weight = _check_sample_weight(sample_weight, X) | |
assert sample_weight.dtype == np.float32 | |
# int dtype will be converted to float64 instead | |
X = np.ones((5, 2), dtype=int) | |
sample_weight = _check_sample_weight(None, X, dtype=X.dtype) | |
assert sample_weight.dtype == np.float64 | |
# check negative weight when only_non_negative=True | |
X = np.ones((5, 2)) | |
sample_weight = np.ones(_num_samples(X)) | |
sample_weight[-1] = -10 | |
err_msg = "Negative values in data passed to `sample_weight`" | |
with pytest.raises(ValueError, match=err_msg): | |
_check_sample_weight(sample_weight, X, only_non_negative=True) | |
def test_allclose_dense_sparse_equals(toarray): | |
base = np.arange(9).reshape(3, 3) | |
x, y = toarray(base), toarray(base) | |
assert _allclose_dense_sparse(x, y) | |
def test_allclose_dense_sparse_not_equals(toarray): | |
base = np.arange(9).reshape(3, 3) | |
x, y = toarray(base), toarray(base + 1) | |
assert not _allclose_dense_sparse(x, y) | |
def test_allclose_dense_sparse_raise(toarray): | |
x = np.arange(9).reshape(3, 3) | |
y = toarray(x + 1) | |
msg = "Can only compare two sparse matrices, not a sparse matrix and an array" | |
with pytest.raises(ValueError, match=msg): | |
_allclose_dense_sparse(x, y) | |
def test_deprecate_positional_args_warns_for_function(): | |
def f1(a, b, *, c=1, d=1): | |
pass | |
with pytest.warns(FutureWarning, match=r"Pass c=3 as keyword args"): | |
f1(1, 2, 3) | |
with pytest.warns(FutureWarning, match=r"Pass c=3, d=4 as keyword args"): | |
f1(1, 2, 3, 4) | |
def f2(a=1, *, b=1, c=1, d=1): | |
pass | |
with pytest.warns(FutureWarning, match=r"Pass b=2 as keyword args"): | |
f2(1, 2) | |
# The * is place before a keyword only argument without a default value | |
def f3(a, *, b, c=1, d=1): | |
pass | |
with pytest.warns(FutureWarning, match=r"Pass b=2 as keyword args"): | |
f3(1, 2) | |
def test_deprecate_positional_args_warns_for_function_version(): | |
def f1(a, *, b): | |
pass | |
with pytest.warns( | |
FutureWarning, match=r"From version 1.1 passing these as positional" | |
): | |
f1(1, 2) | |
def test_deprecate_positional_args_warns_for_class(): | |
class A1: | |
def __init__(self, a, b, *, c=1, d=1): | |
pass | |
with pytest.warns(FutureWarning, match=r"Pass c=3 as keyword args"): | |
A1(1, 2, 3) | |
with pytest.warns(FutureWarning, match=r"Pass c=3, d=4 as keyword args"): | |
A1(1, 2, 3, 4) | |
class A2: | |
def __init__(self, a=1, b=1, *, c=1, d=1): | |
pass | |
with pytest.warns(FutureWarning, match=r"Pass c=3 as keyword args"): | |
A2(1, 2, 3) | |
with pytest.warns(FutureWarning, match=r"Pass c=3, d=4 as keyword args"): | |
A2(1, 2, 3, 4) | |
def test_check_method_params(indices): | |
X = np.random.randn(4, 2) | |
_params = { | |
"list": [1, 2, 3, 4], | |
"array": np.array([1, 2, 3, 4]), | |
"sparse-col": sp.csc_matrix([1, 2, 3, 4]).T, | |
"sparse-row": sp.csc_matrix([1, 2, 3, 4]), | |
"scalar-int": 1, | |
"scalar-str": "xxx", | |
"None": None, | |
} | |
result = _check_method_params(X, params=_params, indices=indices) | |
indices_ = indices if indices is not None else list(range(X.shape[0])) | |
for key in ["sparse-row", "scalar-int", "scalar-str", "None"]: | |
assert result[key] is _params[key] | |
assert result["list"] == _safe_indexing(_params["list"], indices_) | |
assert_array_equal(result["array"], _safe_indexing(_params["array"], indices_)) | |
assert_allclose_dense_sparse( | |
result["sparse-col"], _safe_indexing(_params["sparse-col"], indices_) | |
) | |
def test_check_sparse_pandas_sp_format(sp_format): | |
# check_array converts pandas dataframe with only sparse arrays into | |
# sparse matrix | |
pd = pytest.importorskip("pandas") | |
sp_mat = _sparse_random_matrix(10, 3) | |
sdf = pd.DataFrame.sparse.from_spmatrix(sp_mat) | |
result = check_array(sdf, accept_sparse=sp_format) | |
if sp_format is True: | |
# by default pandas converts to coo when accept_sparse is True | |
sp_format = "coo" | |
assert sp.issparse(result) | |
assert result.format == sp_format | |
assert_allclose_dense_sparse(sp_mat, result) | |
def test_check_pandas_sparse_invalid(ntype1, ntype2): | |
"""check that we raise an error with dataframe having | |
sparse extension arrays with unsupported mixed dtype | |
and pandas version below 1.1. pandas versions 1.1 and | |
above fixed this issue so no error will be raised.""" | |
pd = pytest.importorskip("pandas") | |
df = pd.DataFrame( | |
{ | |
"col1": pd.arrays.SparseArray([0, 1, 0], dtype=ntype1, fill_value=0), | |
"col2": pd.arrays.SparseArray([1, 0, 1], dtype=ntype2, fill_value=0), | |
} | |
) | |
if parse_version(pd.__version__) < parse_version("1.1"): | |
err_msg = "Pandas DataFrame with mixed sparse extension arrays" | |
with pytest.raises(ValueError, match=err_msg): | |
check_array(df, accept_sparse=["csr", "csc"]) | |
else: | |
# pandas fixed this issue at 1.1 so from here on, | |
# no error will be raised. | |
check_array(df, accept_sparse=["csr", "csc"]) | |
def test_check_pandas_sparse_valid(ntype1, ntype2, expected_subtype): | |
# check that we support the conversion of sparse dataframe with mixed | |
# type which can be converted safely. | |
pd = pytest.importorskip("pandas") | |
df = pd.DataFrame( | |
{ | |
"col1": pd.arrays.SparseArray([0, 1, 0], dtype=ntype1, fill_value=0), | |
"col2": pd.arrays.SparseArray([1, 0, 1], dtype=ntype2, fill_value=0), | |
} | |
) | |
arr = check_array(df, accept_sparse=["csr", "csc"]) | |
assert np.issubdtype(arr.dtype, expected_subtype) | |
def test_num_features(constructor_name): | |
"""Check _num_features for array-likes.""" | |
X = [[1, 2, 3], [4, 5, 6]] | |
X = _convert_container(X, constructor_name) | |
assert _num_features(X) == 3 | |
def test_num_features_errors_1d_containers(X, constructor_name): | |
X = _convert_container(X, constructor_name) | |
if constructor_name == "array": | |
expected_type_name = "numpy.ndarray" | |
elif constructor_name == "series": | |
expected_type_name = "pandas.core.series.Series" | |
else: | |
expected_type_name = constructor_name | |
message = ( | |
f"Unable to find the number of features from X of type {expected_type_name}" | |
) | |
if hasattr(X, "shape"): | |
message += " with shape (3,)" | |
elif isinstance(X[0], str): | |
message += " where the samples are of type str" | |
elif isinstance(X[0], dict): | |
message += " where the samples are of type dict" | |
with pytest.raises(TypeError, match=re.escape(message)): | |
_num_features(X) | |
def test_num_features_errors_scalars(X): | |
msg = f"Unable to find the number of features from X of type {type(X).__qualname__}" | |
with pytest.raises(TypeError, match=msg): | |
_num_features(X) | |
def test_get_feature_names_pandas_with_ints_no_warning(names): | |
"""Get feature names with pandas dataframes without warning. | |
Column names with consistent dtypes will not warn, such as int or MultiIndex. | |
""" | |
pd = pytest.importorskip("pandas") | |
X = pd.DataFrame([[1, 2], [4, 5], [5, 6]], columns=names) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", FutureWarning) | |
names = _get_feature_names(X) | |
assert names is None | |
def test_get_feature_names_pandas(): | |
"""Get feature names with pandas dataframes.""" | |
pd = pytest.importorskip("pandas") | |
columns = [f"col_{i}" for i in range(3)] | |
X = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=columns) | |
feature_names = _get_feature_names(X) | |
assert_array_equal(feature_names, columns) | |
def test_get_feature_names_dataframe_protocol(constructor_name, minversion): | |
"""Uses the dataframe exchange protocol to get feature names.""" | |
data = [[1, 4, 2], [3, 3, 6]] | |
columns = ["col_0", "col_1", "col_2"] | |
df = _convert_container( | |
data, constructor_name, columns_name=columns, minversion=minversion | |
) | |
feature_names = _get_feature_names(df) | |
assert_array_equal(feature_names, columns) | |
def test_is_pandas_df_other_libraries(constructor_name): | |
df = _convert_container([[1, 4, 2], [3, 3, 6]], constructor_name) | |
if constructor_name in ("pyarrow", "polars"): | |
assert not _is_pandas_df(df) | |
else: | |
assert _is_pandas_df(df) | |
def test_is_pandas_df(): | |
"""Check behavior of is_pandas_df when pandas is installed.""" | |
pd = pytest.importorskip("pandas") | |
df = pd.DataFrame([[1, 2, 3]]) | |
assert _is_pandas_df(df) | |
assert not _is_pandas_df(np.asarray([1, 2, 3])) | |
assert not _is_pandas_df(1) | |
def test_is_pandas_df_pandas_not_installed(hide_available_pandas): | |
"""Check _is_pandas_df when pandas is not installed.""" | |
assert not _is_pandas_df(np.asarray([1, 2, 3])) | |
assert not _is_pandas_df(1) | |
def test_is_polars_df_other_libraries(constructor_name, minversion): | |
df = _convert_container( | |
[[1, 4, 2], [3, 3, 6]], | |
constructor_name, | |
minversion=minversion, | |
) | |
if constructor_name in ("pyarrow", "dataframe"): | |
assert not _is_polars_df(df) | |
else: | |
assert _is_polars_df(df) | |
def test_is_polars_df_for_duck_typed_polars_dataframe(): | |
"""Check _is_polars_df for object that looks like a polars dataframe""" | |
class NotAPolarsDataFrame: | |
def __init__(self): | |
self.columns = [1, 2, 3] | |
self.schema = "my_schema" | |
not_a_polars_df = NotAPolarsDataFrame() | |
assert not _is_polars_df(not_a_polars_df) | |
def test_get_feature_names_numpy(): | |
"""Get feature names return None for numpy arrays.""" | |
X = np.array([[1, 2, 3], [4, 5, 6]]) | |
names = _get_feature_names(X) | |
assert names is None | |
def test_get_feature_names_invalid_dtypes(names, dtypes): | |
"""Get feature names errors when the feature names have mixed dtypes""" | |
pd = pytest.importorskip("pandas") | |
X = pd.DataFrame([[1, 2], [4, 5], [5, 6]], columns=names) | |
msg = re.escape( | |
"Feature names are only supported if all input features have string names, " | |
f"but your input has {dtypes} as feature name / column name types. " | |
"If you want feature names to be stored and validated, you must convert " | |
"them all to strings, by using X.columns = X.columns.astype(str) for " | |
"example. Otherwise you can remove feature / column names from your input " | |
"data, or convert them all to a non-string data type." | |
) | |
with pytest.raises(TypeError, match=msg): | |
names = _get_feature_names(X) | |
class PassthroughTransformer(BaseEstimator): | |
def fit(self, X, y=None): | |
self._validate_data(X, reset=True) | |
return self | |
def transform(self, X): | |
return X | |
def get_feature_names_out(self, input_features=None): | |
return _check_feature_names_in(self, input_features) | |
def test_check_feature_names_in(): | |
"""Check behavior of check_feature_names_in for arrays.""" | |
X = np.array([[0.0, 1.0, 2.0]]) | |
est = PassthroughTransformer().fit(X) | |
names = est.get_feature_names_out() | |
assert_array_equal(names, ["x0", "x1", "x2"]) | |
incorrect_len_names = ["x10", "x1"] | |
with pytest.raises(ValueError, match="input_features should have length equal to"): | |
est.get_feature_names_out(incorrect_len_names) | |
# remove n_feature_in_ | |
del est.n_features_in_ | |
with pytest.raises(ValueError, match="Unable to generate feature names"): | |
est.get_feature_names_out() | |
def test_check_feature_names_in_pandas(): | |
"""Check behavior of check_feature_names_in for pandas dataframes.""" | |
pd = pytest.importorskip("pandas") | |
names = ["a", "b", "c"] | |
df = pd.DataFrame([[0.0, 1.0, 2.0]], columns=names) | |
est = PassthroughTransformer().fit(df) | |
names = est.get_feature_names_out() | |
assert_array_equal(names, ["a", "b", "c"]) | |
with pytest.raises(ValueError, match="input_features is not equal to"): | |
est.get_feature_names_out(["x1", "x2", "x3"]) | |
def test_check_response_method_unknown_method(): | |
"""Check the error message when passing an unknown response method.""" | |
err_msg = ( | |
"RandomForestRegressor has none of the following attributes: unknown_method." | |
) | |
with pytest.raises(AttributeError, match=err_msg): | |
_check_response_method(RandomForestRegressor(), "unknown_method") | |
def test_check_response_method_not_supported_response_method(response_method): | |
"""Check the error message when a response method is not supported by the | |
estimator.""" | |
err_msg = ( | |
f"EstimatorWithFit has none of the following attributes: {response_method}." | |
) | |
with pytest.raises(AttributeError, match=err_msg): | |
_check_response_method(EstimatorWithFit(), response_method) | |
def test_check_response_method_list_str(): | |
"""Check that we can pass a list of ordered method.""" | |
method_implemented = ["predict_proba"] | |
my_estimator = _MockEstimatorOnOffPrediction(method_implemented) | |
X = "mocking_data" | |
# raise an error when no methods are defined | |
response_method = ["decision_function", "predict"] | |
err_msg = ( | |
"_MockEstimatorOnOffPrediction has none of the following attributes: " | |
f"{', '.join(response_method)}." | |
) | |
with pytest.raises(AttributeError, match=err_msg): | |
_check_response_method(my_estimator, response_method)(X) | |
# check that we don't get issue when one of the method is defined | |
response_method = ["decision_function", "predict_proba"] | |
method_name_predicting = _check_response_method(my_estimator, response_method)(X) | |
assert method_name_predicting == "predict_proba" | |
# check the order of the methods returned | |
method_implemented = ["predict_proba", "predict"] | |
my_estimator = _MockEstimatorOnOffPrediction(method_implemented) | |
response_method = ["decision_function", "predict", "predict_proba"] | |
method_name_predicting = _check_response_method(my_estimator, response_method)(X) | |
assert method_name_predicting == "predict" | |
def test_boolean_series_remains_boolean(): | |
"""Regression test for gh-25145""" | |
pd = importorskip("pandas") | |
res = check_array(pd.Series([True, False]), ensure_2d=False) | |
expected = np.array([True, False]) | |
assert res.dtype == expected.dtype | |
assert_array_equal(res, expected) | |
def test_pandas_array_returns_ndarray(input_values): | |
"""Check pandas array with extensions dtypes returns a numeric ndarray. | |
Non-regression test for gh-25637. | |
""" | |
pd = importorskip("pandas") | |
input_series = pd.array(input_values, dtype="Int32") | |
result = check_array( | |
input_series, | |
dtype=None, | |
ensure_2d=False, | |
allow_nd=False, | |
force_all_finite=False, | |
) | |
assert np.issubdtype(result.dtype.kind, np.floating) | |
assert_allclose(result, input_values) | |
def test_check_array_array_api_has_non_finite(array_namespace): | |
"""Checks that Array API arrays checks non-finite correctly.""" | |
xp = pytest.importorskip(array_namespace) | |
X_nan = xp.asarray([[xp.nan, 1, 0], [0, xp.nan, 3]], dtype=xp.float32) | |
with config_context(array_api_dispatch=True): | |
with pytest.raises(ValueError, match="Input contains NaN."): | |
check_array(X_nan) | |
X_inf = xp.asarray([[xp.inf, 1, 0], [0, xp.inf, 3]], dtype=xp.float32) | |
with config_context(array_api_dispatch=True): | |
with pytest.raises(ValueError, match="infinity or a value too large"): | |
check_array(X_inf) | |
def test_check_array_multiple_extensions( | |
extension_dtype, regular_dtype, include_object | |
): | |
"""Check pandas extension arrays give the same result as non-extension arrays.""" | |
pd = pytest.importorskip("pandas") | |
X_regular = pd.DataFrame( | |
{ | |
"a": pd.Series([1, 0, 1, 0], dtype=regular_dtype), | |
"c": pd.Series([9, 8, 7, 6], dtype="int64"), | |
} | |
) | |
if include_object: | |
X_regular["b"] = pd.Series(["a", "b", "c", "d"], dtype="object") | |
X_extension = X_regular.assign(a=X_regular["a"].astype(extension_dtype)) | |
X_regular_checked = check_array(X_regular, dtype=None) | |
X_extension_checked = check_array(X_extension, dtype=None) | |
assert_array_equal(X_regular_checked, X_extension_checked) | |
def test_num_samples_dataframe_protocol(): | |
"""Use the DataFrame interchange protocol to get n_samples from polars.""" | |
pl = pytest.importorskip("polars") | |
df = pl.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) | |
assert _num_samples(df) == 3 | |
def test_check_array_dia_to_int32_indexed_csr_csc_coo(sparse_container, output_format): | |
"""Check the consistency of the indices dtype with sparse matrices/arrays.""" | |
X = sparse_container([[0, 1], [1, 0]], dtype=np.float64) | |
# Explicitly set the dtype of the indexing arrays | |
if hasattr(X, "offsets"): # DIA matrix | |
X.offsets = X.offsets.astype(np.int32) | |
elif hasattr(X, "row") and hasattr(X, "col"): # COO matrix | |
X.row = X.row.astype(np.int32) | |
elif hasattr(X, "indices") and hasattr(X, "indptr"): # CSR or CSC matrix | |
X.indices = X.indices.astype(np.int32) | |
X.indptr = X.indptr.astype(np.int32) | |
X_checked = check_array(X, accept_sparse=output_format) | |
if output_format == "coo": | |
assert X_checked.row.dtype == np.int32 | |
assert X_checked.col.dtype == np.int32 | |
else: # output_format in ["csr", "csc"] | |
assert X_checked.indices.dtype == np.int32 | |
assert X_checked.indptr.dtype == np.int32 | |