applied-ai-018's picture
Add files using upload-large-folder tool
734b6a1 verified
raw
history blame
5.17 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import numpy as np
import torch
import torch_npu
import deepspeed.comm as dist
class HcclBackend(object):
def __init__(self, mpu=None):
if mpu is None:
self.world_group = dist.new_group(ranks=range(dist.get_world_size()))
else:
self.mpu = mpu
self.world_group = self.mpu.get_data_parallel_group()
self.size = dist.get_world_size(group=self.world_group)
self.rank = dist.get_rank(group=self.world_group)
def my_igather(self, rank, size, group, sendbuf, recvbuf, root):
req = []
if rank == root:
for idx in range(size):
if idx != rank:
req.append(dist.irecv(recvbuf[idx], src=idx, group=group))
else:
recvbuf[rank] = sendbuf
else:
req.append(dist.isend(sendbuf, group=group, dst=root))
return req
def my_gather(self, rank, size, group, sendbuf, recvbuf, root):
if rank == root:
for idx in range(size):
if idx != rank:
dist.recv(recvbuf[idx], src=idx, group=group)
else:
recvbuf[rank] = sendbuf
else:
dist.send(sendbuf, group=group, dst=root)
def compressed_allreduce(self, buffer_m: torch.tensor, worker_error, server_error, local_rank):
original_shape = buffer_m.size()
if len(original_shape) > 1:
buffer_m = torch.flatten(buffer_m)
# align size of original_buffer and error
original_size = buffer_m.numel()
worker_error_size = worker_error.numel()
if original_size != worker_error_size:
empty_tensor = torch.zeros(worker_error_size - original_size, device=buffer_m.device)
buffer_m = torch.cat([buffer_m, empty_tensor])
buffer_m.add_(worker_error)
worker_scale = torch.linalg.norm(buffer_m) / np.sqrt(torch.numel(buffer_m))
worker_error.set_(buffer_m - worker_scale * buffer_m.sign().add_(1).bool().float().add_(-0.5).mul_(2.0))
sign_list_packed_tmp = torch_npu.npu_sign_bits_pack(buffer_m, self.size).type(torch.int8)
recvbuf_sign = torch.zeros([self.size, len(sign_list_packed_tmp[self.rank])],
dtype=sign_list_packed_tmp[0].dtype,
device=sign_list_packed_tmp.device)
sign_list_packed = [sign_list_packed_tmp[idx] for idx in range(self.size)]
recvbuf_scale = [
torch.zeros(1, dtype=worker_scale.dtype, device=torch.device(local_rank)) for _ in range(self.size)
]
# communication phase 1
# all to all for sign
dist.all_to_all_single(recvbuf_sign, torch.stack(sign_list_packed), group=self.world_group)
# all gather for scale
dist.all_gather(recvbuf_scale, worker_scale, group=self.world_group)
flattened_recvbuf_sign = recvbuf_sign.type(torch.uint8).flatten()
compensated_server_m = torch_npu.npu_sign_bits_unpack(flattened_recvbuf_sign, self.size, torch.float32) \
.mul_(torch.stack(recvbuf_scale).mul_(1 / self.size)).sum(0)
compensated_server_m.add_(server_error)
server_scale = torch.norm(compensated_server_m) / np.sqrt(compensated_server_m.numel())
server_error.set_(compensated_server_m -
server_scale * compensated_server_m.sign().add_(1).bool().float().add_(-0.5).mul_(2.0))
server_sign_packed = torch_npu.npu_sign_bits_pack(compensated_server_m, 1).type(torch.int8)
# recvbuf_sign_server
recvbuf_sign_server_tmp = torch.zeros([self.size, len(server_sign_packed[0])],
dtype=recvbuf_sign.dtype,
device=server_sign_packed.device)
recvbuf_sign_server = [recvbuf_sign_server_tmp[idx] for idx in range(self.size)]
# recvbuf_scale_server
recvbuf_scale_server_tmp = torch.zeros([self.size, 1],
dtype=worker_scale.dtype,
device=server_sign_packed.device)
recvbuf_scale_server = [recvbuf_scale_server_tmp[idx] for idx in range(self.size)]
# communication Phase 2
dist.all_gather(recvbuf_sign_server, server_sign_packed[0], group=self.world_group)
dist.all_gather(recvbuf_scale_server, server_scale, group=self.world_group)
recvbuf_sign_server = torch.stack(recvbuf_sign_server)
flattened_recvbuf_sign_server = recvbuf_sign_server.type(torch.uint8).flatten()
buffer_m.data.copy_(
torch_npu.npu_sign_bits_unpack(flattened_recvbuf_sign_server, self.size,
torch.float32).mul_(recvbuf_scale_server_tmp).flatten().data)
if original_size != worker_error_size:
buffer_m = buffer_m[0:original_size]
if len(original_shape) > 1:
buffer_m = buffer_m.reshape(original_shape)
return buffer_m