peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/pipe
/schedule.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
from ..utils import call_to_str | |
from abc import ABC, abstractmethod | |
class PipeSchedule(ABC): | |
"""Directs the execution of a pipeline engine by generating sequences of | |
:class:`PipeInstruction`. | |
Schedules are generators that yield sequences of | |
:class:`PipeInstruction` to process the micro-batches in one batch. | |
Each yielded step is atomic in the sense that a barrier | |
synchronization can be placed between successive steps without | |
deadlock. | |
Below is an example schedule that implements data parallelism with gradient accumulation: | |
.. code-block:: python | |
class DataParallelSchedule(PipeSchedule): | |
def steps(self): | |
for step_id in range(self.micro_batches): | |
cmds = [ | |
LoadMicroBatch(buffer_id=0), | |
ForwardPass(buffer_id=0), | |
BackwardPass(buffer_id=0), | |
] | |
if step_id == self.micro_batches - 1: | |
cmds.extend([ | |
ReduceGrads(), | |
OptimizerStep(), | |
]) | |
yield cmds | |
def num_pipe_buffers(self): | |
return 1 | |
Args: | |
micro_batches (int): The number of micro-batches that comprise a batch. | |
stages (int): The number of pipeline stages. | |
stage_id (int): The pipe stage that will execute the generated schedule. | |
""" | |
def __init__(self, micro_batches, stages, stage_id): | |
super().__init__() | |
self.micro_batches = micro_batches | |
self.stages = stages | |
self.stage_id = stage_id | |
self.prev_stage = self.stage_id - 1 | |
self.next_stage = self.stage_id + 1 | |
def steps(self): | |
"""Yield a list of :class:`PipeInstruction` for each step in the schedule. | |
.. note:: | |
Schedules must implement ``steps()`` to define the schedule. | |
Returns: | |
Instructions to be executed as one step of the pipeline | |
""" | |
pass | |
def num_pipe_buffers(self): | |
"""The number of pipeline buffers that will be used by this stage. | |
.. note:: | |
Schedules should specialize ``num_pipe_buffers()`` for memory savings at scale. | |
Returns: | |
The number of buffers for the engine to allocate. | |
""" | |
return self.micro_batches | |
def _valid_micro_batch(self, micro_batch_id): | |
return 0 <= micro_batch_id < self.micro_batches | |
def _valid_stage(self, stage_id): | |
return 0 <= stage_id < self.stages | |
def stage(self): | |
"""Stage index used to configure this schedule.""" | |
return self.stage_id | |
def num_stages(self): | |
"""The number of total pipeline stages used to configure this schedule.""" | |
return self.stages | |
def num_micro_batches(self): | |
"""The number of total micro_batches used to configure this schedule.""" | |
return self.micro_batches | |
def is_first_stage(self): | |
"""True if the configured ``stage_id`` is the first stage in the pipeline.""" | |
return self.stage_id == 0 | |
def is_last_stage(self): | |
"""True if the configured ``stage_id`` is the last stage in the pipeline.""" | |
return self.stage_id == self.stages - 1 | |
def _buffer_idx(self, micro_batch_id): | |
"""Map a micro-batch index to a pipeline buffer index. | |
This method uses a cyclic allocation strategy. | |
Args: | |
micro_batch_id (int): The micro-batch index relative to the beginning of the schedule. | |
Returns: | |
int: The index of the buffer that should store data. | |
""" | |
assert self._valid_micro_batch(micro_batch_id) | |
return micro_batch_id % self.num_pipe_buffers() | |
def __iter__(self): | |
self.it = None | |
return self | |
def __next__(self): | |
if self.it is None: | |
self.it = self.steps() | |
return next(self.it) | |
class InferenceSchedule(PipeSchedule): | |
"""A schedule for inferencing batches using pipeline parallelism. | |
""" | |
def steps(self): | |
"""""" | |
prev_micro_batch_id = -1 | |
total_steps = self.micro_batches + self.stages - 1 | |
for step_id in range(total_steps): | |
cmds = [] | |
micro_batch_id = step_id - self.stage_id | |
# Alternate send/recv buffers | |
if _is_even(self.stage_id): | |
recv_buf = step_id % 2 | |
send_buf = (step_id + 1) % 2 | |
else: | |
recv_buf = (step_id + 1) % 2 | |
send_buf = step_id % 2 | |
if self.is_first_stage or self.is_last_stage: | |
if self._valid_micro_batch(micro_batch_id): | |
cmds.append(LoadMicroBatch(recv_buf)) | |
if _is_even(self.stage_id): | |
if self._valid_stage(self.next_stage): | |
if self._valid_micro_batch(micro_batch_id - 1): | |
cmds.append(SendActivation(send_buf)) | |
if self._valid_stage(self.prev_stage): | |
if self._valid_micro_batch(micro_batch_id): | |
cmds.append(RecvActivation(recv_buf)) | |
else: | |
if self._valid_stage(self.prev_stage): | |
if self._valid_micro_batch(micro_batch_id): | |
cmds.append(RecvActivation(recv_buf)) | |
if self._valid_stage(self.next_stage): | |
if self._valid_micro_batch(micro_batch_id - 1): | |
cmds.append(SendActivation(send_buf)) | |
if self._valid_micro_batch(micro_batch_id): | |
cmds.append(ForwardPass(recv_buf)) | |
yield cmds | |
def num_pipe_buffers(self): | |
"""Only two pipeline buffers are required for inferencing. | |
Returns: | |
``2`` | |
""" | |
return 2 | |
class TrainSchedule(PipeSchedule): | |
"""A schedule for training a batch using hybrid parallelism. | |
Pipeline parallelism is extracted through gradient accumulation and thus | |
convergence follows that of a data parallel approach with the same batch | |
size. | |
""" | |
def steps(self): | |
"""""" | |
prev_micro_batch_id = -1 | |
total_steps = 2 * (self.micro_batches + self.stages - 1) | |
for step_id in range(total_steps): | |
# Map the step of the pipeline to the micro-batch id and also whether it is a | |
# forward or backward pass step. | |
micro_batch_id, is_forward = self._step_to_micro_batch(step_id) | |
if self._valid_micro_batch(prev_micro_batch_id): | |
prev_buffer = self._buffer_idx(prev_micro_batch_id) | |
if self._valid_micro_batch(micro_batch_id): | |
curr_buffer = self._buffer_idx(micro_batch_id) | |
cmds = [] | |
# Exchange activations | |
if is_forward: | |
if self._valid_micro_batch(prev_micro_batch_id) and self._valid_stage(self.prev_stage): | |
cmds.append(SendGrad(prev_buffer)) | |
if self._valid_micro_batch(micro_batch_id) and self._valid_stage(self.prev_stage): | |
cmds.append(RecvActivation(curr_buffer)) | |
else: | |
if self._valid_micro_batch(micro_batch_id) and self._valid_stage(self.next_stage): | |
cmds.append(RecvGrad(curr_buffer)) | |
if self._valid_micro_batch(prev_micro_batch_id) and self._valid_stage(self.next_stage): | |
cmds.append(SendActivation(prev_buffer)) | |
# First/last stage loads | |
if self.stage_id == 0 or self.stage_id == self.stages - 1: | |
if is_forward and self._valid_micro_batch(micro_batch_id): | |
cmds.append(LoadMicroBatch(curr_buffer)) | |
# Computation | |
if self._valid_micro_batch(micro_batch_id): | |
if is_forward: | |
cmds.append(ForwardPass(curr_buffer)) | |
else: | |
cmds.append(BackwardPass(curr_buffer)) | |
# Model step at the end of the batch | |
if step_id == total_steps - 1: | |
cmds.append(ReduceTiedGrads()) | |
cmds.append(ReduceGrads()) | |
cmds.append(OptimizerStep()) | |
# Prepare state for next time | |
prev_micro_batch_id = micro_batch_id | |
yield cmds | |
def num_pipe_buffers(self): | |
"""Return the number of pipeline buffers required for this stage. | |
This is equivalent to the maximum number of in-flight forward passes, | |
since we need to remember the activations of forward passes in order | |
to run backpropagation. For synchronous 1F1B, this is equivalent to | |
the index difference between this stage and the last stage. | |
""" | |
buffers = min(self.stages - self.stage_id, self.micro_batches) | |
return max(2, buffers) | |
def _step_to_micro_batch(self, step_id): | |
if _is_even(step_id) and _is_even(self.stage_id): | |
micro_batch_id = self._even_step_forward_id(step_id) | |
is_forward = True | |
elif _is_odd(step_id) and _is_odd(self.stage_id): | |
micro_batch_id = self._odd_step_forward_id(step_id) | |
is_forward = True | |
elif _is_even(step_id) and _is_odd(self.stage_id): | |
micro_batch_id = self._even_step_backward_id(step_id) | |
is_forward = False | |
elif _is_odd(step_id) and _is_even(self.stage_id): | |
micro_batch_id = self._odd_step_backward_id(step_id) | |
is_forward = False | |
else: | |
assert False | |
return micro_batch_id, is_forward | |
def _even_step_forward_id(self, step_id): | |
base = step_id // 2 | |
micro_batch_id = int(base - self.stage_id // 2) | |
return micro_batch_id | |
def _odd_step_forward_id(self, step_id): | |
base = (step_id - 1) // 2 | |
micro_batch_id = int(base - self.stage_id // 2) | |
return micro_batch_id | |
def _even_step_backward_id(self, step_id): | |
base = step_id // 2 | |
micro_batch_id = int(base - self.stages + (self.stage_id + 1) // 2) | |
return micro_batch_id | |
def _odd_step_backward_id(self, step_id): | |
base = ((step_id - 1) // 2) - self.stages + 1 | |
micro_batch_id = int(base + self.stage_id // 2) | |
return micro_batch_id | |
class DataParallelSchedule(PipeSchedule): | |
"""An example schedule that trains using traditional data parallelism with gradient | |
accumulation. | |
""" | |
def steps(self): | |
"""""" | |
for step_id in range(self.micro_batches): | |
cmds = [ | |
LoadMicroBatch(buffer_id=0), | |
ForwardPass(buffer_id=0), | |
BackwardPass(buffer_id=0), | |
] | |
if step_id == self.micro_batches - 1: | |
cmds.extend([ | |
ReduceGrads(), | |
OptimizerStep(), | |
]) | |
yield cmds | |
def num_pipe_buffers(self): | |
"""Only one pipeline buffer needed. | |
""" | |
return 1 | |
class PipeInstruction: | |
"""Base class for all instructions to be executed by the pipeline engine. | |
All keyword arguments are stored as members similar to a ``namedtuple``. These are | |
then accessible to the :class:`PipeEngine` during execution. | |
Args: | |
kwargs (optional): keyword arguments to store as members | |
""" | |
def __init__(self, **kwargs): | |
self.name = self.__class__.__name__ | |
self.kwargs = kwargs | |
for key, val in kwargs.items(): | |
setattr(self, key, val) | |
def __repr__(self): | |
return call_to_str(self.name, **self.kwargs) | |
class OptimizerStep(PipeInstruction): | |
"""Performs one step with the optimizer and zeros gradients. | |
.. note:: Should be issued after :class:`ReduceGrads` and :class:`ReduceTiedGrads`. | |
.. note:: Can be a synchronization point among data-parallel ranks. | |
""" | |
pass | |
class ReduceGrads(PipeInstruction): | |
"""Reduce the computed gradients among data-parallel processes within the stage. | |
""" | |
pass | |
class ReduceTiedGrads(PipeInstruction): | |
"""Reduce the computed gradients of tied modules within a pipeline-parallel group. | |
.. warning:: | |
The stages included in this synchronization point are not known until | |
the model is partitioned among pipeline stages. In the worst case, it | |
includes all pipeline stages. This instruction should be scheduled | |
carefully to avoid deadlocks. | |
""" | |
pass | |
class BufferOpInstruction(PipeInstruction): | |
"""A pipeline instruction that operates on pipeline buffer(s). | |
Args: | |
buffer_id (int): the index of the pipeline buffer() to modify. | |
""" | |
def __init__(self, buffer_id, **kwargs): | |
super().__init__(buffer_id=buffer_id, **kwargs) | |
# IO | |
class LoadMicroBatch(BufferOpInstruction): | |
"""Load a micro-batch into a buffer. | |
Roughly: | |
.. code-block:: python | |
buffers['inputs'][buffer_id] = next(data_iter) | |
""" | |
pass | |
# Compute | |
class ForwardPass(BufferOpInstruction): | |
"""Compute a forward pass. | |
Roughly: | |
.. code-block:: python | |
buffers['outputs'][buffer_id] = forward(buffers['inputs'][buffer_id]) | |
""" | |
pass | |
class BackwardPass(BufferOpInstruction): | |
"""Compute a backward pass and accumulate gradients. | |
Roughly: | |
.. code-block:: python | |
outputs = buffers['outputs'][buffer_id] | |
gradients = buffers['gradients'][buffer_id] | |
torch.autograd.backward(tensors=outputs, | |
grad_tensors=gradients) | |
""" | |
pass | |
# Communication | |
class SendActivation(BufferOpInstruction): | |
"""Send activations to the next stage in the pipeline. | |
Roughly: | |
.. code-block:: python | |
send(buffers['outputs'][buffer_id]) | |
.. note:: | |
The communication is blocking and must be paired with a :class:`RecvActivation` | |
on the next pipeline stage to avoid deadlock. | |
""" | |
pass | |
class RecvActivation(BufferOpInstruction): | |
"""Receive activations from the previous stage in the pipeline. | |
Roughly: | |
.. code-block:: python | |
buffers['inputs'][buffer_id] = recv() | |
.. note:: | |
The communication is blocking and must be paired with a :class:`SendActivation` | |
on the previous pipeline stage to avoid deadlock. | |
""" | |
pass | |
class SendGrad(BufferOpInstruction): | |
"""Send computed gradients to the previous pipeline stage. | |
with respect to the received activations | |
.. note:: | |
Only received tensors with ``requires_grad==True`` will produce gradients. | |
Missing gradients will be replaced with ``None`` on the receiving stage. | |
.. note:: | |
The communication is blocking and must be paired with a :class:`RecvGrad` | |
on the previous pipeline stage to avoid deadlock. | |
""" | |
pass | |
class RecvGrad(BufferOpInstruction): | |
"""Receive computed gradients the next pipeline stage. | |
.. note:: | |
Only activations with ``requires_grad==True`` will produce gradients. | |
Missing gradients will be replaced with ``None``. | |
.. note:: | |
The communication is blocking and must be paired with a :class:`SendGrad` | |
on the next pipeline stage to avoid deadlock. | |
""" | |
pass | |
def _is_even(x): | |
return x % 2 == 0 | |
def _is_odd(x): | |
return x % 2 != 0 | |