peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/fp16
/onebit
/lamb.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import types | |
import torch | |
import numpy as np | |
from deepspeed import comm as dist | |
from deepspeed.utils.torch import required_torch_version | |
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors | |
from deepspeed.accelerator import get_accelerator | |
class OnebitLamb(torch.optim.Optimizer): | |
"""Implements the 1-bit Lamb algorithm. Currently GPU-only. | |
For usage example please see https://www.deepspeed.ai/tutorials/onebit-lamb/ | |
For technical details please see our paper https://arxiv.org/abs/2104.06069. | |
Arguments: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups. | |
lr (float, optional): learning rate. (default: 1e-3) | |
freeze_step (int, optional): Number of steps for warmup (uncompressed) | |
stage before we start using compressed communication. (default 100000) | |
betas (Tuple[float, float], optional): coefficients used for computing | |
running averages of gradient and its square. (default: (0.9, 0.999)) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability. (default: 1e-8) | |
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | |
max_coeff(float, optional): maximum value of the lamb coefficient (default: 10.0) | |
min_coeff(float, optional): minimum value of the lamb coefficient (default: 0.01) | |
amsgrad (boolean, optional): whether to use the AMSGrad variant of this | |
algorithm from the paper `On the Convergence of Adam and Beyond`_ | |
(default: False) NOT SUPPORTED in 1-bit Lamb! | |
eps_inside_sqrt (boolean, optional): in the 'update parameters' step, | |
adds eps to the bias-corrected second moment estimate before | |
evaluating square root instead of adding it to the square root of | |
second moment estimate as in the original paper. (default: False) | |
cuda_aware (boolean, required): Set True if the underlying MPI implementation | |
supports CUDA-Aware communication. (default: False) | |
comm_backend_name (string, optional): Set to 'mpi' if needed. (default: 'nccl') | |
coeff_beta (float, optional): coefficient used for computing | |
running averages of lamb coefficient (default: 0.9) note that you may want to | |
increase or decrease this beta depending on the freeze_step you choose, as | |
1/(1 - coeff_beta) should be smaller than or equal to freeze_step | |
factor_max (float, optional): maximum value of scaling factor to the frozen lamb | |
coefficient during compression stage (default: 4.0) | |
factor_min (float, optional): minimum value of scaling factor to the frozen lamb | |
coefficient during compression stage (default: 0.5) | |
factor_threshold (float, optional): threshold of how much the scaling factor can | |
fluctuate between steps (default: 0.1) | |
.. _Large Batch Optimization for Deep Learning\\: Training BERT in 76 minutes: | |
https://arxiv.org/abs/1904.00962 | |
.. _Adam\\: A Method for Stochastic Optimization: | |
https://arxiv.org/abs/1412.6980 | |
.. _On the Convergence of Adam and Beyond: | |
https://openreview.net/forum?id=ryQu7f-RZ | |
""" | |
def __init__(self, | |
params, | |
deepspeed=None, | |
lr=1e-3, | |
freeze_step=100000, | |
bias_correction=True, | |
betas=(0.9, 0.999), | |
eps=1e-8, | |
eps_inside_sqrt=False, | |
weight_decay=0., | |
max_grad_norm=0., | |
max_coeff=10.0, | |
min_coeff=0.01, | |
amsgrad=False, | |
cuda_aware=False, | |
comm_backend_name='nccl', | |
coeff_beta=0.9, | |
factor_max=4.0, | |
factor_min=0.5, | |
factor_threshold=0.1): | |
if amsgrad: | |
raise RuntimeError('1-bit Lamb does not support the AMSGrad variant.') | |
defaults = dict(lr=lr, | |
bias_correction=bias_correction, | |
betas=betas, | |
eps=eps, | |
weight_decay=weight_decay, | |
max_grad_norm=max_grad_norm, | |
max_coeff=max_coeff, | |
min_coeff=min_coeff) | |
super(OnebitLamb, self).__init__(params, defaults) | |
self.eps_mode = 0 if eps_inside_sqrt else 1 | |
self.deepspeed = deepspeed | |
self.lamb_freeze_key = False | |
self.initialize = False | |
self.freeze_step = freeze_step | |
self.cuda_aware = cuda_aware | |
self.coeff_beta = coeff_beta | |
self.factor_max = factor_max | |
self.factor_min = factor_min | |
self.factor_threshold = factor_threshold | |
self.using_pipeline = False | |
self.comm_backend_name = comm_backend_name | |
assert dist.is_initialized(), "Please initialize the torch distributed backend." | |
# Empty initializer. Set handle based on the comm backend as follows. | |
self.comm_backend_handle = None | |
if self.comm_backend_name == 'nccl': | |
assert ( | |
required_torch_version(min_version=1.8) | |
), "Please use torch 1.8 or greater to enable NCCL backend in 1-bit Adam. Alternatively, please specify 'mpi' as the 'comm_backend_name' in config file to proceed with the MPI backend" | |
from deepspeed.runtime.comm.nccl import NcclBackend | |
self.using_pipeline = hasattr(self.deepspeed, 'pipeline_enable_backward_allreduce') | |
self.comm_backend_handle = NcclBackend(self.deepspeed.mpu) | |
elif self.comm_backend_name == 'mpi': | |
from deepspeed.runtime.comm.mpi import MpiBackend | |
self.comm_backend_handle = MpiBackend(cuda_aware) | |
elif self.comm_backend_name == 'hccl': | |
from deepspeed.runtime.comm.hccl import HcclBackend | |
self.using_pipeline = hasattr(self.deepspeed, 'pipeline_enable_backward_allreduce') | |
self.comm_backend_handle = HcclBackend(self.deepspeed.mpu) | |
self.size = self.comm_backend_handle.size | |
self.divider = int(self.size * 8 / np.gcd(self.size, 8)) | |
self.exp_avg_flat = [] | |
self.dummy_exp_avg = {} | |
self.corrected_tensor_sizes = [] | |
self.server_chunk_sizes = [] | |
self.worker_errors = [] | |
self.server_errors = [] | |
self.lamb_coeffs = [] | |
def step(self, closure=None, grads=None): | |
"""Performs a single optimization step. | |
Arguments: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
grads (list of tensors, optional): weight gradient to use for the | |
optimizer update. If gradients have type torch.half, parameters | |
are expected to be in type torch.float. (default: None) | |
""" | |
loss = None | |
if closure is not None: | |
loss = closure() | |
if grads is None: | |
grads_group = [None] * len(self.param_groups) | |
# backward compatibility | |
# assuming a list/generator of parameter means single group | |
elif isinstance(grads, types.GeneratorType): | |
grads_group = [grads] | |
elif type(grads[0]) != list: | |
grads_group = [grads] | |
else: | |
grads_group = grads | |
# remove the previous stats | |
del self.lamb_coeffs[:] | |
if self.lamb_freeze_key: | |
exp_avg_last_step = [] | |
for group in self.param_groups: | |
exp_avg_last_step.append([self.state[p]['exp_avg'].detach().clone() for p in group['params']]) | |
if 'scaling_coeff' not in self.state[self.param_groups[0]['params'][0]]: | |
# Compute the scaling_coeff for each momentum at the end of warmup stage. | |
# This is used to reduce compression error during compression stage. | |
momentum_scales = [] | |
for group in self.param_groups: | |
momentum_scales.append([(torch.linalg.norm(self.state[p]['exp_avg']) / | |
np.sqrt(torch.numel(self.state[p]['exp_avg']))).item() | |
for p in group['params']]) | |
united_scale = sum([sum(x) for x in momentum_scales]) / sum([len(x) for x in momentum_scales]) | |
for i, group in enumerate(self.param_groups): | |
for j, p in enumerate(group['params']): | |
self.state[p]['scaling_coeff'] = united_scale / momentum_scales[i][j] | |
for group, grads_this_group in zip(self.param_groups, grads_group): | |
if grads_this_group is None: | |
grads_this_group = [None] * len(group['params']) | |
bias_correction = 1 if group['bias_correction'] else 0 | |
for p, grad in zip(group['params'], grads_this_group): | |
if p.grad is None and grad is None: | |
continue | |
if grad is None: | |
grad = p.grad.data | |
if grad.is_sparse: | |
raise RuntimeError('1-bit Lamb does not support sparse gradients') | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0 or (len(state) == 1 and 'scaling_coeff' in state.keys()): | |
state['step'] = 0 | |
state['lamb_coeff_freeze'] = 0.0 | |
state['last_factor'] = 1.0 | |
# Exponential moving average of gradient values | |
state['exp_avg'] = torch.zeros_like(p.data) | |
# Exponential moving average of squared gradient values | |
state['exp_avg_sq'] = torch.zeros_like(p.data) | |
state['exp_avg_sq_fresh'] = torch.zeros_like(p.data) | |
if not self.initialize: | |
self.lamb_freeze_key = True | |
exp_avg, exp_avg_sq, exp_avg_sq_fresh = state['exp_avg'], state['exp_avg_sq'], state[ | |
'exp_avg_sq_fresh'] | |
beta1, beta2 = group['betas'] | |
max_coeff = group['max_coeff'] | |
min_coeff = group['min_coeff'] | |
state['step'] += 1 | |
if self.lamb_freeze_key is False: | |
# warmup stage, baseline Lamb optimization | |
exp_avg.mul_(beta1).add_(1 - beta1, grad) | |
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) | |
if state['step'] == self.freeze_step: | |
exp_avg_sq_fresh.data = exp_avg_sq.detach().clone() | |
grad = None | |
if self.initialize: | |
weight_norm = p.data.pow(2).sum().sqrt() | |
update = exp_avg / (exp_avg_sq.sqrt() + group['eps']) | |
if group['weight_decay'] > 0.0: | |
update += group['weight_decay'] * p.data | |
update_norm = update.pow(2).sum().sqrt() | |
lamb_coeff = 1.0 | |
if weight_norm != 0 and update_norm != 0: | |
lamb_coeff = (weight_norm / update_norm).item() | |
if lamb_coeff > max_coeff: | |
lamb_coeff = max_coeff | |
if lamb_coeff < min_coeff: | |
lamb_coeff = min_coeff | |
if lamb_coeff != 1.0: | |
state['lamb_coeff_freeze'] = self.coeff_beta * state['lamb_coeff_freeze'] + ( | |
1 - self.coeff_beta) * lamb_coeff | |
self.lamb_coeffs.append(lamb_coeff) | |
with torch.no_grad(): | |
p.add_(-group['lr'] * lamb_coeff * update) | |
else: | |
# compression stage, update each momentum locally, then | |
# communicate based on the compressed_allreduce below | |
if self.initialize: | |
exp_avg.mul_(beta1).add_(1 - beta1, grad) | |
exp_avg.mul_(self.state[p]['scaling_coeff']) | |
grad = None | |
# init fused momentum | |
if len(self.exp_avg_flat) == 0: | |
momentum_groups = [] | |
tensor_size = 0 | |
for group in self.param_groups: | |
for p in group['params']: | |
momentum_groups.append(self.state[p]['exp_avg']) | |
tensor_size += torch.numel(p.data) | |
corrected_tensor_size = tensor_size | |
if tensor_size % (self.size * self.divider) != 0: | |
difference = ((self.size * self.divider) - (tensor_size % (self.size * self.divider))) | |
corrected_tensor_size += difference | |
self.dummy_exp_avg[0] = torch.zeros(difference, device=momentum_groups[0].data.device) | |
momentum_groups.append(self.dummy_exp_avg[0]) | |
self.corrected_tensor_sizes.append(corrected_tensor_size) | |
self.server_chunk_sizes.append(corrected_tensor_size // self.size) | |
self.exp_avg_flat.append(_flatten_dense_tensors([p.detach().clone() for p in momentum_groups])) | |
updated_params = _unflatten_dense_tensors(self.exp_avg_flat[0], momentum_groups) | |
for p, q in zip(momentum_groups, updated_params): | |
p.data = q.data | |
if self.initialize and len(self.worker_errors) == 0: | |
get_accelerator().empty_cache() | |
for i in range(len(self.exp_avg_flat)): | |
self.worker_errors.append( | |
torch.zeros(self.corrected_tensor_sizes[i], device=self.exp_avg_flat[i].device)) | |
self.server_errors.append(torch.zeros(self.server_chunk_sizes[i], device=self.exp_avg_flat[i].device)) | |
get_accelerator().empty_cache() | |
if self.lamb_freeze_key: | |
if self.size > 1: | |
for i in range(len(self.exp_avg_flat)): | |
if not self.initialize: | |
get_accelerator().empty_cache() | |
self.worker_errors.append( | |
torch.zeros(self.corrected_tensor_sizes[i], device=self.exp_avg_flat[i].device)) | |
self.server_errors.append( | |
torch.zeros(self.server_chunk_sizes[i], device=self.exp_avg_flat[i].device)) | |
get_accelerator().empty_cache() | |
if dist.get_rank() == 0: | |
print("Cupy Buffers Initialized Successfully.") | |
self.comm_backend_handle.compressed_allreduce(self.exp_avg_flat[i], self.worker_errors[0], | |
self.server_errors[0], self.deepspeed.local_rank) | |
if dist.get_rank() == 0: | |
print('Pop out errors', flush=True) | |
del self.worker_errors[:] | |
del self.server_errors[:] | |
else: | |
self.comm_backend_handle.compressed_allreduce(self.exp_avg_flat[i], self.worker_errors[i], | |
self.server_errors[i], self.deepspeed.local_rank) | |
if self.lamb_freeze_key and self.initialize: | |
for i, group in enumerate(self.param_groups): | |
bias_correction = 1 if group['bias_correction'] else 0 | |
for j, p in enumerate(group['params']): | |
state = self.state[p] | |
exp_avg, exp_avg_sq, exp_avg_sq_fresh = state['exp_avg'], state['exp_avg_sq'], state[ | |
'exp_avg_sq_fresh'] | |
beta1, beta2 = group['betas'] | |
exp_avg.div_(self.state[p]['scaling_coeff']) | |
# Because 1-bit compression cannot represent exact zero, it is required to | |
# provide a momentum mask for those params that have constant exact zeros in their | |
# momentums, otherwise the compression error would keep accumulating. | |
# For example, for BERT pre-training seq 128, bert.embeddings.position_embeddings.weight | |
# always have exact zeros in its momentum for row 129 to 512, because it only | |
# learns up to seq length 128 while the model supports up to 512 seq length. | |
# (See example in DeepSpeedExamples/bing_bert/deepspeed_train.py about how | |
# to add this exp_avg_mask for BERT pre-training.) | |
if 'exp_avg_mask' in group: | |
if exp_avg.device != group['exp_avg_mask'].device: | |
group['exp_avg_mask'] = group['exp_avg_mask'].to(device=exp_avg.device) | |
exp_avg.mul_(group['exp_avg_mask']) | |
grad_reconstruct = ((exp_avg - exp_avg_last_step[i][j] * beta1) / (1 - beta1)) | |
exp_avg_sq_fresh.mul_(beta2).addcmul_(1 - beta2, grad_reconstruct, grad_reconstruct) | |
denom = exp_avg_sq.sqrt() + group['eps'] | |
update_prelim = exp_avg / denom | |
if group['weight_decay'] > 0.0: | |
update = update_prelim + group['weight_decay'] * p.data | |
else: | |
update = update_prelim | |
lamb_coeff = 1.0 | |
update_norm = update.pow(2).sum().sqrt() | |
denom_real = exp_avg_sq_fresh.sqrt() + group['eps'] | |
factor = (denom / denom_real).max().item() | |
if group['weight_decay'] > 0.0: | |
update_ratio = min(1.0, (update_prelim.pow(2).sum().sqrt() / update_norm).item()) | |
factor = factor * update_ratio + (1.0 - update_ratio) | |
if factor > self.factor_max: | |
factor = self.factor_max | |
if factor < self.factor_min: | |
factor = self.factor_min | |
if factor > state['last_factor'] * (1.0 + self.factor_threshold): | |
factor = state['last_factor'] * (1.0 + self.factor_threshold) | |
if factor < state['last_factor'] * (1.0 - self.factor_threshold): | |
factor = state['last_factor'] * (1.0 - self.factor_threshold) | |
state['last_factor'] = factor | |
lamb_coeff = state['lamb_coeff_freeze'] * factor | |
self.lamb_coeffs.append(lamb_coeff) | |
with torch.no_grad(): | |
p.add_(-group['lr'] * lamb_coeff * update) | |
del exp_avg_last_step[:] | |
exp_avg_last_step = None | |
if not self.initialize: | |
self.lamb_freeze_key = False | |
self.initialize = True | |
print(f"Finished the initialization step at rank {dist.get_rank()}") | |
return loss | |
if self.lamb_freeze_key is False: | |
if state['step'] >= self.freeze_step: | |
print('OnebitLamb - starting compressed communication') | |
self.lamb_freeze_key = True | |
if self.using_pipeline: | |
self.deepspeed.pipeline_enable_backward_allreduce = False | |
else: | |
self.deepspeed.enable_backward_allreduce = False | |
return loss | |
def load_state_dict(self, state_dict): | |
""" | |
Overrides load_state_dict() to add special handling when loading checkpoints | |
""" | |
# Because at different stage exp_avg_mask may change (e.g., | |
# BERT pre-training seqlen 128 and 512 ), we don't use the exp_avg_mask | |
# in checkpoints but always use the one user provided in training script. | |
# (See example in DeepSpeedExamples/bing_bert/deepspeed_train.py.) | |
# Thus here we keep the exp_avg_mask unchanged when loading checkpoint | |
for i, group in enumerate(self.param_groups): | |
if 'exp_avg_mask' in group: | |
state_dict['param_groups'][i]['exp_avg_mask'] = group['exp_avg_mask'] | |
elif 'exp_avg_mask' not in group and 'exp_avg_mask' in state_dict['param_groups'][i]: | |
state_dict['param_groups'][i].pop('exp_avg_mask') | |
super().load_state_dict(state_dict) | |
# need to reset the fused momentum since loading states will break the linking | |
del self.exp_avg_flat[:] | |
self.dummy_exp_avg.clear() | |
del self.corrected_tensor_sizes[:] | |
del self.server_chunk_sizes[:] | |
if self.state[self.param_groups[0]['params'][0]]['step'] < self.freeze_step: | |
if dist.get_rank() == 0: | |
print("Checkpoint loaded and OnebitLamb warmup stage starts/continues.") | |
if self.lamb_freeze_key is True: | |
self.lamb_freeze_key = False | |
if self.using_pipeline: | |
self.deepspeed.pipeline_enable_backward_allreduce = True | |
else: | |
self.deepspeed.enable_backward_allreduce = True | |
for group in self.param_groups: | |
for p in group['params']: | |
self.state[p]['lamb_coeff_freeze'] = 0.0 | |
self.state[p]['last_factor'] = 1.0 | |
if 'scaling_coeff' in self.state[p]: | |
self.state[p].pop('scaling_coeff') | |
else: | |
if dist.get_rank() == 0: | |
print("Checkpoint loaded and OnebitLamb compression stage starts/continues.") | |
if self.lamb_freeze_key is False: | |
self.lamb_freeze_key = True | |
if self.using_pipeline: | |
self.deepspeed.pipeline_enable_backward_allreduce = False | |
else: | |
self.deepspeed.enable_backward_allreduce = False | |
# We reset the compression errors when loading checkpoints for 3 reasons: | |
# 1) The worker and server error at each GPU are distinct, so in current implementation | |
# only rank 0's errors are saved in the checkpoint. Thus we have to reset the errors. | |
# If we want to save them correctly we need O(num_gpu*model_size) memory in order to | |
# gather all the error, which is a very large memory requirement. It's possible to save | |
# them in a distributed way, but it will make the checkpoint saving/loading much more complicated. | |
# 2) Even if we are able to save the compression errors correctly, you need to have the | |
# exact same number of GPUs in order to load them correctly. | |
# 3) We verified on BERT pre-training that occasionally resetting the compression error | |
# at checkpoint loading does not affect the convergence. | |
# However, please avoid frequent checkpoint loading which could break the error | |
# compensation mechanism thus affect the convergence. | |
del self.worker_errors[:] | |
del self.server_errors[:] | |
def get_lamb_coeffs(self): | |
return self.lamb_coeffs | |