peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/numpy
/testing
/tests
/test_utils.py
| import warnings | |
| import sys | |
| import os | |
| import itertools | |
| import pytest | |
| import weakref | |
| import numpy as np | |
| from numpy.testing import ( | |
| assert_equal, assert_array_equal, assert_almost_equal, | |
| assert_array_almost_equal, assert_array_less, build_err_msg, | |
| assert_raises, assert_warns, assert_no_warnings, assert_allclose, | |
| assert_approx_equal, assert_array_almost_equal_nulp, assert_array_max_ulp, | |
| clear_and_catch_warnings, suppress_warnings, assert_string_equal, assert_, | |
| tempdir, temppath, assert_no_gc_cycles, HAS_REFCOUNT | |
| ) | |
| class _GenericTest: | |
| def _test_equal(self, a, b): | |
| self._assert_func(a, b) | |
| def _test_not_equal(self, a, b): | |
| with assert_raises(AssertionError): | |
| self._assert_func(a, b) | |
| def test_array_rank1_eq(self): | |
| """Test two equal array of rank 1 are found equal.""" | |
| a = np.array([1, 2]) | |
| b = np.array([1, 2]) | |
| self._test_equal(a, b) | |
| def test_array_rank1_noteq(self): | |
| """Test two different array of rank 1 are found not equal.""" | |
| a = np.array([1, 2]) | |
| b = np.array([2, 2]) | |
| self._test_not_equal(a, b) | |
| def test_array_rank2_eq(self): | |
| """Test two equal array of rank 2 are found equal.""" | |
| a = np.array([[1, 2], [3, 4]]) | |
| b = np.array([[1, 2], [3, 4]]) | |
| self._test_equal(a, b) | |
| def test_array_diffshape(self): | |
| """Test two arrays with different shapes are found not equal.""" | |
| a = np.array([1, 2]) | |
| b = np.array([[1, 2], [1, 2]]) | |
| self._test_not_equal(a, b) | |
| def test_objarray(self): | |
| """Test object arrays.""" | |
| a = np.array([1, 1], dtype=object) | |
| self._test_equal(a, 1) | |
| def test_array_likes(self): | |
| self._test_equal([1, 2, 3], (1, 2, 3)) | |
| class TestArrayEqual(_GenericTest): | |
| def setup_method(self): | |
| self._assert_func = assert_array_equal | |
| def test_generic_rank1(self): | |
| """Test rank 1 array for all dtypes.""" | |
| def foo(t): | |
| a = np.empty(2, t) | |
| a.fill(1) | |
| b = a.copy() | |
| c = a.copy() | |
| c.fill(0) | |
| self._test_equal(a, b) | |
| self._test_not_equal(c, b) | |
| # Test numeric types and object | |
| for t in '?bhilqpBHILQPfdgFDG': | |
| foo(t) | |
| # Test strings | |
| for t in ['S1', 'U1']: | |
| foo(t) | |
| def test_0_ndim_array(self): | |
| x = np.array(473963742225900817127911193656584771) | |
| y = np.array(18535119325151578301457182298393896) | |
| assert_raises(AssertionError, self._assert_func, x, y) | |
| y = x | |
| self._assert_func(x, y) | |
| x = np.array(43) | |
| y = np.array(10) | |
| assert_raises(AssertionError, self._assert_func, x, y) | |
| y = x | |
| self._assert_func(x, y) | |
| def test_generic_rank3(self): | |
| """Test rank 3 array for all dtypes.""" | |
| def foo(t): | |
| a = np.empty((4, 2, 3), t) | |
| a.fill(1) | |
| b = a.copy() | |
| c = a.copy() | |
| c.fill(0) | |
| self._test_equal(a, b) | |
| self._test_not_equal(c, b) | |
| # Test numeric types and object | |
| for t in '?bhilqpBHILQPfdgFDG': | |
| foo(t) | |
| # Test strings | |
| for t in ['S1', 'U1']: | |
| foo(t) | |
| def test_nan_array(self): | |
| """Test arrays with nan values in them.""" | |
| a = np.array([1, 2, np.nan]) | |
| b = np.array([1, 2, np.nan]) | |
| self._test_equal(a, b) | |
| c = np.array([1, 2, 3]) | |
| self._test_not_equal(c, b) | |
| def test_string_arrays(self): | |
| """Test two arrays with different shapes are found not equal.""" | |
| a = np.array(['floupi', 'floupa']) | |
| b = np.array(['floupi', 'floupa']) | |
| self._test_equal(a, b) | |
| c = np.array(['floupipi', 'floupa']) | |
| self._test_not_equal(c, b) | |
| def test_recarrays(self): | |
| """Test record arrays.""" | |
| a = np.empty(2, [('floupi', float), ('floupa', float)]) | |
| a['floupi'] = [1, 2] | |
| a['floupa'] = [1, 2] | |
| b = a.copy() | |
| self._test_equal(a, b) | |
| c = np.empty(2, [('floupipi', float), | |
| ('floupi', float), ('floupa', float)]) | |
| c['floupipi'] = a['floupi'].copy() | |
| c['floupa'] = a['floupa'].copy() | |
| with pytest.raises(TypeError): | |
| self._test_not_equal(c, b) | |
| def test_masked_nan_inf(self): | |
| # Regression test for gh-11121 | |
| a = np.ma.MaskedArray([3., 4., 6.5], mask=[False, True, False]) | |
| b = np.array([3., np.nan, 6.5]) | |
| self._test_equal(a, b) | |
| self._test_equal(b, a) | |
| a = np.ma.MaskedArray([3., 4., 6.5], mask=[True, False, False]) | |
| b = np.array([np.inf, 4., 6.5]) | |
| self._test_equal(a, b) | |
| self._test_equal(b, a) | |
| def test_subclass_that_overrides_eq(self): | |
| # While we cannot guarantee testing functions will always work for | |
| # subclasses, the tests should ideally rely only on subclasses having | |
| # comparison operators, not on them being able to store booleans | |
| # (which, e.g., astropy Quantity cannot usefully do). See gh-8452. | |
| class MyArray(np.ndarray): | |
| def __eq__(self, other): | |
| return bool(np.equal(self, other).all()) | |
| def __ne__(self, other): | |
| return not self == other | |
| a = np.array([1., 2.]).view(MyArray) | |
| b = np.array([2., 3.]).view(MyArray) | |
| assert_(type(a == a), bool) | |
| assert_(a == a) | |
| assert_(a != b) | |
| self._test_equal(a, a) | |
| self._test_not_equal(a, b) | |
| self._test_not_equal(b, a) | |
| def test_subclass_that_does_not_implement_npall(self): | |
| class MyArray(np.ndarray): | |
| def __array_function__(self, *args, **kwargs): | |
| return NotImplemented | |
| a = np.array([1., 2.]).view(MyArray) | |
| b = np.array([2., 3.]).view(MyArray) | |
| with assert_raises(TypeError): | |
| np.all(a) | |
| self._test_equal(a, a) | |
| self._test_not_equal(a, b) | |
| self._test_not_equal(b, a) | |
| def test_suppress_overflow_warnings(self): | |
| # Based on issue #18992 | |
| with pytest.raises(AssertionError): | |
| with np.errstate(all="raise"): | |
| np.testing.assert_array_equal( | |
| np.array([1, 2, 3], np.float32), | |
| np.array([1, 1e-40, 3], np.float32)) | |
| def test_array_vs_scalar_is_equal(self): | |
| """Test comparing an array with a scalar when all values are equal.""" | |
| a = np.array([1., 1., 1.]) | |
| b = 1. | |
| self._test_equal(a, b) | |
| def test_array_vs_scalar_not_equal(self): | |
| """Test comparing an array with a scalar when not all values equal.""" | |
| a = np.array([1., 2., 3.]) | |
| b = 1. | |
| self._test_not_equal(a, b) | |
| def test_array_vs_scalar_strict(self): | |
| """Test comparing an array with a scalar with strict option.""" | |
| a = np.array([1., 1., 1.]) | |
| b = 1. | |
| with pytest.raises(AssertionError): | |
| assert_array_equal(a, b, strict=True) | |
| def test_array_vs_array_strict(self): | |
| """Test comparing two arrays with strict option.""" | |
| a = np.array([1., 1., 1.]) | |
| b = np.array([1., 1., 1.]) | |
| assert_array_equal(a, b, strict=True) | |
| def test_array_vs_float_array_strict(self): | |
| """Test comparing two arrays with strict option.""" | |
| a = np.array([1, 1, 1]) | |
| b = np.array([1., 1., 1.]) | |
| with pytest.raises(AssertionError): | |
| assert_array_equal(a, b, strict=True) | |
| class TestBuildErrorMessage: | |
| def test_build_err_msg_defaults(self): | |
| x = np.array([1.00001, 2.00002, 3.00003]) | |
| y = np.array([1.00002, 2.00003, 3.00004]) | |
| err_msg = 'There is a mismatch' | |
| a = build_err_msg([x, y], err_msg) | |
| b = ('\nItems are not equal: There is a mismatch\n ACTUAL: array([' | |
| '1.00001, 2.00002, 3.00003])\n DESIRED: array([1.00002, ' | |
| '2.00003, 3.00004])') | |
| assert_equal(a, b) | |
| def test_build_err_msg_no_verbose(self): | |
| x = np.array([1.00001, 2.00002, 3.00003]) | |
| y = np.array([1.00002, 2.00003, 3.00004]) | |
| err_msg = 'There is a mismatch' | |
| a = build_err_msg([x, y], err_msg, verbose=False) | |
| b = '\nItems are not equal: There is a mismatch' | |
| assert_equal(a, b) | |
| def test_build_err_msg_custom_names(self): | |
| x = np.array([1.00001, 2.00002, 3.00003]) | |
| y = np.array([1.00002, 2.00003, 3.00004]) | |
| err_msg = 'There is a mismatch' | |
| a = build_err_msg([x, y], err_msg, names=('FOO', 'BAR')) | |
| b = ('\nItems are not equal: There is a mismatch\n FOO: array([' | |
| '1.00001, 2.00002, 3.00003])\n BAR: array([1.00002, 2.00003, ' | |
| '3.00004])') | |
| assert_equal(a, b) | |
| def test_build_err_msg_custom_precision(self): | |
| x = np.array([1.000000001, 2.00002, 3.00003]) | |
| y = np.array([1.000000002, 2.00003, 3.00004]) | |
| err_msg = 'There is a mismatch' | |
| a = build_err_msg([x, y], err_msg, precision=10) | |
| b = ('\nItems are not equal: There is a mismatch\n ACTUAL: array([' | |
| '1.000000001, 2.00002 , 3.00003 ])\n DESIRED: array([' | |
| '1.000000002, 2.00003 , 3.00004 ])') | |
| assert_equal(a, b) | |
| class TestEqual(TestArrayEqual): | |
| def setup_method(self): | |
| self._assert_func = assert_equal | |
| def test_nan_items(self): | |
| self._assert_func(np.nan, np.nan) | |
| self._assert_func([np.nan], [np.nan]) | |
| self._test_not_equal(np.nan, [np.nan]) | |
| self._test_not_equal(np.nan, 1) | |
| def test_inf_items(self): | |
| self._assert_func(np.inf, np.inf) | |
| self._assert_func([np.inf], [np.inf]) | |
| self._test_not_equal(np.inf, [np.inf]) | |
| def test_datetime(self): | |
| self._test_equal( | |
| np.datetime64("2017-01-01", "s"), | |
| np.datetime64("2017-01-01", "s") | |
| ) | |
| self._test_equal( | |
| np.datetime64("2017-01-01", "s"), | |
| np.datetime64("2017-01-01", "m") | |
| ) | |
| # gh-10081 | |
| self._test_not_equal( | |
| np.datetime64("2017-01-01", "s"), | |
| np.datetime64("2017-01-02", "s") | |
| ) | |
| self._test_not_equal( | |
| np.datetime64("2017-01-01", "s"), | |
| np.datetime64("2017-01-02", "m") | |
| ) | |
| def test_nat_items(self): | |
| # not a datetime | |
| nadt_no_unit = np.datetime64("NaT") | |
| nadt_s = np.datetime64("NaT", "s") | |
| nadt_d = np.datetime64("NaT", "ns") | |
| # not a timedelta | |
| natd_no_unit = np.timedelta64("NaT") | |
| natd_s = np.timedelta64("NaT", "s") | |
| natd_d = np.timedelta64("NaT", "ns") | |
| dts = [nadt_no_unit, nadt_s, nadt_d] | |
| tds = [natd_no_unit, natd_s, natd_d] | |
| for a, b in itertools.product(dts, dts): | |
| self._assert_func(a, b) | |
| self._assert_func([a], [b]) | |
| self._test_not_equal([a], b) | |
| for a, b in itertools.product(tds, tds): | |
| self._assert_func(a, b) | |
| self._assert_func([a], [b]) | |
| self._test_not_equal([a], b) | |
| for a, b in itertools.product(tds, dts): | |
| self._test_not_equal(a, b) | |
| self._test_not_equal(a, [b]) | |
| self._test_not_equal([a], [b]) | |
| self._test_not_equal([a], np.datetime64("2017-01-01", "s")) | |
| self._test_not_equal([b], np.datetime64("2017-01-01", "s")) | |
| self._test_not_equal([a], np.timedelta64(123, "s")) | |
| self._test_not_equal([b], np.timedelta64(123, "s")) | |
| def test_non_numeric(self): | |
| self._assert_func('ab', 'ab') | |
| self._test_not_equal('ab', 'abb') | |
| def test_complex_item(self): | |
| self._assert_func(complex(1, 2), complex(1, 2)) | |
| self._assert_func(complex(1, np.nan), complex(1, np.nan)) | |
| self._test_not_equal(complex(1, np.nan), complex(1, 2)) | |
| self._test_not_equal(complex(np.nan, 1), complex(1, np.nan)) | |
| self._test_not_equal(complex(np.nan, np.inf), complex(np.nan, 2)) | |
| def test_negative_zero(self): | |
| self._test_not_equal(np.PZERO, np.NZERO) | |
| def test_complex(self): | |
| x = np.array([complex(1, 2), complex(1, np.nan)]) | |
| y = np.array([complex(1, 2), complex(1, 2)]) | |
| self._assert_func(x, x) | |
| self._test_not_equal(x, y) | |
| def test_object(self): | |
| #gh-12942 | |
| import datetime | |
| a = np.array([datetime.datetime(2000, 1, 1), | |
| datetime.datetime(2000, 1, 2)]) | |
| self._test_not_equal(a, a[::-1]) | |
| class TestArrayAlmostEqual(_GenericTest): | |
| def setup_method(self): | |
| self._assert_func = assert_array_almost_equal | |
| def test_closeness(self): | |
| # Note that in the course of time we ended up with | |
| # `abs(x - y) < 1.5 * 10**(-decimal)` | |
| # instead of the previously documented | |
| # `abs(x - y) < 0.5 * 10**(-decimal)` | |
| # so this check serves to preserve the wrongness. | |
| # test scalars | |
| self._assert_func(1.499999, 0.0, decimal=0) | |
| assert_raises(AssertionError, | |
| lambda: self._assert_func(1.5, 0.0, decimal=0)) | |
| # test arrays | |
| self._assert_func([1.499999], [0.0], decimal=0) | |
| assert_raises(AssertionError, | |
| lambda: self._assert_func([1.5], [0.0], decimal=0)) | |
| def test_simple(self): | |
| x = np.array([1234.2222]) | |
| y = np.array([1234.2223]) | |
| self._assert_func(x, y, decimal=3) | |
| self._assert_func(x, y, decimal=4) | |
| assert_raises(AssertionError, | |
| lambda: self._assert_func(x, y, decimal=5)) | |
| def test_nan(self): | |
| anan = np.array([np.nan]) | |
| aone = np.array([1]) | |
| ainf = np.array([np.inf]) | |
| self._assert_func(anan, anan) | |
| assert_raises(AssertionError, | |
| lambda: self._assert_func(anan, aone)) | |
| assert_raises(AssertionError, | |
| lambda: self._assert_func(anan, ainf)) | |
| assert_raises(AssertionError, | |
| lambda: self._assert_func(ainf, anan)) | |
| def test_inf(self): | |
| a = np.array([[1., 2.], [3., 4.]]) | |
| b = a.copy() | |
| a[0, 0] = np.inf | |
| assert_raises(AssertionError, | |
| lambda: self._assert_func(a, b)) | |
| b[0, 0] = -np.inf | |
| assert_raises(AssertionError, | |
| lambda: self._assert_func(a, b)) | |
| def test_subclass(self): | |
| a = np.array([[1., 2.], [3., 4.]]) | |
| b = np.ma.masked_array([[1., 2.], [0., 4.]], | |
| [[False, False], [True, False]]) | |
| self._assert_func(a, b) | |
| self._assert_func(b, a) | |
| self._assert_func(b, b) | |
| # Test fully masked as well (see gh-11123). | |
| a = np.ma.MaskedArray(3.5, mask=True) | |
| b = np.array([3., 4., 6.5]) | |
| self._test_equal(a, b) | |
| self._test_equal(b, a) | |
| a = np.ma.masked | |
| b = np.array([3., 4., 6.5]) | |
| self._test_equal(a, b) | |
| self._test_equal(b, a) | |
| a = np.ma.MaskedArray([3., 4., 6.5], mask=[True, True, True]) | |
| b = np.array([1., 2., 3.]) | |
| self._test_equal(a, b) | |
| self._test_equal(b, a) | |
| a = np.ma.MaskedArray([3., 4., 6.5], mask=[True, True, True]) | |
| b = np.array(1.) | |
| self._test_equal(a, b) | |
| self._test_equal(b, a) | |
| def test_subclass_that_cannot_be_bool(self): | |
| # While we cannot guarantee testing functions will always work for | |
| # subclasses, the tests should ideally rely only on subclasses having | |
| # comparison operators, not on them being able to store booleans | |
| # (which, e.g., astropy Quantity cannot usefully do). See gh-8452. | |
| class MyArray(np.ndarray): | |
| def __eq__(self, other): | |
| return super().__eq__(other).view(np.ndarray) | |
| def __lt__(self, other): | |
| return super().__lt__(other).view(np.ndarray) | |
| def all(self, *args, **kwargs): | |
| raise NotImplementedError | |
| a = np.array([1., 2.]).view(MyArray) | |
| self._assert_func(a, a) | |
| class TestAlmostEqual(_GenericTest): | |
| def setup_method(self): | |
| self._assert_func = assert_almost_equal | |
| def test_closeness(self): | |
| # Note that in the course of time we ended up with | |
| # `abs(x - y) < 1.5 * 10**(-decimal)` | |
| # instead of the previously documented | |
| # `abs(x - y) < 0.5 * 10**(-decimal)` | |
| # so this check serves to preserve the wrongness. | |
| # test scalars | |
| self._assert_func(1.499999, 0.0, decimal=0) | |
| assert_raises(AssertionError, | |
| lambda: self._assert_func(1.5, 0.0, decimal=0)) | |
| # test arrays | |
| self._assert_func([1.499999], [0.0], decimal=0) | |
| assert_raises(AssertionError, | |
| lambda: self._assert_func([1.5], [0.0], decimal=0)) | |
| def test_nan_item(self): | |
| self._assert_func(np.nan, np.nan) | |
| assert_raises(AssertionError, | |
| lambda: self._assert_func(np.nan, 1)) | |
| assert_raises(AssertionError, | |
| lambda: self._assert_func(np.nan, np.inf)) | |
| assert_raises(AssertionError, | |
| lambda: self._assert_func(np.inf, np.nan)) | |
| def test_inf_item(self): | |
| self._assert_func(np.inf, np.inf) | |
| self._assert_func(-np.inf, -np.inf) | |
| assert_raises(AssertionError, | |
| lambda: self._assert_func(np.inf, 1)) | |
| assert_raises(AssertionError, | |
| lambda: self._assert_func(-np.inf, np.inf)) | |
| def test_simple_item(self): | |
| self._test_not_equal(1, 2) | |
| def test_complex_item(self): | |
| self._assert_func(complex(1, 2), complex(1, 2)) | |
| self._assert_func(complex(1, np.nan), complex(1, np.nan)) | |
| self._assert_func(complex(np.inf, np.nan), complex(np.inf, np.nan)) | |
| self._test_not_equal(complex(1, np.nan), complex(1, 2)) | |
| self._test_not_equal(complex(np.nan, 1), complex(1, np.nan)) | |
| self._test_not_equal(complex(np.nan, np.inf), complex(np.nan, 2)) | |
| def test_complex(self): | |
| x = np.array([complex(1, 2), complex(1, np.nan)]) | |
| z = np.array([complex(1, 2), complex(np.nan, 1)]) | |
| y = np.array([complex(1, 2), complex(1, 2)]) | |
| self._assert_func(x, x) | |
| self._test_not_equal(x, y) | |
| self._test_not_equal(x, z) | |
| def test_error_message(self): | |
| """Check the message is formatted correctly for the decimal value. | |
| Also check the message when input includes inf or nan (gh12200)""" | |
| x = np.array([1.00000000001, 2.00000000002, 3.00003]) | |
| y = np.array([1.00000000002, 2.00000000003, 3.00004]) | |
| # Test with a different amount of decimal digits | |
| with pytest.raises(AssertionError) as exc_info: | |
| self._assert_func(x, y, decimal=12) | |
| msgs = str(exc_info.value).split('\n') | |
| assert_equal(msgs[3], 'Mismatched elements: 3 / 3 (100%)') | |
| assert_equal(msgs[4], 'Max absolute difference: 1.e-05') | |
| assert_equal(msgs[5], 'Max relative difference: 3.33328889e-06') | |
| assert_equal( | |
| msgs[6], | |
| ' x: array([1.00000000001, 2.00000000002, 3.00003 ])') | |
| assert_equal( | |
| msgs[7], | |
| ' y: array([1.00000000002, 2.00000000003, 3.00004 ])') | |
| # With the default value of decimal digits, only the 3rd element | |
| # differs. Note that we only check for the formatting of the arrays | |
| # themselves. | |
| with pytest.raises(AssertionError) as exc_info: | |
| self._assert_func(x, y) | |
| msgs = str(exc_info.value).split('\n') | |
| assert_equal(msgs[3], 'Mismatched elements: 1 / 3 (33.3%)') | |
| assert_equal(msgs[4], 'Max absolute difference: 1.e-05') | |
| assert_equal(msgs[5], 'Max relative difference: 3.33328889e-06') | |
| assert_equal(msgs[6], ' x: array([1. , 2. , 3.00003])') | |
| assert_equal(msgs[7], ' y: array([1. , 2. , 3.00004])') | |
| # Check the error message when input includes inf | |
| x = np.array([np.inf, 0]) | |
| y = np.array([np.inf, 1]) | |
| with pytest.raises(AssertionError) as exc_info: | |
| self._assert_func(x, y) | |
| msgs = str(exc_info.value).split('\n') | |
| assert_equal(msgs[3], 'Mismatched elements: 1 / 2 (50%)') | |
| assert_equal(msgs[4], 'Max absolute difference: 1.') | |
| assert_equal(msgs[5], 'Max relative difference: 1.') | |
| assert_equal(msgs[6], ' x: array([inf, 0.])') | |
| assert_equal(msgs[7], ' y: array([inf, 1.])') | |
| # Check the error message when dividing by zero | |
| x = np.array([1, 2]) | |
| y = np.array([0, 0]) | |
| with pytest.raises(AssertionError) as exc_info: | |
| self._assert_func(x, y) | |
| msgs = str(exc_info.value).split('\n') | |
| assert_equal(msgs[3], 'Mismatched elements: 2 / 2 (100%)') | |
| assert_equal(msgs[4], 'Max absolute difference: 2') | |
| assert_equal(msgs[5], 'Max relative difference: inf') | |
| def test_error_message_2(self): | |
| """Check the message is formatted correctly when either x or y is a scalar.""" | |
| x = 2 | |
| y = np.ones(20) | |
| with pytest.raises(AssertionError) as exc_info: | |
| self._assert_func(x, y) | |
| msgs = str(exc_info.value).split('\n') | |
| assert_equal(msgs[3], 'Mismatched elements: 20 / 20 (100%)') | |
| assert_equal(msgs[4], 'Max absolute difference: 1.') | |
| assert_equal(msgs[5], 'Max relative difference: 1.') | |
| y = 2 | |
| x = np.ones(20) | |
| with pytest.raises(AssertionError) as exc_info: | |
| self._assert_func(x, y) | |
| msgs = str(exc_info.value).split('\n') | |
| assert_equal(msgs[3], 'Mismatched elements: 20 / 20 (100%)') | |
| assert_equal(msgs[4], 'Max absolute difference: 1.') | |
| assert_equal(msgs[5], 'Max relative difference: 0.5') | |
| def test_subclass_that_cannot_be_bool(self): | |
| # While we cannot guarantee testing functions will always work for | |
| # subclasses, the tests should ideally rely only on subclasses having | |
| # comparison operators, not on them being able to store booleans | |
| # (which, e.g., astropy Quantity cannot usefully do). See gh-8452. | |
| class MyArray(np.ndarray): | |
| def __eq__(self, other): | |
| return super().__eq__(other).view(np.ndarray) | |
| def __lt__(self, other): | |
| return super().__lt__(other).view(np.ndarray) | |
| def all(self, *args, **kwargs): | |
| raise NotImplementedError | |
| a = np.array([1., 2.]).view(MyArray) | |
| self._assert_func(a, a) | |
| class TestApproxEqual: | |
| def setup_method(self): | |
| self._assert_func = assert_approx_equal | |
| def test_simple_0d_arrays(self): | |
| x = np.array(1234.22) | |
| y = np.array(1234.23) | |
| self._assert_func(x, y, significant=5) | |
| self._assert_func(x, y, significant=6) | |
| assert_raises(AssertionError, | |
| lambda: self._assert_func(x, y, significant=7)) | |
| def test_simple_items(self): | |
| x = 1234.22 | |
| y = 1234.23 | |
| self._assert_func(x, y, significant=4) | |
| self._assert_func(x, y, significant=5) | |
| self._assert_func(x, y, significant=6) | |
| assert_raises(AssertionError, | |
| lambda: self._assert_func(x, y, significant=7)) | |
| def test_nan_array(self): | |
| anan = np.array(np.nan) | |
| aone = np.array(1) | |
| ainf = np.array(np.inf) | |
| self._assert_func(anan, anan) | |
| assert_raises(AssertionError, lambda: self._assert_func(anan, aone)) | |
| assert_raises(AssertionError, lambda: self._assert_func(anan, ainf)) | |
| assert_raises(AssertionError, lambda: self._assert_func(ainf, anan)) | |
| def test_nan_items(self): | |
| anan = np.array(np.nan) | |
| aone = np.array(1) | |
| ainf = np.array(np.inf) | |
| self._assert_func(anan, anan) | |
| assert_raises(AssertionError, lambda: self._assert_func(anan, aone)) | |
| assert_raises(AssertionError, lambda: self._assert_func(anan, ainf)) | |
| assert_raises(AssertionError, lambda: self._assert_func(ainf, anan)) | |
| class TestArrayAssertLess: | |
| def setup_method(self): | |
| self._assert_func = assert_array_less | |
| def test_simple_arrays(self): | |
| x = np.array([1.1, 2.2]) | |
| y = np.array([1.2, 2.3]) | |
| self._assert_func(x, y) | |
| assert_raises(AssertionError, lambda: self._assert_func(y, x)) | |
| y = np.array([1.0, 2.3]) | |
| assert_raises(AssertionError, lambda: self._assert_func(x, y)) | |
| assert_raises(AssertionError, lambda: self._assert_func(y, x)) | |
| def test_rank2(self): | |
| x = np.array([[1.1, 2.2], [3.3, 4.4]]) | |
| y = np.array([[1.2, 2.3], [3.4, 4.5]]) | |
| self._assert_func(x, y) | |
| assert_raises(AssertionError, lambda: self._assert_func(y, x)) | |
| y = np.array([[1.0, 2.3], [3.4, 4.5]]) | |
| assert_raises(AssertionError, lambda: self._assert_func(x, y)) | |
| assert_raises(AssertionError, lambda: self._assert_func(y, x)) | |
| def test_rank3(self): | |
| x = np.ones(shape=(2, 2, 2)) | |
| y = np.ones(shape=(2, 2, 2))+1 | |
| self._assert_func(x, y) | |
| assert_raises(AssertionError, lambda: self._assert_func(y, x)) | |
| y[0, 0, 0] = 0 | |
| assert_raises(AssertionError, lambda: self._assert_func(x, y)) | |
| assert_raises(AssertionError, lambda: self._assert_func(y, x)) | |
| def test_simple_items(self): | |
| x = 1.1 | |
| y = 2.2 | |
| self._assert_func(x, y) | |
| assert_raises(AssertionError, lambda: self._assert_func(y, x)) | |
| y = np.array([2.2, 3.3]) | |
| self._assert_func(x, y) | |
| assert_raises(AssertionError, lambda: self._assert_func(y, x)) | |
| y = np.array([1.0, 3.3]) | |
| assert_raises(AssertionError, lambda: self._assert_func(x, y)) | |
| def test_nan_noncompare(self): | |
| anan = np.array(np.nan) | |
| aone = np.array(1) | |
| ainf = np.array(np.inf) | |
| self._assert_func(anan, anan) | |
| assert_raises(AssertionError, lambda: self._assert_func(aone, anan)) | |
| assert_raises(AssertionError, lambda: self._assert_func(anan, aone)) | |
| assert_raises(AssertionError, lambda: self._assert_func(anan, ainf)) | |
| assert_raises(AssertionError, lambda: self._assert_func(ainf, anan)) | |
| def test_nan_noncompare_array(self): | |
| x = np.array([1.1, 2.2, 3.3]) | |
| anan = np.array(np.nan) | |
| assert_raises(AssertionError, lambda: self._assert_func(x, anan)) | |
| assert_raises(AssertionError, lambda: self._assert_func(anan, x)) | |
| x = np.array([1.1, 2.2, np.nan]) | |
| assert_raises(AssertionError, lambda: self._assert_func(x, anan)) | |
| assert_raises(AssertionError, lambda: self._assert_func(anan, x)) | |
| y = np.array([1.0, 2.0, np.nan]) | |
| self._assert_func(y, x) | |
| assert_raises(AssertionError, lambda: self._assert_func(x, y)) | |
| def test_inf_compare(self): | |
| aone = np.array(1) | |
| ainf = np.array(np.inf) | |
| self._assert_func(aone, ainf) | |
| self._assert_func(-ainf, aone) | |
| self._assert_func(-ainf, ainf) | |
| assert_raises(AssertionError, lambda: self._assert_func(ainf, aone)) | |
| assert_raises(AssertionError, lambda: self._assert_func(aone, -ainf)) | |
| assert_raises(AssertionError, lambda: self._assert_func(ainf, ainf)) | |
| assert_raises(AssertionError, lambda: self._assert_func(ainf, -ainf)) | |
| assert_raises(AssertionError, lambda: self._assert_func(-ainf, -ainf)) | |
| def test_inf_compare_array(self): | |
| x = np.array([1.1, 2.2, np.inf]) | |
| ainf = np.array(np.inf) | |
| assert_raises(AssertionError, lambda: self._assert_func(x, ainf)) | |
| assert_raises(AssertionError, lambda: self._assert_func(ainf, x)) | |
| assert_raises(AssertionError, lambda: self._assert_func(x, -ainf)) | |
| assert_raises(AssertionError, lambda: self._assert_func(-x, -ainf)) | |
| assert_raises(AssertionError, lambda: self._assert_func(-ainf, -x)) | |
| self._assert_func(-ainf, x) | |
| class TestWarns: | |
| def test_warn(self): | |
| def f(): | |
| warnings.warn("yo") | |
| return 3 | |
| before_filters = sys.modules['warnings'].filters[:] | |
| assert_equal(assert_warns(UserWarning, f), 3) | |
| after_filters = sys.modules['warnings'].filters | |
| assert_raises(AssertionError, assert_no_warnings, f) | |
| assert_equal(assert_no_warnings(lambda x: x, 1), 1) | |
| # Check that the warnings state is unchanged | |
| assert_equal(before_filters, after_filters, | |
| "assert_warns does not preserver warnings state") | |
| def test_context_manager(self): | |
| before_filters = sys.modules['warnings'].filters[:] | |
| with assert_warns(UserWarning): | |
| warnings.warn("yo") | |
| after_filters = sys.modules['warnings'].filters | |
| def no_warnings(): | |
| with assert_no_warnings(): | |
| warnings.warn("yo") | |
| assert_raises(AssertionError, no_warnings) | |
| assert_equal(before_filters, after_filters, | |
| "assert_warns does not preserver warnings state") | |
| def test_warn_wrong_warning(self): | |
| def f(): | |
| warnings.warn("yo", DeprecationWarning) | |
| failed = False | |
| with warnings.catch_warnings(): | |
| warnings.simplefilter("error", DeprecationWarning) | |
| try: | |
| # Should raise a DeprecationWarning | |
| assert_warns(UserWarning, f) | |
| failed = True | |
| except DeprecationWarning: | |
| pass | |
| if failed: | |
| raise AssertionError("wrong warning caught by assert_warn") | |
| class TestAssertAllclose: | |
| def test_simple(self): | |
| x = 1e-3 | |
| y = 1e-9 | |
| assert_allclose(x, y, atol=1) | |
| assert_raises(AssertionError, assert_allclose, x, y) | |
| a = np.array([x, y, x, y]) | |
| b = np.array([x, y, x, x]) | |
| assert_allclose(a, b, atol=1) | |
| assert_raises(AssertionError, assert_allclose, a, b) | |
| b[-1] = y * (1 + 1e-8) | |
| assert_allclose(a, b) | |
| assert_raises(AssertionError, assert_allclose, a, b, rtol=1e-9) | |
| assert_allclose(6, 10, rtol=0.5) | |
| assert_raises(AssertionError, assert_allclose, 10, 6, rtol=0.5) | |
| def test_min_int(self): | |
| a = np.array([np.iinfo(np.int_).min], dtype=np.int_) | |
| # Should not raise: | |
| assert_allclose(a, a) | |
| def test_report_fail_percentage(self): | |
| a = np.array([1, 1, 1, 1]) | |
| b = np.array([1, 1, 1, 2]) | |
| with pytest.raises(AssertionError) as exc_info: | |
| assert_allclose(a, b) | |
| msg = str(exc_info.value) | |
| assert_('Mismatched elements: 1 / 4 (25%)\n' | |
| 'Max absolute difference: 1\n' | |
| 'Max relative difference: 0.5' in msg) | |
| def test_equal_nan(self): | |
| a = np.array([np.nan]) | |
| b = np.array([np.nan]) | |
| # Should not raise: | |
| assert_allclose(a, b, equal_nan=True) | |
| def test_not_equal_nan(self): | |
| a = np.array([np.nan]) | |
| b = np.array([np.nan]) | |
| assert_raises(AssertionError, assert_allclose, a, b, equal_nan=False) | |
| def test_equal_nan_default(self): | |
| # Make sure equal_nan default behavior remains unchanged. (All | |
| # of these functions use assert_array_compare under the hood.) | |
| # None of these should raise. | |
| a = np.array([np.nan]) | |
| b = np.array([np.nan]) | |
| assert_array_equal(a, b) | |
| assert_array_almost_equal(a, b) | |
| assert_array_less(a, b) | |
| assert_allclose(a, b) | |
| def test_report_max_relative_error(self): | |
| a = np.array([0, 1]) | |
| b = np.array([0, 2]) | |
| with pytest.raises(AssertionError) as exc_info: | |
| assert_allclose(a, b) | |
| msg = str(exc_info.value) | |
| assert_('Max relative difference: 0.5' in msg) | |
| def test_timedelta(self): | |
| # see gh-18286 | |
| a = np.array([[1, 2, 3, "NaT"]], dtype="m8[ns]") | |
| assert_allclose(a, a) | |
| def test_error_message_unsigned(self): | |
| """Check the the message is formatted correctly when overflow can occur | |
| (gh21768)""" | |
| # Ensure to test for potential overflow in the case of: | |
| # x - y | |
| # and | |
| # y - x | |
| x = np.asarray([0, 1, 8], dtype='uint8') | |
| y = np.asarray([4, 4, 4], dtype='uint8') | |
| with pytest.raises(AssertionError) as exc_info: | |
| assert_allclose(x, y, atol=3) | |
| msgs = str(exc_info.value).split('\n') | |
| assert_equal(msgs[4], 'Max absolute difference: 4') | |
| class TestArrayAlmostEqualNulp: | |
| def test_float64_pass(self): | |
| # The number of units of least precision | |
| # In this case, use a few places above the lowest level (ie nulp=1) | |
| nulp = 5 | |
| x = np.linspace(-20, 20, 50, dtype=np.float64) | |
| x = 10**x | |
| x = np.r_[-x, x] | |
| # Addition | |
| eps = np.finfo(x.dtype).eps | |
| y = x + x*eps*nulp/2. | |
| assert_array_almost_equal_nulp(x, y, nulp) | |
| # Subtraction | |
| epsneg = np.finfo(x.dtype).epsneg | |
| y = x - x*epsneg*nulp/2. | |
| assert_array_almost_equal_nulp(x, y, nulp) | |
| def test_float64_fail(self): | |
| nulp = 5 | |
| x = np.linspace(-20, 20, 50, dtype=np.float64) | |
| x = 10**x | |
| x = np.r_[-x, x] | |
| eps = np.finfo(x.dtype).eps | |
| y = x + x*eps*nulp*2. | |
| assert_raises(AssertionError, assert_array_almost_equal_nulp, | |
| x, y, nulp) | |
| epsneg = np.finfo(x.dtype).epsneg | |
| y = x - x*epsneg*nulp*2. | |
| assert_raises(AssertionError, assert_array_almost_equal_nulp, | |
| x, y, nulp) | |
| def test_float64_ignore_nan(self): | |
| # Ignore ULP differences between various NAN's | |
| # Note that MIPS may reverse quiet and signaling nans | |
| # so we use the builtin version as a base. | |
| offset = np.uint64(0xffffffff) | |
| nan1_i64 = np.array(np.nan, dtype=np.float64).view(np.uint64) | |
| nan2_i64 = nan1_i64 ^ offset # nan payload on MIPS is all ones. | |
| nan1_f64 = nan1_i64.view(np.float64) | |
| nan2_f64 = nan2_i64.view(np.float64) | |
| assert_array_max_ulp(nan1_f64, nan2_f64, 0) | |
| def test_float32_pass(self): | |
| nulp = 5 | |
| x = np.linspace(-20, 20, 50, dtype=np.float32) | |
| x = 10**x | |
| x = np.r_[-x, x] | |
| eps = np.finfo(x.dtype).eps | |
| y = x + x*eps*nulp/2. | |
| assert_array_almost_equal_nulp(x, y, nulp) | |
| epsneg = np.finfo(x.dtype).epsneg | |
| y = x - x*epsneg*nulp/2. | |
| assert_array_almost_equal_nulp(x, y, nulp) | |
| def test_float32_fail(self): | |
| nulp = 5 | |
| x = np.linspace(-20, 20, 50, dtype=np.float32) | |
| x = 10**x | |
| x = np.r_[-x, x] | |
| eps = np.finfo(x.dtype).eps | |
| y = x + x*eps*nulp*2. | |
| assert_raises(AssertionError, assert_array_almost_equal_nulp, | |
| x, y, nulp) | |
| epsneg = np.finfo(x.dtype).epsneg | |
| y = x - x*epsneg*nulp*2. | |
| assert_raises(AssertionError, assert_array_almost_equal_nulp, | |
| x, y, nulp) | |
| def test_float32_ignore_nan(self): | |
| # Ignore ULP differences between various NAN's | |
| # Note that MIPS may reverse quiet and signaling nans | |
| # so we use the builtin version as a base. | |
| offset = np.uint32(0xffff) | |
| nan1_i32 = np.array(np.nan, dtype=np.float32).view(np.uint32) | |
| nan2_i32 = nan1_i32 ^ offset # nan payload on MIPS is all ones. | |
| nan1_f32 = nan1_i32.view(np.float32) | |
| nan2_f32 = nan2_i32.view(np.float32) | |
| assert_array_max_ulp(nan1_f32, nan2_f32, 0) | |
| def test_float16_pass(self): | |
| nulp = 5 | |
| x = np.linspace(-4, 4, 10, dtype=np.float16) | |
| x = 10**x | |
| x = np.r_[-x, x] | |
| eps = np.finfo(x.dtype).eps | |
| y = x + x*eps*nulp/2. | |
| assert_array_almost_equal_nulp(x, y, nulp) | |
| epsneg = np.finfo(x.dtype).epsneg | |
| y = x - x*epsneg*nulp/2. | |
| assert_array_almost_equal_nulp(x, y, nulp) | |
| def test_float16_fail(self): | |
| nulp = 5 | |
| x = np.linspace(-4, 4, 10, dtype=np.float16) | |
| x = 10**x | |
| x = np.r_[-x, x] | |
| eps = np.finfo(x.dtype).eps | |
| y = x + x*eps*nulp*2. | |
| assert_raises(AssertionError, assert_array_almost_equal_nulp, | |
| x, y, nulp) | |
| epsneg = np.finfo(x.dtype).epsneg | |
| y = x - x*epsneg*nulp*2. | |
| assert_raises(AssertionError, assert_array_almost_equal_nulp, | |
| x, y, nulp) | |
| def test_float16_ignore_nan(self): | |
| # Ignore ULP differences between various NAN's | |
| # Note that MIPS may reverse quiet and signaling nans | |
| # so we use the builtin version as a base. | |
| offset = np.uint16(0xff) | |
| nan1_i16 = np.array(np.nan, dtype=np.float16).view(np.uint16) | |
| nan2_i16 = nan1_i16 ^ offset # nan payload on MIPS is all ones. | |
| nan1_f16 = nan1_i16.view(np.float16) | |
| nan2_f16 = nan2_i16.view(np.float16) | |
| assert_array_max_ulp(nan1_f16, nan2_f16, 0) | |
| def test_complex128_pass(self): | |
| nulp = 5 | |
| x = np.linspace(-20, 20, 50, dtype=np.float64) | |
| x = 10**x | |
| x = np.r_[-x, x] | |
| xi = x + x*1j | |
| eps = np.finfo(x.dtype).eps | |
| y = x + x*eps*nulp/2. | |
| assert_array_almost_equal_nulp(xi, x + y*1j, nulp) | |
| assert_array_almost_equal_nulp(xi, y + x*1j, nulp) | |
| # The test condition needs to be at least a factor of sqrt(2) smaller | |
| # because the real and imaginary parts both change | |
| y = x + x*eps*nulp/4. | |
| assert_array_almost_equal_nulp(xi, y + y*1j, nulp) | |
| epsneg = np.finfo(x.dtype).epsneg | |
| y = x - x*epsneg*nulp/2. | |
| assert_array_almost_equal_nulp(xi, x + y*1j, nulp) | |
| assert_array_almost_equal_nulp(xi, y + x*1j, nulp) | |
| y = x - x*epsneg*nulp/4. | |
| assert_array_almost_equal_nulp(xi, y + y*1j, nulp) | |
| def test_complex128_fail(self): | |
| nulp = 5 | |
| x = np.linspace(-20, 20, 50, dtype=np.float64) | |
| x = 10**x | |
| x = np.r_[-x, x] | |
| xi = x + x*1j | |
| eps = np.finfo(x.dtype).eps | |
| y = x + x*eps*nulp*2. | |
| assert_raises(AssertionError, assert_array_almost_equal_nulp, | |
| xi, x + y*1j, nulp) | |
| assert_raises(AssertionError, assert_array_almost_equal_nulp, | |
| xi, y + x*1j, nulp) | |
| # The test condition needs to be at least a factor of sqrt(2) smaller | |
| # because the real and imaginary parts both change | |
| y = x + x*eps*nulp | |
| assert_raises(AssertionError, assert_array_almost_equal_nulp, | |
| xi, y + y*1j, nulp) | |
| epsneg = np.finfo(x.dtype).epsneg | |
| y = x - x*epsneg*nulp*2. | |
| assert_raises(AssertionError, assert_array_almost_equal_nulp, | |
| xi, x + y*1j, nulp) | |
| assert_raises(AssertionError, assert_array_almost_equal_nulp, | |
| xi, y + x*1j, nulp) | |
| y = x - x*epsneg*nulp | |
| assert_raises(AssertionError, assert_array_almost_equal_nulp, | |
| xi, y + y*1j, nulp) | |
| def test_complex64_pass(self): | |
| nulp = 5 | |
| x = np.linspace(-20, 20, 50, dtype=np.float32) | |
| x = 10**x | |
| x = np.r_[-x, x] | |
| xi = x + x*1j | |
| eps = np.finfo(x.dtype).eps | |
| y = x + x*eps*nulp/2. | |
| assert_array_almost_equal_nulp(xi, x + y*1j, nulp) | |
| assert_array_almost_equal_nulp(xi, y + x*1j, nulp) | |
| y = x + x*eps*nulp/4. | |
| assert_array_almost_equal_nulp(xi, y + y*1j, nulp) | |
| epsneg = np.finfo(x.dtype).epsneg | |
| y = x - x*epsneg*nulp/2. | |
| assert_array_almost_equal_nulp(xi, x + y*1j, nulp) | |
| assert_array_almost_equal_nulp(xi, y + x*1j, nulp) | |
| y = x - x*epsneg*nulp/4. | |
| assert_array_almost_equal_nulp(xi, y + y*1j, nulp) | |
| def test_complex64_fail(self): | |
| nulp = 5 | |
| x = np.linspace(-20, 20, 50, dtype=np.float32) | |
| x = 10**x | |
| x = np.r_[-x, x] | |
| xi = x + x*1j | |
| eps = np.finfo(x.dtype).eps | |
| y = x + x*eps*nulp*2. | |
| assert_raises(AssertionError, assert_array_almost_equal_nulp, | |
| xi, x + y*1j, nulp) | |
| assert_raises(AssertionError, assert_array_almost_equal_nulp, | |
| xi, y + x*1j, nulp) | |
| y = x + x*eps*nulp | |
| assert_raises(AssertionError, assert_array_almost_equal_nulp, | |
| xi, y + y*1j, nulp) | |
| epsneg = np.finfo(x.dtype).epsneg | |
| y = x - x*epsneg*nulp*2. | |
| assert_raises(AssertionError, assert_array_almost_equal_nulp, | |
| xi, x + y*1j, nulp) | |
| assert_raises(AssertionError, assert_array_almost_equal_nulp, | |
| xi, y + x*1j, nulp) | |
| y = x - x*epsneg*nulp | |
| assert_raises(AssertionError, assert_array_almost_equal_nulp, | |
| xi, y + y*1j, nulp) | |
| class TestULP: | |
| def test_equal(self): | |
| x = np.random.randn(10) | |
| assert_array_max_ulp(x, x, maxulp=0) | |
| def test_single(self): | |
| # Generate 1 + small deviation, check that adding eps gives a few UNL | |
| x = np.ones(10).astype(np.float32) | |
| x += 0.01 * np.random.randn(10).astype(np.float32) | |
| eps = np.finfo(np.float32).eps | |
| assert_array_max_ulp(x, x+eps, maxulp=20) | |
| def test_double(self): | |
| # Generate 1 + small deviation, check that adding eps gives a few UNL | |
| x = np.ones(10).astype(np.float64) | |
| x += 0.01 * np.random.randn(10).astype(np.float64) | |
| eps = np.finfo(np.float64).eps | |
| assert_array_max_ulp(x, x+eps, maxulp=200) | |
| def test_inf(self): | |
| for dt in [np.float32, np.float64]: | |
| inf = np.array([np.inf]).astype(dt) | |
| big = np.array([np.finfo(dt).max]) | |
| assert_array_max_ulp(inf, big, maxulp=200) | |
| def test_nan(self): | |
| # Test that nan is 'far' from small, tiny, inf, max and min | |
| for dt in [np.float32, np.float64]: | |
| if dt == np.float32: | |
| maxulp = 1e6 | |
| else: | |
| maxulp = 1e12 | |
| inf = np.array([np.inf]).astype(dt) | |
| nan = np.array([np.nan]).astype(dt) | |
| big = np.array([np.finfo(dt).max]) | |
| tiny = np.array([np.finfo(dt).tiny]) | |
| zero = np.array([np.PZERO]).astype(dt) | |
| nzero = np.array([np.NZERO]).astype(dt) | |
| assert_raises(AssertionError, | |
| lambda: assert_array_max_ulp(nan, inf, | |
| maxulp=maxulp)) | |
| assert_raises(AssertionError, | |
| lambda: assert_array_max_ulp(nan, big, | |
| maxulp=maxulp)) | |
| assert_raises(AssertionError, | |
| lambda: assert_array_max_ulp(nan, tiny, | |
| maxulp=maxulp)) | |
| assert_raises(AssertionError, | |
| lambda: assert_array_max_ulp(nan, zero, | |
| maxulp=maxulp)) | |
| assert_raises(AssertionError, | |
| lambda: assert_array_max_ulp(nan, nzero, | |
| maxulp=maxulp)) | |
| class TestStringEqual: | |
| def test_simple(self): | |
| assert_string_equal("hello", "hello") | |
| assert_string_equal("hello\nmultiline", "hello\nmultiline") | |
| with pytest.raises(AssertionError) as exc_info: | |
| assert_string_equal("foo\nbar", "hello\nbar") | |
| msg = str(exc_info.value) | |
| assert_equal(msg, "Differences in strings:\n- foo\n+ hello") | |
| assert_raises(AssertionError, | |
| lambda: assert_string_equal("foo", "hello")) | |
| def test_regex(self): | |
| assert_string_equal("a+*b", "a+*b") | |
| assert_raises(AssertionError, | |
| lambda: assert_string_equal("aaa", "a+b")) | |
| def assert_warn_len_equal(mod, n_in_context): | |
| try: | |
| mod_warns = mod.__warningregistry__ | |
| except AttributeError: | |
| # the lack of a __warningregistry__ | |
| # attribute means that no warning has | |
| # occurred; this can be triggered in | |
| # a parallel test scenario, while in | |
| # a serial test scenario an initial | |
| # warning (and therefore the attribute) | |
| # are always created first | |
| mod_warns = {} | |
| num_warns = len(mod_warns) | |
| if 'version' in mod_warns: | |
| # Python 3 adds a 'version' entry to the registry, | |
| # do not count it. | |
| num_warns -= 1 | |
| assert_equal(num_warns, n_in_context) | |
| def test_warn_len_equal_call_scenarios(): | |
| # assert_warn_len_equal is called under | |
| # varying circumstances depending on serial | |
| # vs. parallel test scenarios; this test | |
| # simply aims to probe both code paths and | |
| # check that no assertion is uncaught | |
| # parallel scenario -- no warning issued yet | |
| class mod: | |
| pass | |
| mod_inst = mod() | |
| assert_warn_len_equal(mod=mod_inst, | |
| n_in_context=0) | |
| # serial test scenario -- the __warningregistry__ | |
| # attribute should be present | |
| class mod: | |
| def __init__(self): | |
| self.__warningregistry__ = {'warning1':1, | |
| 'warning2':2} | |
| mod_inst = mod() | |
| assert_warn_len_equal(mod=mod_inst, | |
| n_in_context=2) | |
| def _get_fresh_mod(): | |
| # Get this module, with warning registry empty | |
| my_mod = sys.modules[__name__] | |
| try: | |
| my_mod.__warningregistry__.clear() | |
| except AttributeError: | |
| # will not have a __warningregistry__ unless warning has been | |
| # raised in the module at some point | |
| pass | |
| return my_mod | |
| def test_clear_and_catch_warnings(): | |
| # Initial state of module, no warnings | |
| my_mod = _get_fresh_mod() | |
| assert_equal(getattr(my_mod, '__warningregistry__', {}), {}) | |
| with clear_and_catch_warnings(modules=[my_mod]): | |
| warnings.simplefilter('ignore') | |
| warnings.warn('Some warning') | |
| assert_equal(my_mod.__warningregistry__, {}) | |
| # Without specified modules, don't clear warnings during context. | |
| # catch_warnings doesn't make an entry for 'ignore'. | |
| with clear_and_catch_warnings(): | |
| warnings.simplefilter('ignore') | |
| warnings.warn('Some warning') | |
| assert_warn_len_equal(my_mod, 0) | |
| # Manually adding two warnings to the registry: | |
| my_mod.__warningregistry__ = {'warning1': 1, | |
| 'warning2': 2} | |
| # Confirm that specifying module keeps old warning, does not add new | |
| with clear_and_catch_warnings(modules=[my_mod]): | |
| warnings.simplefilter('ignore') | |
| warnings.warn('Another warning') | |
| assert_warn_len_equal(my_mod, 2) | |
| # Another warning, no module spec it clears up registry | |
| with clear_and_catch_warnings(): | |
| warnings.simplefilter('ignore') | |
| warnings.warn('Another warning') | |
| assert_warn_len_equal(my_mod, 0) | |
| def test_suppress_warnings_module(): | |
| # Initial state of module, no warnings | |
| my_mod = _get_fresh_mod() | |
| assert_equal(getattr(my_mod, '__warningregistry__', {}), {}) | |
| def warn_other_module(): | |
| # Apply along axis is implemented in python; stacklevel=2 means | |
| # we end up inside its module, not ours. | |
| def warn(arr): | |
| warnings.warn("Some warning 2", stacklevel=2) | |
| return arr | |
| np.apply_along_axis(warn, 0, [0]) | |
| # Test module based warning suppression: | |
| assert_warn_len_equal(my_mod, 0) | |
| with suppress_warnings() as sup: | |
| sup.record(UserWarning) | |
| # suppress warning from other module (may have .pyc ending), | |
| # if apply_along_axis is moved, had to be changed. | |
| sup.filter(module=np.lib.shape_base) | |
| warnings.warn("Some warning") | |
| warn_other_module() | |
| # Check that the suppression did test the file correctly (this module | |
| # got filtered) | |
| assert_equal(len(sup.log), 1) | |
| assert_equal(sup.log[0].message.args[0], "Some warning") | |
| assert_warn_len_equal(my_mod, 0) | |
| sup = suppress_warnings() | |
| # Will have to be changed if apply_along_axis is moved: | |
| sup.filter(module=my_mod) | |
| with sup: | |
| warnings.warn('Some warning') | |
| assert_warn_len_equal(my_mod, 0) | |
| # And test repeat works: | |
| sup.filter(module=my_mod) | |
| with sup: | |
| warnings.warn('Some warning') | |
| assert_warn_len_equal(my_mod, 0) | |
| # Without specified modules | |
| with suppress_warnings(): | |
| warnings.simplefilter('ignore') | |
| warnings.warn('Some warning') | |
| assert_warn_len_equal(my_mod, 0) | |
| def test_suppress_warnings_type(): | |
| # Initial state of module, no warnings | |
| my_mod = _get_fresh_mod() | |
| assert_equal(getattr(my_mod, '__warningregistry__', {}), {}) | |
| # Test module based warning suppression: | |
| with suppress_warnings() as sup: | |
| sup.filter(UserWarning) | |
| warnings.warn('Some warning') | |
| assert_warn_len_equal(my_mod, 0) | |
| sup = suppress_warnings() | |
| sup.filter(UserWarning) | |
| with sup: | |
| warnings.warn('Some warning') | |
| assert_warn_len_equal(my_mod, 0) | |
| # And test repeat works: | |
| sup.filter(module=my_mod) | |
| with sup: | |
| warnings.warn('Some warning') | |
| assert_warn_len_equal(my_mod, 0) | |
| # Without specified modules | |
| with suppress_warnings(): | |
| warnings.simplefilter('ignore') | |
| warnings.warn('Some warning') | |
| assert_warn_len_equal(my_mod, 0) | |
| def test_suppress_warnings_decorate_no_record(): | |
| sup = suppress_warnings() | |
| sup.filter(UserWarning) | |
| def warn(category): | |
| warnings.warn('Some warning', category) | |
| with warnings.catch_warnings(record=True) as w: | |
| warnings.simplefilter("always") | |
| warn(UserWarning) # should be supppressed | |
| warn(RuntimeWarning) | |
| assert_equal(len(w), 1) | |
| def test_suppress_warnings_record(): | |
| sup = suppress_warnings() | |
| log1 = sup.record() | |
| with sup: | |
| log2 = sup.record(message='Some other warning 2') | |
| sup.filter(message='Some warning') | |
| warnings.warn('Some warning') | |
| warnings.warn('Some other warning') | |
| warnings.warn('Some other warning 2') | |
| assert_equal(len(sup.log), 2) | |
| assert_equal(len(log1), 1) | |
| assert_equal(len(log2),1) | |
| assert_equal(log2[0].message.args[0], 'Some other warning 2') | |
| # Do it again, with the same context to see if some warnings survived: | |
| with sup: | |
| log2 = sup.record(message='Some other warning 2') | |
| sup.filter(message='Some warning') | |
| warnings.warn('Some warning') | |
| warnings.warn('Some other warning') | |
| warnings.warn('Some other warning 2') | |
| assert_equal(len(sup.log), 2) | |
| assert_equal(len(log1), 1) | |
| assert_equal(len(log2), 1) | |
| assert_equal(log2[0].message.args[0], 'Some other warning 2') | |
| # Test nested: | |
| with suppress_warnings() as sup: | |
| sup.record() | |
| with suppress_warnings() as sup2: | |
| sup2.record(message='Some warning') | |
| warnings.warn('Some warning') | |
| warnings.warn('Some other warning') | |
| assert_equal(len(sup2.log), 1) | |
| assert_equal(len(sup.log), 1) | |
| def test_suppress_warnings_forwarding(): | |
| def warn_other_module(): | |
| # Apply along axis is implemented in python; stacklevel=2 means | |
| # we end up inside its module, not ours. | |
| def warn(arr): | |
| warnings.warn("Some warning", stacklevel=2) | |
| return arr | |
| np.apply_along_axis(warn, 0, [0]) | |
| with suppress_warnings() as sup: | |
| sup.record() | |
| with suppress_warnings("always"): | |
| for i in range(2): | |
| warnings.warn("Some warning") | |
| assert_equal(len(sup.log), 2) | |
| with suppress_warnings() as sup: | |
| sup.record() | |
| with suppress_warnings("location"): | |
| for i in range(2): | |
| warnings.warn("Some warning") | |
| warnings.warn("Some warning") | |
| assert_equal(len(sup.log), 2) | |
| with suppress_warnings() as sup: | |
| sup.record() | |
| with suppress_warnings("module"): | |
| for i in range(2): | |
| warnings.warn("Some warning") | |
| warnings.warn("Some warning") | |
| warn_other_module() | |
| assert_equal(len(sup.log), 2) | |
| with suppress_warnings() as sup: | |
| sup.record() | |
| with suppress_warnings("once"): | |
| for i in range(2): | |
| warnings.warn("Some warning") | |
| warnings.warn("Some other warning") | |
| warn_other_module() | |
| assert_equal(len(sup.log), 2) | |
| def test_tempdir(): | |
| with tempdir() as tdir: | |
| fpath = os.path.join(tdir, 'tmp') | |
| with open(fpath, 'w'): | |
| pass | |
| assert_(not os.path.isdir(tdir)) | |
| raised = False | |
| try: | |
| with tempdir() as tdir: | |
| raise ValueError() | |
| except ValueError: | |
| raised = True | |
| assert_(raised) | |
| assert_(not os.path.isdir(tdir)) | |
| def test_temppath(): | |
| with temppath() as fpath: | |
| with open(fpath, 'w'): | |
| pass | |
| assert_(not os.path.isfile(fpath)) | |
| raised = False | |
| try: | |
| with temppath() as fpath: | |
| raise ValueError() | |
| except ValueError: | |
| raised = True | |
| assert_(raised) | |
| assert_(not os.path.isfile(fpath)) | |
| class my_cacw(clear_and_catch_warnings): | |
| class_modules = (sys.modules[__name__],) | |
| def test_clear_and_catch_warnings_inherit(): | |
| # Test can subclass and add default modules | |
| my_mod = _get_fresh_mod() | |
| with my_cacw(): | |
| warnings.simplefilter('ignore') | |
| warnings.warn('Some warning') | |
| assert_equal(my_mod.__warningregistry__, {}) | |
| class TestAssertNoGcCycles: | |
| """ Test assert_no_gc_cycles """ | |
| def test_passes(self): | |
| def no_cycle(): | |
| b = [] | |
| b.append([]) | |
| return b | |
| with assert_no_gc_cycles(): | |
| no_cycle() | |
| assert_no_gc_cycles(no_cycle) | |
| def test_asserts(self): | |
| def make_cycle(): | |
| a = [] | |
| a.append(a) | |
| a.append(a) | |
| return a | |
| with assert_raises(AssertionError): | |
| with assert_no_gc_cycles(): | |
| make_cycle() | |
| with assert_raises(AssertionError): | |
| assert_no_gc_cycles(make_cycle) | |
| def test_fails(self): | |
| """ | |
| Test that in cases where the garbage cannot be collected, we raise an | |
| error, instead of hanging forever trying to clear it. | |
| """ | |
| class ReferenceCycleInDel: | |
| """ | |
| An object that not only contains a reference cycle, but creates new | |
| cycles whenever it's garbage-collected and its __del__ runs | |
| """ | |
| make_cycle = True | |
| def __init__(self): | |
| self.cycle = self | |
| def __del__(self): | |
| # break the current cycle so that `self` can be freed | |
| self.cycle = None | |
| if ReferenceCycleInDel.make_cycle: | |
| # but create a new one so that the garbage collector has more | |
| # work to do. | |
| ReferenceCycleInDel() | |
| try: | |
| w = weakref.ref(ReferenceCycleInDel()) | |
| try: | |
| with assert_raises(RuntimeError): | |
| # this will be unable to get a baseline empty garbage | |
| assert_no_gc_cycles(lambda: None) | |
| except AssertionError: | |
| # the above test is only necessary if the GC actually tried to free | |
| # our object anyway, which python 2.7 does not. | |
| if w() is not None: | |
| pytest.skip("GC does not call __del__ on cyclic objects") | |
| raise | |
| finally: | |
| # make sure that we stop creating reference cycles | |
| ReferenceCycleInDel.make_cycle = False | |