peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/comm
/hccl.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import numpy as np | |
import torch | |
import torch_npu | |
import deepspeed.comm as dist | |
class HcclBackend(object): | |
def __init__(self, mpu=None): | |
if mpu is None: | |
self.world_group = dist.new_group(ranks=range(dist.get_world_size())) | |
else: | |
self.mpu = mpu | |
self.world_group = self.mpu.get_data_parallel_group() | |
self.size = dist.get_world_size(group=self.world_group) | |
self.rank = dist.get_rank(group=self.world_group) | |
def my_igather(self, rank, size, group, sendbuf, recvbuf, root): | |
req = [] | |
if rank == root: | |
for idx in range(size): | |
if idx != rank: | |
req.append(dist.irecv(recvbuf[idx], src=idx, group=group)) | |
else: | |
recvbuf[rank] = sendbuf | |
else: | |
req.append(dist.isend(sendbuf, group=group, dst=root)) | |
return req | |
def my_gather(self, rank, size, group, sendbuf, recvbuf, root): | |
if rank == root: | |
for idx in range(size): | |
if idx != rank: | |
dist.recv(recvbuf[idx], src=idx, group=group) | |
else: | |
recvbuf[rank] = sendbuf | |
else: | |
dist.send(sendbuf, group=group, dst=root) | |
def compressed_allreduce(self, buffer_m: torch.tensor, worker_error, server_error, local_rank): | |
original_shape = buffer_m.size() | |
if len(original_shape) > 1: | |
buffer_m = torch.flatten(buffer_m) | |
# align size of original_buffer and error | |
original_size = buffer_m.numel() | |
worker_error_size = worker_error.numel() | |
if original_size != worker_error_size: | |
empty_tensor = torch.zeros(worker_error_size - original_size, device=buffer_m.device) | |
buffer_m = torch.cat([buffer_m, empty_tensor]) | |
buffer_m.add_(worker_error) | |
worker_scale = torch.linalg.norm(buffer_m) / np.sqrt(torch.numel(buffer_m)) | |
worker_error.set_(buffer_m - worker_scale * buffer_m.sign().add_(1).bool().float().add_(-0.5).mul_(2.0)) | |
sign_list_packed_tmp = torch_npu.npu_sign_bits_pack(buffer_m, self.size).type(torch.int8) | |
recvbuf_sign = torch.zeros([self.size, len(sign_list_packed_tmp[self.rank])], | |
dtype=sign_list_packed_tmp[0].dtype, | |
device=sign_list_packed_tmp.device) | |
sign_list_packed = [sign_list_packed_tmp[idx] for idx in range(self.size)] | |
recvbuf_scale = [ | |
torch.zeros(1, dtype=worker_scale.dtype, device=torch.device(local_rank)) for _ in range(self.size) | |
] | |
# communication phase 1 | |
# all to all for sign | |
dist.all_to_all_single(recvbuf_sign, torch.stack(sign_list_packed), group=self.world_group) | |
# all gather for scale | |
dist.all_gather(recvbuf_scale, worker_scale, group=self.world_group) | |
flattened_recvbuf_sign = recvbuf_sign.type(torch.uint8).flatten() | |
compensated_server_m = torch_npu.npu_sign_bits_unpack(flattened_recvbuf_sign, self.size, torch.float32) \ | |
.mul_(torch.stack(recvbuf_scale).mul_(1 / self.size)).sum(0) | |
compensated_server_m.add_(server_error) | |
server_scale = torch.norm(compensated_server_m) / np.sqrt(compensated_server_m.numel()) | |
server_error.set_(compensated_server_m - | |
server_scale * compensated_server_m.sign().add_(1).bool().float().add_(-0.5).mul_(2.0)) | |
server_sign_packed = torch_npu.npu_sign_bits_pack(compensated_server_m, 1).type(torch.int8) | |
# recvbuf_sign_server | |
recvbuf_sign_server_tmp = torch.zeros([self.size, len(server_sign_packed[0])], | |
dtype=recvbuf_sign.dtype, | |
device=server_sign_packed.device) | |
recvbuf_sign_server = [recvbuf_sign_server_tmp[idx] for idx in range(self.size)] | |
# recvbuf_scale_server | |
recvbuf_scale_server_tmp = torch.zeros([self.size, 1], | |
dtype=worker_scale.dtype, | |
device=server_sign_packed.device) | |
recvbuf_scale_server = [recvbuf_scale_server_tmp[idx] for idx in range(self.size)] | |
# communication Phase 2 | |
dist.all_gather(recvbuf_sign_server, server_sign_packed[0], group=self.world_group) | |
dist.all_gather(recvbuf_scale_server, server_scale, group=self.world_group) | |
recvbuf_sign_server = torch.stack(recvbuf_sign_server) | |
flattened_recvbuf_sign_server = recvbuf_sign_server.type(torch.uint8).flatten() | |
buffer_m.data.copy_( | |
torch_npu.npu_sign_bits_unpack(flattened_recvbuf_sign_server, self.size, | |
torch.float32).mul_(recvbuf_scale_server_tmp).flatten().data) | |
if original_size != worker_error_size: | |
buffer_m = buffer_m[0:original_size] | |
if len(original_shape) > 1: | |
buffer_m = buffer_m.reshape(original_shape) | |
return buffer_m | |