|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import cupy |
|
import time |
|
import numpy as np |
|
from mpi4py import MPI |
|
|
|
from deepspeed.runtime.compression.cupy import CupyBackend |
|
|
|
|
|
class MpiBackend(object): |
|
|
|
def __init__(self, cuda_aware): |
|
self.comm = MPI.COMM_WORLD |
|
self.rank = self.comm.Get_rank() |
|
self.size = self.comm.Get_size() |
|
self.cuda_aware = cuda_aware |
|
self.compression_backend = CupyBackend() |
|
|
|
def my_igather(self, rank, size, comm, sendbuf, recbuf, root): |
|
req = [] |
|
if rank == root: |
|
for idx in range(size): |
|
if idx != rank: |
|
req.append(comm.Irecv(recbuf[idx], source=idx)) |
|
else: |
|
recbuf[rank] = sendbuf |
|
else: |
|
req.append(comm.Isend(sendbuf, dest=root)) |
|
return req |
|
|
|
def gather_cuda(self, rank, world_size, comm, cupy_sign_list_packed, cupy_recvbuf_sign, cupy_worker_scale, |
|
cupy_recvbuf_scale): |
|
|
|
requests = [] |
|
for idx in range(world_size): |
|
req_sign = self.my_igather(rank, world_size, comm, cupy_sign_list_packed[idx], cupy_recvbuf_sign, root=idx) |
|
requests += req_sign |
|
|
|
for idx in range(world_size): |
|
req_scale = self.my_igather(rank, world_size, comm, cupy_worker_scale, cupy_recvbuf_scale, root=idx) |
|
requests += req_scale |
|
|
|
MPI.Request.Waitall(requests) |
|
|
|
def gather_host(self, rank, world_size, comm, cupy_sign_list_packed, cupy_recvbuf_sign, cupy_worker_scale, |
|
cupy_recvbuf_scale): |
|
|
|
|
|
|
|
numpy_recvbuf_sign = np.zeros([world_size, cupy_sign_list_packed[rank].size], |
|
dtype=cupy_sign_list_packed[0].dtype) |
|
numpy_recvbuf_scale = np.zeros([world_size, 1], dtype=cupy_worker_scale.dtype) |
|
|
|
|
|
numpy_sign_list_packed = cupy_sign_list_packed |
|
|
|
for idx in range(world_size): |
|
numpy_sign_list_packed[idx] = cupy.asnumpy(cupy_sign_list_packed[idx]) |
|
|
|
numpy_worker_scale = cupy.asnumpy(cupy_worker_scale) |
|
numpy_recvbuf_scale = cupy.asnumpy(cupy_recvbuf_scale) |
|
|
|
cupy.cuda.get_current_stream().synchronize() |
|
|
|
|
|
requests = [] |
|
|
|
for idx in range(world_size): |
|
req_sign = self.my_igather(rank, |
|
world_size, |
|
comm, |
|
numpy_sign_list_packed[idx], |
|
numpy_recvbuf_sign, |
|
root=idx) |
|
requests += req_sign |
|
|
|
for idx in range(world_size): |
|
req_scale = self.my_igather(rank, world_size, comm, numpy_worker_scale, numpy_recvbuf_scale, root=idx) |
|
requests += req_scale |
|
|
|
MPI.Request.Waitall(requests) |
|
|
|
|
|
cupy_recvbuf_sign = cupy.asarray(numpy_recvbuf_sign) |
|
for idx in range(world_size): |
|
cupy_sign_list_packed[idx] = cupy.asarray(numpy_sign_list_packed[idx]) |
|
|
|
cupy_worker_scale = cupy.asarray(numpy_worker_scale) |
|
cupy_recvbuf_scale = cupy.asarray(numpy_recvbuf_scale) |
|
cupy.cuda.get_current_stream().synchronize() |
|
|
|
return cupy_sign_list_packed, cupy_recvbuf_sign, cupy_worker_scale, cupy_recvbuf_scale |
|
|
|
def allgather_cuda(self, comm, cupy_server_sign_packed, cupy_recvbuf_sign_server, cupy_server_scale, |
|
cupy_recvbuf_scale_server): |
|
comm.Allgather(cupy_server_sign_packed, cupy_recvbuf_sign_server) |
|
comm.Allgather(cupy_server_scale, cupy_recvbuf_scale_server) |
|
|
|
def allgather_host(self, comm, cupy_server_sign_packed, cupy_recvbuf_sign_server, cupy_server_scale, |
|
cupy_recvbuf_scale_server): |
|
|
|
|
|
numpy_recvbuf_sign_server = np.zeros([comm.Get_size(), cupy_server_sign_packed.size], |
|
dtype=cupy_server_sign_packed.dtype) |
|
numpy_recvbuf_scale_server = np.zeros([comm.Get_size(), 1], dtype=cupy_server_scale.dtype) |
|
|
|
numpy_server_sign_packed = cupy.asnumpy(cupy_server_sign_packed) |
|
numpy_recvbuf_sign_server = cupy.asnumpy(cupy_recvbuf_sign_server) |
|
numpy_server_scale = cupy.asnumpy(cupy_server_scale) |
|
numpy_recvbuf_scale_server = cupy.asnumpy(cupy_recvbuf_scale_server) |
|
cupy.cuda.get_current_stream().synchronize() |
|
|
|
|
|
comm.Allgather(numpy_server_sign_packed, numpy_recvbuf_sign_server) |
|
comm.Allgather(numpy_server_scale, numpy_recvbuf_scale_server) |
|
comm.Barrier() |
|
|
|
|
|
cupy_server_sign_packed = cupy.asarray(numpy_server_sign_packed) |
|
cupy_recvbuf_sign_server = cupy.asarray(numpy_recvbuf_sign_server) |
|
cupy_server_scale = cupy.asarray(numpy_server_scale) |
|
cupy_recvbuf_scale_server = cupy.asarray(numpy_recvbuf_scale_server) |
|
cupy.cuda.get_current_stream().synchronize() |
|
|
|
return cupy_server_sign_packed, cupy_recvbuf_sign_server, cupy_server_scale, cupy_recvbuf_scale_server |
|
|
|
def compressed_allreduce(self, buffer_m: torch.tensor, worker_error, server_error, local_rank): |
|
|
|
all_start_time = time.time() |
|
original_shape = buffer_m.size() |
|
if len(original_shape) > 1: |
|
buffer_m = torch.flatten(buffer_m) |
|
original_size = buffer_m.numel() |
|
worker_error_size = worker_error.numel() |
|
cupy.cuda.Device(local_rank).use() |
|
|
|
if original_size != worker_error_size: |
|
empty_tensor = torch.zeros(worker_error_size - original_size, device=buffer_m.device) |
|
buffer_m = torch.cat([buffer_m, empty_tensor]) |
|
|
|
buffer_m.add_(worker_error) |
|
worker_scale = torch.linalg.norm(buffer_m) / np.sqrt(torch.numel(buffer_m)) |
|
worker_error.set_(buffer_m - worker_scale * buffer_m.sign().add_(1).bool().float().add_(-0.5).mul_(2.0)) |
|
|
|
cupy_sign_list_packed = self.compression_backend.compress_by_chunk( |
|
self.compression_backend.torch2cupy(buffer_m.sign_().add_(1).bool()), self.size) |
|
cupy_worker_scale = self.compression_backend.torch2cupy(worker_scale) |
|
|
|
cupy_recvbuf_sign = cupy.zeros([self.size, cupy_sign_list_packed[self.rank].size], |
|
dtype=cupy_sign_list_packed[0].dtype) |
|
cupy_recvbuf_scale = cupy.zeros([self.size, 1], dtype=cupy_worker_scale.dtype) |
|
|
|
|
|
gather_start = time.time() |
|
if self.cuda_aware: |
|
self.gather_cuda(self.rank, self.size, self.comm, cupy_sign_list_packed, cupy_recvbuf_sign, |
|
cupy_worker_scale, cupy_recvbuf_scale) |
|
else: |
|
_, cupy_recvbuf_sign, _, cupy_recvbuf_scale = self.gather_host(self.rank, self.size, self.comm, |
|
cupy_sign_list_packed, cupy_recvbuf_sign, |
|
cupy_worker_scale, cupy_recvbuf_scale) |
|
gather_end = time.time() |
|
|
|
|
|
cupy_sign_list_packed = None |
|
|
|
compensated_server_m = self.compression_backend.cupy2torch( |
|
(cupy.unpackbits(cupy_recvbuf_sign.flatten())).reshape(self.size, -1)).float().add_(-0.5).mul_(2.0).mul_( |
|
self.compression_backend.cupy2torch(cupy_recvbuf_scale).mul_(1 / self.size)).sum(0) |
|
compensated_server_m.add_(server_error) |
|
server_scale = torch.linalg.norm(compensated_server_m) / np.sqrt(compensated_server_m.numel()) |
|
server_error.set_(compensated_server_m - |
|
server_scale * compensated_server_m.sign().add_(1).bool().float().add_(-0.5).mul_(2.0)) |
|
|
|
cupy_server_scale = self.compression_backend.torch2cupy(server_scale) |
|
|
|
cupy_server_sign_packed = self.compression_backend.compress_by_chunk( |
|
self.compression_backend.torch2cupy(compensated_server_m.sign_().add_(1).bool()), 1) |
|
compensated_server_m = None |
|
|
|
cupy_recvbuf_sign_server = cupy.zeros([self.size, cupy_server_sign_packed[0].size], |
|
dtype=cupy_recvbuf_sign.dtype) |
|
cupy_recvbuf_scale_server = cupy.zeros([self.size, 1], dtype=cupy_recvbuf_scale.dtype) |
|
|
|
cupy_recvbuf_sign = None |
|
|
|
|
|
if self.cuda_aware: |
|
self.allgather_cuda(self.comm, cupy_server_sign_packed[0], cupy_recvbuf_sign_server, cupy_server_scale, |
|
cupy_recvbuf_scale_server) |
|
else: |
|
_, cupy_recvbuf_sign_server, _, cupy_recvbuf_scale_server = self.allgather_host( |
|
self.comm, cupy_server_sign_packed[0], cupy_recvbuf_sign_server, cupy_server_scale, |
|
cupy_recvbuf_scale_server) |
|
|
|
|
|
cupy_server_sign_packed = None |
|
|
|
buffer_m.data.copy_( |
|
self.compression_backend.cupy2torch((cupy.unpackbits(cupy_recvbuf_sign_server.flatten())).reshape( |
|
self.size, -1)).float().add_(-0.5).mul_(2.0).mul_( |
|
self.compression_backend.cupy2torch(cupy_recvbuf_scale_server)).flatten().data) |
|
if original_size != worker_error_size: |
|
buffer_m = buffer_m[0:original_size] |
|
if len(original_shape) > 1: |
|
buffer_m = buffer_m.reshape(original_shape) |
|
|
|
|
|
|
|
return buffer_m |
|
|