peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/config.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import os | |
from typing import Union | |
from enum import Enum | |
import torch | |
import json | |
import hjson | |
import copy | |
import base64 | |
from .constants import * | |
from .fp16.loss_scaler import ( | |
INITIAL_LOSS_SCALE, | |
SCALE_WINDOW, | |
DELAYED_SHIFT, | |
CONSECUTIVE_HYSTERESIS, | |
MIN_LOSS_SCALE, | |
) | |
from .config_utils import ( | |
get_scalar_param, | |
dict_raise_error_on_duplicate_keys, | |
ScientificNotationEncoder, | |
) | |
from .zero.config import get_zero_config, ZeroStageEnum | |
from .activation_checkpointing.config import DeepSpeedActivationCheckpointingConfig | |
from ..comm.config import DeepSpeedCommsConfig | |
from ..monitor.config import get_monitor_config | |
from ..inference.config import WeightQuantConfig | |
from .compiler import get_compile_config | |
from deepspeed import comm as dist | |
from deepspeed.runtime.config_utils import DeepSpeedConfigModel | |
from ..git_version_info import version as __version__ | |
from ..utils import logger | |
from ..elasticity import ( | |
elasticity_enabled, | |
compute_elastic_config, | |
ensure_immutable_elastic_config, | |
) | |
from ..elasticity.config import ElasticityConfigError | |
from ..elasticity.constants import ( | |
ELASTICITY, | |
IGNORE_NON_ELASTIC_BATCH_INFO, | |
IGNORE_NON_ELASTIC_BATCH_INFO_DEFAULT, | |
MODEL_PARALLEL_SIZE, | |
MODEL_PARALLEL_SIZE_DEFAULT, | |
NUM_GPUS_PER_NODE, | |
NUM_GPUS_PER_NODE_DEFAULT, | |
) | |
from ..profiling.config import DeepSpeedFlopsProfilerConfig | |
from ..autotuning.config import DeepSpeedAutotuningConfig | |
from ..nebula.config import DeepSpeedNebulaConfig | |
from ..compression.config import get_compression_config, get_quantize_enabled | |
from ..compression.constants import * | |
from .swap_tensor.aio_config import get_aio_config | |
from .data_pipeline.config import get_data_efficiency_enabled, get_data_efficiency_config, get_curriculum_enabled_legacy, get_curriculum_params_legacy | |
from .data_pipeline.constants import * | |
TENSOR_CORE_ALIGN_SIZE = 8 | |
ADAGRAD_OPTIMIZER = 'adagrad' | |
ADAM_OPTIMIZER = 'adam' | |
ADAMW_OPTIMIZER = 'adamw' | |
LAMB_OPTIMIZER = 'lamb' | |
ONEBIT_ADAM_OPTIMIZER = 'onebitadam' | |
ZERO_ONE_ADAM_OPTIMIZER = 'zerooneadam' | |
ONEBIT_LAMB_OPTIMIZER = 'onebitlamb' | |
MUADAM_OPTIMIZER = 'muadam' | |
MUADAMW_OPTIMIZER = 'muadamw' | |
MUSGD_OPTIMIZER = 'musgd' | |
LION_OPTIMIZER = 'lion' | |
DEEPSPEED_OPTIMIZERS = [ | |
ADAGRAD_OPTIMIZER, ADAM_OPTIMIZER, ADAMW_OPTIMIZER, LAMB_OPTIMIZER, ONEBIT_ADAM_OPTIMIZER, ONEBIT_LAMB_OPTIMIZER, | |
ZERO_ONE_ADAM_OPTIMIZER, MUADAM_OPTIMIZER, MUADAMW_OPTIMIZER, MUSGD_OPTIMIZER, LION_OPTIMIZER | |
] | |
# extra optimizer parameters for adam/adamw | |
TORCH_ADAM_PARAM = "torch_adam" | |
# default to adamw logic for adam/adamw optimizers unless user explicitly opts out | |
ADAM_W_MODE = "adam_w_mode" | |
ADAM_W_MODE_DEFAULT = True | |
class DeepSpeedConfigError(Exception): | |
pass | |
class DtypeEnum(Enum): | |
# The torch dtype must always be the first value (so we return torch.dtype) | |
fp16 = torch.float16, "torch.float16", "fp16", "float16", "half" | |
fp32 = torch.float32, "torch.float32", "fp32", "float32", "float" | |
int8 = torch.int8, "torch.int8", "int8" | |
bf16 = torch.bfloat16, "torch.bfloat16", "bf16", "bfloat16" | |
# Copied from https://stackoverflow.com/a/43210118 | |
# Allows us to use multiple values for each Enum index and returns first | |
# listed value when Enum is called | |
def __new__(cls, *values): | |
obj = object.__new__(cls) | |
# first value is canonical value | |
obj._value_ = values[0] | |
for other_value in values[1:]: | |
cls._value2member_map_[other_value] = obj | |
obj._all_values = values | |
return obj | |
def __repr__(self): | |
return "<%s.%s: %s>" % ( | |
self.__class__.__name__, | |
self._name_, | |
", ".join([repr(v) for v in self._all_values]), | |
) | |
def get_pld_enabled(param_dict): | |
if PROGRESSIVE_LAYER_DROP in param_dict.keys(): | |
return get_scalar_param(param_dict[PROGRESSIVE_LAYER_DROP], PLD_ENABLED, PLD_ENABLED_DEFAULT) | |
else: | |
return False | |
def get_pld_params(param_dict): | |
if PROGRESSIVE_LAYER_DROP in param_dict.keys(): | |
pld_params = copy.copy(param_dict[PROGRESSIVE_LAYER_DROP]) | |
pld_params.pop(PLD_ENABLED) | |
return pld_params | |
else: | |
return False | |
def get_amp_enabled(param_dict): | |
if AMP in param_dict.keys(): | |
return get_scalar_param(param_dict[AMP], AMP_ENABLED, AMP_ENABLED_DEFAULT) | |
else: | |
return False | |
def get_amp_params(param_dict): | |
if AMP in param_dict.keys(): | |
amp_params = copy.copy(param_dict[AMP]) | |
amp_params.pop(AMP_ENABLED) | |
return amp_params | |
else: | |
return False | |
def get_fp16_enabled(param_dict): | |
if FP16 in param_dict.keys(): | |
return get_scalar_param(param_dict[FP16], FP16_ENABLED, FP16_ENABLED_DEFAULT) | |
else: | |
return False | |
def get_bfloat16_enabled(param_dict): | |
for key in [BFLOAT16, BFLOAT16_OLD]: | |
if key in param_dict.keys(): | |
return get_scalar_param(param_dict[key], BFLOAT16_ENABLED, BFLOAT16_ENABLED_DEFAULT) | |
return False | |
def get_bfloat16_immediate_grad_update(param_dict): | |
for key in [BFLOAT16, BFLOAT16_OLD]: | |
if key in param_dict.keys(): | |
return get_scalar_param(param_dict[key], BFLOAT16_IMMEDIATE_GRAD_UPDATE, | |
BFLOAT16_IMMEDIATE_GRAD_UPDATE_DEFAULT) | |
return False | |
def get_fp16_master_weights_and_grads_enabled(param_dict): | |
if get_fp16_enabled(param_dict): | |
return get_scalar_param(param_dict[FP16], FP16_MASTER_WEIGHTS_AND_GRADS, FP16_MASTER_WEIGHTS_AND_GRADS_DEFAULT) | |
else: | |
return False | |
def get_fp16_auto_cast(param_dict): | |
if get_fp16_enabled(param_dict): | |
return get_scalar_param(param_dict[FP16], FP16_AUTO_CAST, FP16_AUTO_CAST_DEFAULT) | |
def get_loss_scale(param_dict): | |
if get_fp16_enabled(param_dict): | |
return get_scalar_param(param_dict[FP16], FP16_LOSS_SCALE, FP16_LOSS_SCALE_DEFAULT) | |
elif get_bfloat16_enabled(param_dict): | |
return 1.0 | |
else: | |
return FP16_LOSS_SCALE_DEFAULT | |
def get_initial_dynamic_scale(param_dict): | |
if get_fp16_enabled(param_dict): | |
initial_scale_power = get_scalar_param(param_dict[FP16], FP16_INITIAL_SCALE_POWER, | |
FP16_INITIAL_SCALE_POWER_DEFAULT) | |
elif get_bfloat16_enabled(param_dict): | |
initial_scale_power = 0 | |
else: | |
initial_scale_power = FP16_INITIAL_SCALE_POWER_DEFAULT | |
return 2**initial_scale_power | |
def get_dynamic_loss_scale_args(param_dict): | |
loss_scale_args = None | |
if get_fp16_enabled(param_dict): | |
fp16_dict = param_dict[FP16] | |
dynamic_loss_args = [ | |
FP16_INITIAL_SCALE_POWER, | |
FP16_LOSS_SCALE_WINDOW, | |
FP16_MIN_LOSS_SCALE, | |
FP16_HYSTERESIS, | |
FP16_CONSECUTIVE_HYSTERESIS, | |
] | |
if any(arg in list(fp16_dict.keys()) for arg in dynamic_loss_args): | |
init_scale = get_scalar_param(fp16_dict, FP16_INITIAL_SCALE_POWER, FP16_INITIAL_SCALE_POWER_DEFAULT) | |
scale_window = get_scalar_param(fp16_dict, FP16_LOSS_SCALE_WINDOW, FP16_LOSS_SCALE_WINDOW_DEFAULT) | |
delayed_shift = get_scalar_param(fp16_dict, FP16_HYSTERESIS, FP16_HYSTERESIS_DEFAULT) | |
consecutive_hysteresis = get_scalar_param(fp16_dict, FP16_CONSECUTIVE_HYSTERESIS, | |
FP16_CONSECUTIVE_HYSTERESIS_DEFAULT) | |
min_loss_scale = get_scalar_param(fp16_dict, FP16_MIN_LOSS_SCALE, FP16_MIN_LOSS_SCALE_DEFAULT) | |
loss_scale_args = { | |
INITIAL_LOSS_SCALE: 2**init_scale, | |
SCALE_WINDOW: scale_window, | |
DELAYED_SHIFT: delayed_shift, | |
CONSECUTIVE_HYSTERESIS: consecutive_hysteresis, | |
MIN_LOSS_SCALE: min_loss_scale, | |
} | |
return loss_scale_args | |
def get_gradient_accumulation_steps(param_dict): | |
return get_scalar_param(param_dict, GRADIENT_ACCUMULATION_STEPS, GRADIENT_ACCUMULATION_STEPS_DEFAULT) | |
def get_sparse_gradients_enabled(param_dict): | |
return get_scalar_param(param_dict, SPARSE_GRADIENTS, SPARSE_GRADIENTS_DEFAULT) | |
def get_communication_data_type(param_dict, | |
comm_type=COMMUNICATION_DATA_TYPE, | |
comm_data_type_default=COMMUNICATION_DATA_TYPE_DEFAULT): | |
val = get_scalar_param(param_dict, comm_type, comm_data_type_default) | |
val = val.lower() if val is not None else val | |
if val is None: | |
return val # we must determine it by other parameters | |
elif val == "fp32": | |
return torch.float32 | |
elif val == "fp16": | |
return torch.float16 | |
elif val == "bf16": | |
return torch.bfloat16 | |
raise ValueError(f"Invalid communication_data_type. Supported data types: ['fp16', 'bf16', 'fp32']. Got: {val}") | |
def get_prescale_gradients(param_dict): | |
return get_scalar_param(param_dict, PRESCALE_GRADIENTS, PRESCALE_GRADIENTS_DEFAULT) | |
def get_gradient_predivide_factor(param_dict): | |
return get_scalar_param(param_dict, GRADIENT_PREDIVIDE_FACTOR, GRADIENT_PREDIVIDE_FACTOR_DEFAULT) | |
def get_steps_per_print(param_dict): | |
return get_scalar_param(param_dict, STEPS_PER_PRINT, STEPS_PER_PRINT_DEFAULT) | |
def get_disable_allgather(param_dict): | |
return get_scalar_param(param_dict, DISABLE_ALLGATHER, DISABLE_ALLGATHER_DEFAULT) | |
def get_dump_state(param_dict): | |
return get_scalar_param(param_dict, DUMP_STATE, DUMP_STATE_DEFAULT) | |
def get_gradient_clipping(param_dict): | |
return get_scalar_param(param_dict, GRADIENT_CLIPPING, GRADIENT_CLIPPING_DEFAULT) | |
def get_graph_harvesting(param_dict): | |
return get_scalar_param(param_dict, GRAPH_HARVESTING, GRAPH_HARVESTING_DEFAULT) | |
def get_sparse_attention(param_dict): | |
if SPARSE_ATTENTION in param_dict.keys(): | |
sparsity = param_dict[SPARSE_ATTENTION] | |
mode = get_sparse_attention_mode(sparsity) | |
if mode == SPARSE_DENSE_MODE: | |
return get_sparse_dense_config(sparsity) | |
elif mode == SPARSE_FIXED_MODE: | |
return get_sparse_fixed_config(sparsity) | |
elif mode == SPARSE_VARIABLE_MODE: | |
return get_sparse_variable_config(sparsity) | |
elif mode == SPARSE_BIGBIRD_MODE: | |
return get_sparse_bigbird_config(sparsity) | |
elif mode == SPARSE_BSLONGFORMER_MODE: | |
return get_sparse_bslongformer_config(sparsity) | |
else: | |
raise NotImplementedError(f"Given sparsity mode, {mode}, has not been implemented yet!") | |
else: | |
return None | |
def get_sparse_dense_config(sparsity): | |
block = get_scalar_param(sparsity, SPARSE_BLOCK, SPARSE_BLOCK_DEFAULT) | |
return {SPARSE_MODE: SPARSE_DENSE_MODE, SPARSE_BLOCK: block} | |
def get_sparse_fixed_config(sparsity): | |
block = get_scalar_param(sparsity, SPARSE_BLOCK, SPARSE_BLOCK_DEFAULT) | |
different_layout_per_head = get_scalar_param( | |
sparsity, | |
SPARSE_DIFFERENT_LAYOUT_PER_HEAD, | |
SPARSE_DIFFERENT_LAYOUT_PER_HEAD_DEFAULT, | |
) | |
num_local_blocks = get_scalar_param(sparsity, SPARSE_NUM_LOCAL_BLOCKS, SPARSE_NUM_LOCAL_BLOCKS_DEFAULT) | |
num_global_blocks = get_scalar_param(sparsity, SPARSE_NUM_GLOBAL_BLOCKS, SPARSE_NUM_GLOBAL_BLOCKS_DEFAULT) | |
attention = get_scalar_param(sparsity, SPARSE_ATTENTION_TYPE, SPARSE_ATTENTION_TYPE_DEFAULT) | |
horizontal_global_attention = get_scalar_param( | |
sparsity, | |
SPARSE_HORIZONTAL_GLOBAL_ATTENTION, | |
SPARSE_HORIZONTAL_GLOBAL_ATTENTION_DEFAULT, | |
) | |
num_different_global_patterns = get_scalar_param( | |
sparsity, | |
SPARSE_NUM_DIFFERENT_GLOBAL_PATTERNS, | |
SPARSE_NUM_DIFFERENT_GLOBAL_PATTERNS_DEFAULT, | |
) | |
return { | |
SPARSE_MODE: SPARSE_FIXED_MODE, | |
SPARSE_BLOCK: block, | |
SPARSE_DIFFERENT_LAYOUT_PER_HEAD: different_layout_per_head, | |
SPARSE_NUM_LOCAL_BLOCKS: num_local_blocks, | |
SPARSE_NUM_GLOBAL_BLOCKS: num_global_blocks, | |
SPARSE_ATTENTION_TYPE: attention, | |
SPARSE_HORIZONTAL_GLOBAL_ATTENTION: horizontal_global_attention, | |
SPARSE_NUM_DIFFERENT_GLOBAL_PATTERNS: num_different_global_patterns, | |
} | |
def get_sparse_variable_config(sparsity): | |
block = get_scalar_param(sparsity, SPARSE_BLOCK, SPARSE_BLOCK_DEFAULT) | |
different_layout_per_head = get_scalar_param( | |
sparsity, | |
SPARSE_DIFFERENT_LAYOUT_PER_HEAD, | |
SPARSE_DIFFERENT_LAYOUT_PER_HEAD_DEFAULT, | |
) | |
num_random_blocks = get_scalar_param(sparsity, SPARSE_NUM_RANDOM_BLOCKS, SPARSE_NUM_RANDOM_BLOCKS_DEFAULT) | |
local_window_blocks = get_scalar_param(sparsity, SPARSE_LOCAL_WINDOW_BLOCKS, SPARSE_LOCAL_WINDOW_BLOCKS_DEFAULT) | |
global_block_indices = get_scalar_param(sparsity, SPARSE_GLOBAL_BLOCK_INDICES, SPARSE_GLOBAL_BLOCK_INDICES_DEFAULT) | |
global_block_end_indices = get_scalar_param( | |
sparsity, | |
SPARSE_GLOBAL_BLOCK_END_INDICES, | |
SPARSE_GLOBAL_BLOCK_END_INDICES_DEFAULT, | |
) | |
attention = get_scalar_param(sparsity, SPARSE_ATTENTION_TYPE, SPARSE_ATTENTION_TYPE_DEFAULT) | |
horizontal_global_attention = get_scalar_param( | |
sparsity, | |
SPARSE_HORIZONTAL_GLOBAL_ATTENTION, | |
SPARSE_HORIZONTAL_GLOBAL_ATTENTION_DEFAULT, | |
) | |
return { | |
SPARSE_MODE: SPARSE_VARIABLE_MODE, | |
SPARSE_BLOCK: block, | |
SPARSE_DIFFERENT_LAYOUT_PER_HEAD: different_layout_per_head, | |
SPARSE_NUM_RANDOM_BLOCKS: num_random_blocks, | |
SPARSE_LOCAL_WINDOW_BLOCKS: local_window_blocks, | |
SPARSE_GLOBAL_BLOCK_INDICES: global_block_indices, | |
SPARSE_GLOBAL_BLOCK_END_INDICES: global_block_end_indices, | |
SPARSE_ATTENTION_TYPE: attention, | |
SPARSE_HORIZONTAL_GLOBAL_ATTENTION: horizontal_global_attention, | |
} | |
def get_sparse_bigbird_config(sparsity): | |
block = get_scalar_param(sparsity, SPARSE_BLOCK, SPARSE_BLOCK_DEFAULT) | |
different_layout_per_head = get_scalar_param( | |
sparsity, | |
SPARSE_DIFFERENT_LAYOUT_PER_HEAD, | |
SPARSE_DIFFERENT_LAYOUT_PER_HEAD_DEFAULT, | |
) | |
num_random_blocks = get_scalar_param(sparsity, SPARSE_NUM_RANDOM_BLOCKS, SPARSE_NUM_RANDOM_BLOCKS_DEFAULT) | |
num_sliding_window_blocks = get_scalar_param( | |
sparsity, | |
SPARSE_NUM_SLIDING_WINDOW_BLOCKS, | |
SPARSE_NUM_SLIDING_WINDOW_BLOCKS_DEFAULT, | |
) | |
num_global_blocks = get_scalar_param(sparsity, SPARSE_NUM_GLOBAL_BLOCKS, SPARSE_NUM_GLOBAL_BLOCKS_DEFAULT) | |
return { | |
SPARSE_MODE: SPARSE_BIGBIRD_MODE, | |
SPARSE_BLOCK: block, | |
SPARSE_DIFFERENT_LAYOUT_PER_HEAD: different_layout_per_head, | |
SPARSE_NUM_RANDOM_BLOCKS: num_random_blocks, | |
SPARSE_NUM_SLIDING_WINDOW_BLOCKS: num_sliding_window_blocks, | |
SPARSE_NUM_GLOBAL_BLOCKS: num_global_blocks, | |
} | |
def get_sparse_bslongformer_config(sparsity): | |
block = get_scalar_param(sparsity, SPARSE_BLOCK, SPARSE_BLOCK_DEFAULT) | |
different_layout_per_head = get_scalar_param( | |
sparsity, | |
SPARSE_DIFFERENT_LAYOUT_PER_HEAD, | |
SPARSE_DIFFERENT_LAYOUT_PER_HEAD_DEFAULT, | |
) | |
num_sliding_window_blocks = get_scalar_param( | |
sparsity, | |
SPARSE_NUM_SLIDING_WINDOW_BLOCKS, | |
SPARSE_NUM_SLIDING_WINDOW_BLOCKS_DEFAULT, | |
) | |
global_block_indices = get_scalar_param(sparsity, SPARSE_GLOBAL_BLOCK_INDICES, SPARSE_GLOBAL_BLOCK_INDICES_DEFAULT) | |
global_block_end_indices = get_scalar_param( | |
sparsity, | |
SPARSE_GLOBAL_BLOCK_END_INDICES, | |
SPARSE_GLOBAL_BLOCK_END_INDICES_DEFAULT, | |
) | |
return { | |
SPARSE_MODE: SPARSE_BSLONGFORMER_MODE, | |
SPARSE_BLOCK: block, | |
SPARSE_DIFFERENT_LAYOUT_PER_HEAD: different_layout_per_head, | |
SPARSE_NUM_SLIDING_WINDOW_BLOCKS: num_sliding_window_blocks, | |
SPARSE_GLOBAL_BLOCK_INDICES: global_block_indices, | |
SPARSE_GLOBAL_BLOCK_END_INDICES: global_block_end_indices, | |
} | |
def get_sparse_attention_mode(param_dict): | |
if SPARSE_MODE in param_dict.keys(): | |
return param_dict[SPARSE_MODE] | |
else: | |
return SPARSE_MODE_DEFAULT | |
def get_sparse_attention_type(param_dict): | |
if SPARSE_ATTENTION_TYPE in param_dict.keys(): | |
return param_dict[SPARSE_ATTENTION_TYPE] | |
else: | |
return SPARSE_ATTENTION_TYPE_DEFAULT | |
def get_pipeline_config(param_dict): | |
"""Parses pipeline engine configuration. """ | |
default_pipeline = { | |
"stages": "auto", | |
"partition": "best", | |
"seed_layers": False, | |
"activation_checkpoint_interval": 0, | |
"pipe_partitioned": True, | |
"grad_partitioned": True, | |
} | |
config = default_pipeline | |
for key, val in param_dict.get("pipeline", {}).items(): | |
config[key] = val | |
return config | |
def get_optimizer_name(param_dict): | |
if OPTIMIZER in param_dict.keys() and TYPE in param_dict[OPTIMIZER].keys(): | |
return param_dict[OPTIMIZER][TYPE] | |
else: | |
return OPTIMIZER_TYPE_DEFAULT | |
def get_optimizer_params(param_dict): | |
if (get_optimizer_name(param_dict) is not None and OPTIMIZER_PARAMS in param_dict[OPTIMIZER].keys()): | |
return param_dict[OPTIMIZER][OPTIMIZER_PARAMS] | |
else: | |
return None | |
def get_optimizer_gradient_clipping(param_dict): | |
optimizer_params = get_optimizer_params(param_dict) | |
if optimizer_params is not None and MAX_GRAD_NORM in optimizer_params.keys(): | |
return optimizer_params[MAX_GRAD_NORM] | |
else: | |
return None | |
def get_optimizer_legacy_fusion(param_dict): | |
if OPTIMIZER in param_dict.keys() and LEGACY_FUSION in param_dict[OPTIMIZER].keys(): | |
return param_dict[OPTIMIZER][LEGACY_FUSION] | |
else: | |
return LEGACY_FUSION_DEFAULT | |
def get_zero_allow_untested_optimizer(param_dict): | |
return get_scalar_param(param_dict, ZERO_ALLOW_UNTESTED_OPTIMIZER, ZERO_ALLOW_UNTESTED_OPTIMIZER_DEFAULT) | |
def get_zero_force_ds_cpu_optimizer(param_dict): | |
return get_scalar_param(param_dict, ZERO_FORCE_DS_CPU_OPTIMIZER, ZERO_FORCE_DS_CPU_OPTIMIZER_DEFAULT) | |
def get_scheduler_name(param_dict): | |
if SCHEDULER in param_dict.keys() and TYPE in param_dict[SCHEDULER].keys(): | |
return param_dict[SCHEDULER][TYPE] | |
else: | |
return SCHEDULER_TYPE_DEFAULT | |
def get_scheduler_params(param_dict): | |
if (get_scheduler_name(param_dict) is not None and SCHEDULER_PARAMS in param_dict[SCHEDULER].keys()): | |
return param_dict[SCHEDULER][SCHEDULER_PARAMS] | |
else: | |
return None | |
def get_train_batch_size(param_dict): | |
return get_scalar_param(param_dict, TRAIN_BATCH_SIZE, TRAIN_BATCH_SIZE_DEFAULT) | |
def get_train_micro_batch_size_per_gpu(param_dict): | |
return get_scalar_param( | |
param_dict, | |
TRAIN_MICRO_BATCH_SIZE_PER_GPU, | |
TRAIN_MICRO_BATCH_SIZE_PER_GPU_DEFAULT, | |
) | |
def get_wall_clock_breakdown(param_dict): | |
return get_scalar_param(param_dict, WALL_CLOCK_BREAKDOWN, WALL_CLOCK_BREAKDOWN_DEFAULT) | |
def get_memory_breakdown(param_dict): | |
return get_scalar_param(param_dict, MEMORY_BREAKDOWN, MEMORY_BREAKDOWN_DEFAULT) | |
class HybridEngineConfig(DeepSpeedConfigModel): | |
enabled: bool = False | |
max_out_tokens: int = 512 | |
inference_tp_size: int = 1 | |
release_inference_cache: bool = False | |
pin_parameters: bool = True | |
tp_gather_partition_size: int = 8 | |
def get_hybrid_engine_config(param_dict): | |
hybrid_engine_config_dict = param_dict.get("hybrid_engine", {}) | |
hybrid_engine_config = HybridEngineConfig(**hybrid_engine_config_dict) | |
return hybrid_engine_config | |
def get_expert_data_topo_config(param_dict): | |
return get_scalar_param(param_dict, USE_DATA_BEFORE_EXPERT_PARALLEL, USE_DATA_BEFORE_EXPERT_PARALLEL_DEFAULT) | |
def get_eigenvalue_config(param_dict): | |
if get_quantize_enabled(param_dict): | |
param_dict = param_dict[QUANTIZE_TRAINING] | |
assert not get_eigenvalue_enabled(param_dict), "Eigenvalue based MoQ is temporarily disabled" | |
return ( | |
get_eigenvalue_enabled(param_dict), | |
get_eigenvalue_verbose(param_dict), | |
get_eigenvalue_max_iter(param_dict), | |
get_eigenvalue_tol(param_dict), | |
get_eigenvalue_stability(param_dict), | |
get_eigenvalue_gas_boundary_resolution(param_dict), | |
get_eigenvalue_layer_name(param_dict), | |
get_eigenvalue_layer_num(param_dict), | |
) | |
else: | |
return ( | |
EIGENVALUE_ENABLED_DEFAULT, | |
EIGENVALUE_VERBOSE_DEFAULT, | |
EIGENVALUE_MAX_ITER_DEFAULT, | |
EIGENVALUE_TOL_DEFAULT, | |
EIGENVALUE_STABILITY_DEFAULT, | |
EIGENVALUE_GAS_BOUNDARY_RESOLUTION_DEFAULT, | |
EIGENVALUE_LAYER_NAME_DEFAULT, | |
EIGENVALUE_LAYER_NUM_DEFAULT, | |
) | |
def get_eigenvalue_enabled(param_dict): | |
if EIGENVALUE in param_dict.keys(): | |
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_ENABLED, EIGENVALUE_ENABLED_DEFAULT) | |
else: | |
return EIGENVALUE_ENABLED_DEFAULT | |
def get_eigenvalue_verbose(param_dict): | |
if EIGENVALUE in param_dict.keys(): | |
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_VERBOSE, EIGENVALUE_VERBOSE_DEFAULT) | |
else: | |
return EIGENVALUE_VERBOSE_DEFAULT | |
def get_eigenvalue_max_iter(param_dict): | |
if EIGENVALUE in param_dict.keys(): | |
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_MAX_ITER, EIGENVALUE_MAX_ITER_DEFAULT) | |
else: | |
return EIGENVALUE_MAX_ITER_DEFAULT | |
def get_eigenvalue_tol(param_dict): | |
if EIGENVALUE in param_dict.keys(): | |
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_TOL, EIGENVALUE_TOL_DEFAULT) | |
else: | |
return EIGENVALUE_TOL_DEFAULT | |
def get_eigenvalue_stability(param_dict): | |
if EIGENVALUE in param_dict.keys(): | |
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_STABILITY, EIGENVALUE_STABILITY_DEFAULT) | |
else: | |
return EIGENVALUE_STABILITY_DEFAULT | |
def get_eigenvalue_gas_boundary_resolution(param_dict): | |
if EIGENVALUE in param_dict.keys(): | |
return get_scalar_param( | |
param_dict[EIGENVALUE], | |
EIGENVALUE_GAS_BOUNDARY_RESOLUTION, | |
EIGENVALUE_GAS_BOUNDARY_RESOLUTION_DEFAULT, | |
) | |
else: | |
return EIGENVALUE_GAS_BOUNDARY_RESOLUTION_DEFAULT | |
def get_eigenvalue_layer_name(param_dict): | |
if EIGENVALUE in param_dict.keys(): | |
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_LAYER_NAME, EIGENVALUE_LAYER_NAME_DEFAULT) | |
else: | |
return EIGENVALUE_LAYER_NAME_DEFAULT | |
def get_eigenvalue_layer_num(param_dict): | |
if EIGENVALUE in param_dict.keys(): | |
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_LAYER_NUM, EIGENVALUE_LAYER_NUM_DEFAULT) | |
else: | |
return EIGENVALUE_LAYER_NUM_DEFAULT | |
def get_checkpoint_params(param_dict): | |
return param_dict.get(CHECKPOINT, {}) | |
def get_data_types_params(param_dict): | |
return param_dict.get(DATA_TYPES, {}) | |
def get_checkpoint_tag_validation_mode(checkpoint_params): | |
tag_validation_mode = checkpoint_params.get(CHECKPOINT_TAG_VALIDATION, CHECKPOINT_TAG_VALIDATION_DEFAULT) | |
tag_validation_mode = tag_validation_mode.upper() | |
if tag_validation_mode in CHECKPOINT_TAG_VALIDATION_MODES: | |
return tag_validation_mode | |
else: | |
raise DeepSpeedConfigError( | |
"Checkpoint config contains invalid tag_validation " | |
f"value of {tag_validation_mode}, expecting one of {CHECKPOINT_TAG_VALIDATION_MODES}") | |
def get_checkpoint_parallel_write_pipeline(checkpoint_params): | |
par_write_params = checkpoint_params.get(CHECKPOINT_PARALLEL_WRITE, {}) | |
par_write_pipeline = par_write_params.get(CHECKPOINT_PARALLEL_WRITE_PIPELINE_STAGE, | |
CHECKPOINT_PARALLEL_WRITE_PIPELINE_STAGE_DEFAULT) | |
if par_write_pipeline in [True, False]: | |
return par_write_pipeline | |
else: | |
raise DeepSpeedConfigError("checkpoint::parallel_write::pipeline_stage " | |
f"value of '{par_write_pipeline}' is invalid, expecting: true or false") | |
def get_dataloader_drop_last(param_dict): | |
return get_scalar_param(param_dict, DATALOADER_DROP_LAST, DATALOADER_DROP_LAST_DEFAULT) | |
'''Write deepspeed config files by modifying basic templates. | |
Can be used for quickly changing parameters via command line parameters.''' | |
class DeepSpeedConfigWriter: | |
def __init__(self, data=None): | |
self.data = data if data is not None else {} | |
def add_config(self, key, value): | |
self.data[key] = value | |
def load_config(self, filename): | |
self.data = json.load(open(filename, "r"), object_pairs_hook=dict_raise_error_on_duplicate_keys) | |
def write_config(self, filename): | |
with open(filename, "w") as outfile: | |
json.dump(self.data, outfile) | |
class DeepSpeedConfig(object): | |
def __init__(self, config: Union[str, dict], mpu=None): | |
super(DeepSpeedConfig, self).__init__() | |
if isinstance(config, dict): | |
self._param_dict = config | |
elif os.path.exists(config): | |
self._param_dict = hjson.load(open(config, "r"), object_pairs_hook=dict_raise_error_on_duplicate_keys) | |
else: | |
try: | |
config_decoded = base64.urlsafe_b64decode(config).decode('utf-8') | |
self._param_dict = hjson.loads(config_decoded) | |
except (UnicodeDecodeError, AttributeError): | |
raise ValueError( | |
f"Expected a string path to an existing deepspeed config, or a dictionary or a valid base64. Received: {config}" | |
) | |
try: | |
self.global_rank = dist.get_rank() | |
if mpu is None: | |
self.world_size = dist.get_world_size() | |
else: | |
self.world_size = mpu.get_data_parallel_world_size() | |
except: | |
self.global_rank = 0 | |
self.world_size = 1 | |
# If elastic-mode enabled, update compute + update _param_dict | |
self.elasticity_enabled = elasticity_enabled(self._param_dict) | |
if self.elasticity_enabled: | |
logger.info("DeepSpeed elasticity support enabled") | |
final_batch_size, valid_gpus, micro_batch_size = compute_elastic_config( | |
ds_config=self._param_dict, | |
target_deepspeed_version=__version__, | |
world_size=self.world_size, | |
) | |
elastic_dict = self._param_dict[ELASTICITY] | |
# Ensure the resource scheduler saw the same elastic config we are using at runtime | |
ensure_immutable_elastic_config(runtime_elastic_config_dict=elastic_dict) | |
self.elastic_model_parallel_size = elastic_dict.get(MODEL_PARALLEL_SIZE, MODEL_PARALLEL_SIZE_DEFAULT) | |
if self.elastic_model_parallel_size < 1: | |
raise ElasticityConfigError("Model-Parallel size cannot be less than 1, " | |
f"given model-parallel size: {self.elastic_model_parallel_size}") | |
self.num_gpus_per_node = elastic_dict.get(NUM_GPUS_PER_NODE, NUM_GPUS_PER_NODE_DEFAULT) | |
if self.num_gpus_per_node < 1: | |
raise ElasticityConfigError("NUmber of GPUs per node cannot be less than 1, " | |
f"given number of GPUs per node: {self.num_gpus_per_node}") | |
ignore_non_elastic_batch_info = elastic_dict.get(IGNORE_NON_ELASTIC_BATCH_INFO, | |
IGNORE_NON_ELASTIC_BATCH_INFO_DEFAULT) | |
if not ignore_non_elastic_batch_info: | |
batch_params = [ | |
TRAIN_BATCH_SIZE, | |
TRAIN_MICRO_BATCH_SIZE_PER_GPU, | |
GRADIENT_ACCUMULATION_STEPS, | |
] | |
if any(map(lambda t: t in self._param_dict, batch_params)): | |
raise ElasticityConfigError("One or more batch related parameters were found in your " \ | |
f"ds_config ({TRAIN_BATCH_SIZE}, {TRAIN_MICRO_BATCH_SIZE_PER_GPU}, and/or " \ | |
f"{GRADIENT_ACCUMULATION_STEPS}). These parameters *will not be used* since " \ | |
"elastic training is enabled, which takes control of these parameters. " \ | |
"If you want to suppress this error (the parameters will be silently ignored) " \ | |
f"please set {IGNORE_NON_ELASTIC_BATCH_INFO}':true in your elasticity config.") | |
# micro_bsz * world_size * gas = total_batch_size | |
# gas = total_batch_size // (micro_bsz * world_size) | |
gradient_accu_steps = final_batch_size // (micro_batch_size * self.world_size) | |
if TRAIN_BATCH_SIZE in self._param_dict: | |
logger.warning("[Elasticity] overriding training_batch_size: " | |
f"{self._param_dict[TRAIN_BATCH_SIZE]} -> {final_batch_size}") | |
if TRAIN_MICRO_BATCH_SIZE_PER_GPU in self._param_dict: | |
logger.warning("[Elasticity] overriding train_micro_batch_size_per_gpu: " | |
f"{self._param_dict[TRAIN_MICRO_BATCH_SIZE_PER_GPU]} -> {micro_batch_size}") | |
if GRADIENT_ACCUMULATION_STEPS in self._param_dict: | |
logger.warning("[Elasticity] overriding gradient_accumulation_steps: " | |
f"{self._param_dict[GRADIENT_ACCUMULATION_STEPS]} -> {gradient_accu_steps}") | |
logger.info(f"[Elasticity] valid GPU counts: {valid_gpus}") | |
self._param_dict[TRAIN_BATCH_SIZE] = final_batch_size | |
self._param_dict[TRAIN_MICRO_BATCH_SIZE_PER_GPU] = micro_batch_size | |
self._param_dict[GRADIENT_ACCUMULATION_STEPS] = gradient_accu_steps | |
# Pass a copy so that user json is unmodified, e.g. for logging | |
self._initialize_params(copy.copy(self._param_dict)) | |
self._configure_train_batch_size() | |
self._do_sanity_check() | |
def _initialize_params(self, param_dict): | |
self.train_batch_size = get_train_batch_size(param_dict) | |
#print(f"beginning get_train_batch_size = {get_train_batch_size}") | |
self.train_micro_batch_size_per_gpu = get_train_micro_batch_size_per_gpu(param_dict) | |
self.gradient_accumulation_steps = get_gradient_accumulation_steps(param_dict) | |
self.steps_per_print = get_steps_per_print(param_dict) | |
self.dump_state = get_dump_state(param_dict) | |
self.disable_allgather = get_disable_allgather(param_dict) | |
self.communication_data_type = get_communication_data_type(param_dict) | |
self.seq_parallel_communication_data_type = get_communication_data_type( | |
param_dict, SEQ_PARALLEL_COMMUNICATION_DATA_TYPE, SEQ_PARALLEL_COMMUNICATION_DATA_TYPE_DEFAULT) | |
self.prescale_gradients = get_prescale_gradients(param_dict) | |
self.gradient_predivide_factor = get_gradient_predivide_factor(param_dict) | |
self.sparse_gradients_enabled = get_sparse_gradients_enabled(param_dict) | |
self.zero_config = get_zero_config(param_dict) | |
self.mics_shard_size = self.zero_config.mics_shard_size | |
self.mics_hierarchial_params_gather = self.zero_config.mics_hierarchical_params_gather | |
self.zero_optimization_stage = self.zero_config.stage | |
self.zero_enabled = self.zero_optimization_stage > 0 | |
self.activation_checkpointing_config = DeepSpeedActivationCheckpointingConfig(param_dict) | |
self.comms_config = DeepSpeedCommsConfig(param_dict) | |
self.monitor_config = get_monitor_config(param_dict) | |
self.gradient_clipping = get_gradient_clipping(param_dict) | |
self.fp16_enabled = get_fp16_enabled(param_dict) | |
self.fp16_auto_cast = get_fp16_auto_cast(param_dict) | |
self.bfloat16_enabled = get_bfloat16_enabled(param_dict) | |
self.bfloat16_immediate_grad_update = get_bfloat16_immediate_grad_update(param_dict) | |
assert not (self.fp16_enabled | |
and self.bfloat16_enabled), 'bfloat16 and fp16 modes cannot be simultaneously enabled' | |
self.fp16_master_weights_and_gradients = get_fp16_master_weights_and_grads_enabled(param_dict) | |
self.amp_enabled = get_amp_enabled(param_dict) | |
self.amp_params = get_amp_params(param_dict) | |
self.loss_scale = get_loss_scale(param_dict) | |
self.initial_dynamic_scale = get_initial_dynamic_scale(param_dict) | |
self.dynamic_loss_scale_args = get_dynamic_loss_scale_args(param_dict) | |
self.compression_config = get_compression_config(param_dict) | |
self.graph_harvesting = get_graph_harvesting(param_dict) | |
self.optimizer_name = get_optimizer_name(param_dict) | |
if (self.optimizer_name is not None and self.optimizer_name.lower() in DEEPSPEED_OPTIMIZERS): | |
self.optimizer_name = self.optimizer_name.lower() | |
self.optimizer_params = get_optimizer_params(param_dict) | |
self.optimizer_legacy_fusion = get_optimizer_legacy_fusion(param_dict) | |
self.zero_allow_untested_optimizer = get_zero_allow_untested_optimizer(param_dict) | |
self.zero_force_ds_cpu_optimizer = get_zero_force_ds_cpu_optimizer(param_dict) | |
self.scheduler_name = get_scheduler_name(param_dict) | |
self.scheduler_params = get_scheduler_params(param_dict) | |
self.flops_profiler_config = DeepSpeedFlopsProfilerConfig(param_dict) | |
self.wall_clock_breakdown = (get_wall_clock_breakdown(param_dict) | self.flops_profiler_config.enabled) | |
self.memory_breakdown = get_memory_breakdown(param_dict) | |
self.autotuning_config = DeepSpeedAutotuningConfig(param_dict) | |
( | |
self.eigenvalue_enabled, | |
self.eigenvalue_verbose, | |
self.eigenvalue_max_iter, | |
self.eigenvalue_tol, | |
self.eigenvalue_stability, | |
self.eigenvalue_gas_boundary_resolution, | |
self.eigenvalue_layer_name, | |
self.eigenvalue_layer_num, | |
) = get_eigenvalue_config(param_dict) | |
self.use_data_before_expert_parallel_ = get_expert_data_topo_config(param_dict) | |
self.hybrid_engine = get_hybrid_engine_config(param_dict) | |
self.sparse_attention = get_sparse_attention(param_dict) | |
self.pipeline = get_pipeline_config(param_dict) | |
self.pld_enabled = get_pld_enabled(param_dict) | |
self.pld_params = get_pld_params(param_dict) | |
self.curriculum_enabled_legacy = get_curriculum_enabled_legacy(param_dict) | |
self.curriculum_params_legacy = get_curriculum_params_legacy(param_dict) | |
self.data_efficiency_enabled = get_data_efficiency_enabled(param_dict) | |
self.data_efficiency_config = get_data_efficiency_config(param_dict) | |
checkpoint_params = get_checkpoint_params(param_dict) | |
validation_mode = get_checkpoint_tag_validation_mode(checkpoint_params) | |
self.checkpoint_tag_validation_enabled = (validation_mode != ValidationMode.IGNORE) | |
self.checkpoint_tag_validation_fail = validation_mode == ValidationMode.FAIL | |
self.load_universal_checkpoint = checkpoint_params.get(LOAD_UNIVERSAL_CHECKPOINT, | |
LOAD_UNIVERSAL_CHECKPOINT_DEFAULT) | |
self.use_node_local_storage = checkpoint_params.get(USE_NODE_LOCAL_STORAGE_CHECKPOINT, | |
USE_NODE_LOCAL_STORAGE_CHECKPOINT_DEFAULT) | |
data_types_params = get_data_types_params(param_dict) | |
self.grad_accum_dtype = data_types_params.get(GRAD_ACCUM_DTYPE, GRAD_ACCUM_DTYPE_DEFAULT) | |
par_write_pipe = get_checkpoint_parallel_write_pipeline(checkpoint_params) | |
self.checkpoint_parallel_write_pipeline = par_write_pipe | |
self.aio_config = get_aio_config(param_dict) | |
self.dataloader_drop_last = get_dataloader_drop_last(param_dict) | |
self.nebula_config = DeepSpeedNebulaConfig(param_dict) | |
self.weight_quantization_config = WeightQuantConfig( | |
**param_dict['weight_quantization']) if 'weight_quantization' in param_dict else None | |
self.compile_config = get_compile_config(param_dict) | |
def _batch_assertion(self): | |
train_batch = self.train_batch_size | |
micro_batch = self.train_micro_batch_size_per_gpu | |
grad_acc = self.gradient_accumulation_steps | |
assert (train_batch > 0), f"Train batch size: {train_batch} has to be greater than 0" | |
assert (micro_batch > 0), f"Micro batch size per gpu: {micro_batch} has to be greater than 0" | |
assert (grad_acc > 0), f"Gradient accumulation steps: {grad_acc} has to be greater than 0" | |
assert train_batch == micro_batch * grad_acc * self.world_size, ( | |
f"Check batch related parameters. train_batch_size is not equal " | |
"to micro_batch_per_gpu * gradient_acc_step * world_size " | |
f"{train_batch} != {micro_batch} * {grad_acc} * {self.world_size}") | |
def _set_batch_related_parameters(self): | |
train_batch = self.train_batch_size | |
micro_batch = self.train_micro_batch_size_per_gpu | |
grad_acc = self.gradient_accumulation_steps | |
#print(f"train_batch = {train_batch}, micro_batch={micro_batch}") | |
# all values are provided nothing needs to be set | |
if train_batch is not None and micro_batch is not None and grad_acc is not None: | |
return | |
# global_accumulation_steps needs to be set | |
elif train_batch is not None and micro_batch is not None: | |
grad_acc = train_batch // micro_batch | |
grad_acc //= self.world_size | |
self.gradient_accumulation_steps = grad_acc | |
# micro_batch_per_gpu needs to be set | |
elif train_batch is not None and grad_acc is not None: | |
micro_batch = train_batch // self.world_size | |
micro_batch //= grad_acc | |
self.train_micro_batch_size_per_gpu = micro_batch | |
# train_batch_size needs to be set | |
elif micro_batch is not None and grad_acc is not None: | |
train_batch_size = micro_batch * grad_acc | |
train_batch_size *= self.world_size | |
self.train_batch_size = train_batch_size | |
# gradient_accumulation_steps and micro_batch_per_gpus is set | |
elif train_batch is not None: | |
self.gradient_accumulation_steps = 1 | |
self.train_micro_batch_size_per_gpu = train_batch // self.world_size | |
# train_batch_size and gradient_accumulation_step is set | |
elif micro_batch is not None: | |
self.train_batch_size = micro_batch * self.world_size | |
self.gradient_accumulation_steps = 1 | |
# either none of the three parameters are provided or just gradient_accumulation_step is provided | |
else: | |
assert False, \ | |
'Either train_batch_size or train_micro_batch_size_per_gpu needs to be provided' | |
def _configure_train_batch_size(self): | |
self._set_batch_related_parameters() | |
self._batch_assertion() | |
def _do_sanity_check(self): | |
self._do_error_check() | |
self._do_warning_check() | |
def print_user_config(self): | |
logger.info(" json = {}".format( | |
json.dumps( | |
self._param_dict, | |
sort_keys=True, | |
indent=4, | |
cls=ScientificNotationEncoder, | |
separators=(",", ":"), | |
))) | |
def print(self, name): | |
logger.info("{}:".format(name)) | |
for arg in sorted(vars(self)): | |
if arg != "_param_dict": | |
dots = "." * (29 - len(arg)) | |
logger.info(" {} {} {}".format(arg, dots, getattr(self, arg))) | |
self.print_user_config() | |
def _do_error_check(self): | |
assert (self.train_micro_batch_size_per_gpu | |
), "DeepSpeedConfig: {} is not defined".format(TRAIN_MICRO_BATCH_SIZE_PER_GPU) | |
assert ( | |
self.gradient_accumulation_steps), "DeepSpeedConfig: {} is not defined".format(GRADIENT_ACCUMULATION_STEPS) | |
if self.zero_enabled: | |
assert (self.zero_optimization_stage <= | |
ZeroStageEnum.max_stage), "DeepSpeedConfig: Maximum supported ZeRO stage is {}".format( | |
ZeroStageEnum.max_stage) | |
if self.fp16_master_weights_and_gradients: | |
assert self.zero_enabled and self.zero_optimization_stage == ZeroStageEnum.gradients, "Fp16_master_weights_and_grads is only supported with ZeRO Stage 2 for now." | |
def _do_warning_check(self): | |
fp16_enabled = self.fp16_enabled | |
vocabulary_size = self._param_dict.get(VOCABULARY_SIZE, VOCABULARY_SIZE_DEFAULT) | |
if vocabulary_size and vocabulary_size % TENSOR_CORE_ALIGN_SIZE != 0: | |
logger.warning( | |
"DeepSpeedConfig: vocabulary size {} is not aligned to {}, may import tensor core utilization.".format( | |
vocabulary_size, TENSOR_CORE_ALIGN_SIZE)) | |
if (self.optimizer_params is not None and MAX_GRAD_NORM in self.optimizer_params.keys() | |
and self.optimizer_params[MAX_GRAD_NORM] > 0): | |
if fp16_enabled: | |
if self.global_rank == 0: | |
logger.warning("DeepSpeedConfig: In FP16 mode, DeepSpeed will pass {}:{} to FP16 wrapper".format( | |
MAX_GRAD_NORM, self.optimizer_params[MAX_GRAD_NORM])) | |
else: | |
if self.global_rank == 0: | |
logger.warning( | |
"DeepSpeedConfig: In FP32 mode, DeepSpeed does not permit MAX_GRAD_NORM ({}) > 0, setting to zero" | |
.format(self.optimizer_params[MAX_GRAD_NORM])) | |
self.optimizer_params[MAX_GRAD_NORM] = 0.0 | |