peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/zero
/linear.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
#Linear Module to use with ZeRO Stage 3 to allow for parameter memory release | |
#after the module execution during forward | |
#Instead of saving variables using save_for_backward, we save variable ids | |
#Allowing us to retrieve the variable without creating pointer to it | |
#Which allows for underlying tensor to be garbage collected | |
#When partitioned as needed by the Zero Stage 3 optimizer | |
#TODO instead of patching Linear module, we could patch the ctx.save_for_backward | |
#ctx.saved_tensors so that this approach works for all nn modules that are built upon | |
#torch.nn.function. However the issue is that many modules uses C++ implementations | |
#which does not have pytorch implementation. Eg torch.addmm which acts as a functional | |
#when implemented outside of torch.autograd.Function | |
import math | |
import torch | |
from torch import Tensor | |
from torch.nn.parameter import Parameter | |
from torch.nn import init | |
from torch.nn.modules.module import Module | |
from deepspeed.runtime.utils import noop_decorator | |
from deepspeed import comm as dist | |
from deepspeed.accelerator import get_accelerator | |
def print_rank_0(message, debug=False, force=False): | |
if dist.get_rank() == 0 and (debug or force): | |
print(message) | |
try: | |
autocast_custom_fwd = get_accelerator().amp().custom_fwd | |
autocast_custom_bwd = get_accelerator().amp().custom_bwd | |
except (ImportError, AttributeError) as exp: | |
autocast_custom_fwd = noop_decorator | |
autocast_custom_bwd = noop_decorator | |
class LinearFunctionForZeroStage3(torch.autograd.Function): | |
# Note that both forward and backward are @staticmethods | |
# bias is an optional argument | |
def forward(ctx, input, weight, bias=None): | |
ctx.save_for_backward(input, weight, bias) | |
if input.dim() == 2 and bias is not None: | |
# fused op is marginally faster | |
ret = torch.addmm(bias, input, weight.t()) | |
else: | |
output = input.matmul(weight.t()) | |
if bias is not None: | |
output += bias | |
ret = output | |
return ret | |
# This function has only a single output, so it gets only one gradient | |
def backward(ctx, grad_output): | |
# This is a pattern that is very convenient - at the top of backward | |
# unpack saved_tensors and initialize all gradients w.r.t. inputs to | |
# None. Thanks to the fact that additional trailing Nones are | |
# ignored, the return statement is simple even when the function has | |
# optional inputs. | |
input, weight, bias = ctx.saved_tensors | |
grad_input = grad_weight = grad_bias = None | |
#print(f"backward shaped grad_output {grad_output.shape}, input {input.shape}, weight {weight.shape} and bias {bias.shape if bias is not None else None}") | |
# These needs_input_grad checks are optional and there only to | |
# improve efficiency. If you want to make your code simpler, you can | |
# skip them. Returning gradients for inputs that don't require it is | |
# not an error. | |
if ctx.needs_input_grad[0]: | |
#print(f"Computing grad input weight {weight.shape} grad_output {grad_output.shape}") | |
grad_input = grad_output.matmul(weight) | |
#print(f"Computed grad input {grad_input.shape}") | |
if ctx.needs_input_grad[1]: | |
#print("Computing grad weight") | |
dim = grad_output.dim() | |
if dim > 2: | |
grad_weight = grad_output.reshape(-1, | |
grad_output.shape[-1]).t().matmul(input.reshape(-1, input.shape[-1])) | |
else: | |
grad_weight = grad_output.t().matmul(input) | |
#print(f"Computed grad weight grad_weight {grad_weight.shape}") | |
if bias is not None and ctx.needs_input_grad[2]: | |
#print("Computing grad bias") | |
if dim > 2: | |
grad_bias = grad_output.sum([i for i in range(dim - 1)]) | |
else: | |
grad_bias = grad_output.sum(0) | |
#print("Done computing grad bias") | |
#print("needs bias") | |
#print(f"backward shaped grad_input {grad_input.shape}, grad_weight {grad_weight.shape}, grad_bias {grad_bias.shape if grad_bias is not None else None}") | |
return grad_input, grad_weight, grad_bias | |
def zero3_linear_wrap(input, weight, bias=None): | |
if bias is None: | |
return LinearFunctionForZeroStage3.apply(input, weight) | |
else: | |
return LinearFunctionForZeroStage3.apply(input, weight, bias) | |
class LinearModuleForZeroStage3(Module): | |
r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`. | |
The weights are pre-transposed and stored as A^T instead of transposing during each | |
forward. Memory savings proportional to the parameter size. | |
Args: | |
in_features: size of each input sample | |
out_features: size of each output sample | |
bias: If set to ``False``, the layer will not learn an additive bias. | |
Default: ``True`` | |
Shape: | |
- Input: :math:`(N, *, H_{in})` where :math:`*` means any number of | |
additional dimensions and :math:`H_{in} = \text{in\_features}` | |
- Output: :math:`(N, *, H_{out})` where all but the last dimension | |
are the same shape as the input and :math:`H_{out} = \text{out\_features}`. | |
Attributes: | |
weight: the learnable weights of the module of shape | |
:math:`(\text{out\_features}, \text{in\_features})`. The values are | |
initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where | |
:math:`k = \frac{1}{\text{in\_features}}` | |
bias: the learnable bias of the module of shape :math:`(\text{out\_features})`. | |
If :attr:`bias` is ``True``, the values are initialized from | |
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where | |
:math:`k = \frac{1}{\text{in\_features}}` | |
Examples:: | |
>>> m = nn.Linear(20, 30) | |
>>> input = torch.randn(128, 20) | |
>>> output = m(input) | |
>>> print(output.size()) | |
torch.Size([128, 30]) | |
""" | |
__constants__ = ['in_features', 'out_features'] | |
in_features: int | |
out_features: int | |
weight: Tensor | |
def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None: | |
super(LinearModuleForZeroStage3, self).__init__() | |
print("Building ZeRO module") | |
self.in_features = in_features | |
self.out_features = out_features | |
self.weight = Parameter(torch.Tensor(out_features, in_features)) | |
if bias: | |
self.bias = Parameter(torch.Tensor(out_features)) | |
else: | |
self.register_parameter('bias', None) | |
self.reset_parameters() | |
def reset_parameters(self) -> None: | |
init.kaiming_uniform_(self.weight, a=math.sqrt(5)) | |
if self.bias is not None: | |
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) | |
bound = 1 / math.sqrt(fan_in) | |
init.uniform_(self.bias, -bound, bound) | |
def forward(self, input: Tensor) -> Tensor: | |
return LinearFunctionForZeroStage3.apply(input, self.weight, self.bias) | |
def extra_repr(self) -> str: | |
return 'in_features={}, out_features={}, bias={}'.format(self.in_features, self.out_features, self.bias | |
is not None) | |