peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/more_itertools
/recipes.py
"""Imported from the recipes section of the itertools documentation. | |
All functions taken from the recipes section of the itertools library docs | |
[1]_. | |
Some backward-compatible usability improvements have been made. | |
.. [1] http://docs.python.org/library/itertools.html#recipes | |
""" | |
import math | |
import operator | |
from collections import deque | |
from collections.abc import Sized | |
from functools import partial, reduce | |
from itertools import ( | |
chain, | |
combinations, | |
compress, | |
count, | |
cycle, | |
groupby, | |
islice, | |
product, | |
repeat, | |
starmap, | |
tee, | |
zip_longest, | |
) | |
from random import randrange, sample, choice | |
from sys import hexversion | |
__all__ = [ | |
'all_equal', | |
'batched', | |
'before_and_after', | |
'consume', | |
'convolve', | |
'dotproduct', | |
'first_true', | |
'factor', | |
'flatten', | |
'grouper', | |
'iter_except', | |
'iter_index', | |
'matmul', | |
'ncycles', | |
'nth', | |
'nth_combination', | |
'padnone', | |
'pad_none', | |
'pairwise', | |
'partition', | |
'polynomial_eval', | |
'polynomial_from_roots', | |
'polynomial_derivative', | |
'powerset', | |
'prepend', | |
'quantify', | |
'reshape', | |
'random_combination_with_replacement', | |
'random_combination', | |
'random_permutation', | |
'random_product', | |
'repeatfunc', | |
'roundrobin', | |
'sieve', | |
'sliding_window', | |
'subslices', | |
'sum_of_squares', | |
'tabulate', | |
'tail', | |
'take', | |
'totient', | |
'transpose', | |
'triplewise', | |
'unique_everseen', | |
'unique_justseen', | |
] | |
_marker = object() | |
# zip with strict is available for Python 3.10+ | |
try: | |
zip(strict=True) | |
except TypeError: | |
_zip_strict = zip | |
else: | |
_zip_strict = partial(zip, strict=True) | |
# math.sumprod is available for Python 3.12+ | |
_sumprod = getattr(math, 'sumprod', lambda x, y: dotproduct(x, y)) | |
def take(n, iterable): | |
"""Return first *n* items of the iterable as a list. | |
>>> take(3, range(10)) | |
[0, 1, 2] | |
If there are fewer than *n* items in the iterable, all of them are | |
returned. | |
>>> take(10, range(3)) | |
[0, 1, 2] | |
""" | |
return list(islice(iterable, n)) | |
def tabulate(function, start=0): | |
"""Return an iterator over the results of ``func(start)``, | |
``func(start + 1)``, ``func(start + 2)``... | |
*func* should be a function that accepts one integer argument. | |
If *start* is not specified it defaults to 0. It will be incremented each | |
time the iterator is advanced. | |
>>> square = lambda x: x ** 2 | |
>>> iterator = tabulate(square, -3) | |
>>> take(4, iterator) | |
[9, 4, 1, 0] | |
""" | |
return map(function, count(start)) | |
def tail(n, iterable): | |
"""Return an iterator over the last *n* items of *iterable*. | |
>>> t = tail(3, 'ABCDEFG') | |
>>> list(t) | |
['E', 'F', 'G'] | |
""" | |
# If the given iterable has a length, then we can use islice to get its | |
# final elements. Note that if the iterable is not actually Iterable, | |
# either islice or deque will throw a TypeError. This is why we don't | |
# check if it is Iterable. | |
if isinstance(iterable, Sized): | |
yield from islice(iterable, max(0, len(iterable) - n), None) | |
else: | |
yield from iter(deque(iterable, maxlen=n)) | |
def consume(iterator, n=None): | |
"""Advance *iterable* by *n* steps. If *n* is ``None``, consume it | |
entirely. | |
Efficiently exhausts an iterator without returning values. Defaults to | |
consuming the whole iterator, but an optional second argument may be | |
provided to limit consumption. | |
>>> i = (x for x in range(10)) | |
>>> next(i) | |
0 | |
>>> consume(i, 3) | |
>>> next(i) | |
4 | |
>>> consume(i) | |
>>> next(i) | |
Traceback (most recent call last): | |
File "<stdin>", line 1, in <module> | |
StopIteration | |
If the iterator has fewer items remaining than the provided limit, the | |
whole iterator will be consumed. | |
>>> i = (x for x in range(3)) | |
>>> consume(i, 5) | |
>>> next(i) | |
Traceback (most recent call last): | |
File "<stdin>", line 1, in <module> | |
StopIteration | |
""" | |
# Use functions that consume iterators at C speed. | |
if n is None: | |
# feed the entire iterator into a zero-length deque | |
deque(iterator, maxlen=0) | |
else: | |
# advance to the empty slice starting at position n | |
next(islice(iterator, n, n), None) | |
def nth(iterable, n, default=None): | |
"""Returns the nth item or a default value. | |
>>> l = range(10) | |
>>> nth(l, 3) | |
3 | |
>>> nth(l, 20, "zebra") | |
'zebra' | |
""" | |
return next(islice(iterable, n, None), default) | |
def all_equal(iterable): | |
""" | |
Returns ``True`` if all the elements are equal to each other. | |
>>> all_equal('aaaa') | |
True | |
>>> all_equal('aaab') | |
False | |
""" | |
g = groupby(iterable) | |
return next(g, True) and not next(g, False) | |
def quantify(iterable, pred=bool): | |
"""Return the how many times the predicate is true. | |
>>> quantify([True, False, True]) | |
2 | |
""" | |
return sum(map(pred, iterable)) | |
def pad_none(iterable): | |
"""Returns the sequence of elements and then returns ``None`` indefinitely. | |
>>> take(5, pad_none(range(3))) | |
[0, 1, 2, None, None] | |
Useful for emulating the behavior of the built-in :func:`map` function. | |
See also :func:`padded`. | |
""" | |
return chain(iterable, repeat(None)) | |
padnone = pad_none | |
def ncycles(iterable, n): | |
"""Returns the sequence elements *n* times | |
>>> list(ncycles(["a", "b"], 3)) | |
['a', 'b', 'a', 'b', 'a', 'b'] | |
""" | |
return chain.from_iterable(repeat(tuple(iterable), n)) | |
def dotproduct(vec1, vec2): | |
"""Returns the dot product of the two iterables. | |
>>> dotproduct([10, 10], [20, 20]) | |
400 | |
""" | |
return sum(map(operator.mul, vec1, vec2)) | |
def flatten(listOfLists): | |
"""Return an iterator flattening one level of nesting in a list of lists. | |
>>> list(flatten([[0, 1], [2, 3]])) | |
[0, 1, 2, 3] | |
See also :func:`collapse`, which can flatten multiple levels of nesting. | |
""" | |
return chain.from_iterable(listOfLists) | |
def repeatfunc(func, times=None, *args): | |
"""Call *func* with *args* repeatedly, returning an iterable over the | |
results. | |
If *times* is specified, the iterable will terminate after that many | |
repetitions: | |
>>> from operator import add | |
>>> times = 4 | |
>>> args = 3, 5 | |
>>> list(repeatfunc(add, times, *args)) | |
[8, 8, 8, 8] | |
If *times* is ``None`` the iterable will not terminate: | |
>>> from random import randrange | |
>>> times = None | |
>>> args = 1, 11 | |
>>> take(6, repeatfunc(randrange, times, *args)) # doctest:+SKIP | |
[2, 4, 8, 1, 8, 4] | |
""" | |
if times is None: | |
return starmap(func, repeat(args)) | |
return starmap(func, repeat(args, times)) | |
def _pairwise(iterable): | |
"""Returns an iterator of paired items, overlapping, from the original | |
>>> take(4, pairwise(count())) | |
[(0, 1), (1, 2), (2, 3), (3, 4)] | |
On Python 3.10 and above, this is an alias for :func:`itertools.pairwise`. | |
""" | |
a, b = tee(iterable) | |
next(b, None) | |
return zip(a, b) | |
try: | |
from itertools import pairwise as itertools_pairwise | |
except ImportError: | |
pairwise = _pairwise | |
else: | |
def pairwise(iterable): | |
return itertools_pairwise(iterable) | |
pairwise.__doc__ = _pairwise.__doc__ | |
class UnequalIterablesError(ValueError): | |
def __init__(self, details=None): | |
msg = 'Iterables have different lengths' | |
if details is not None: | |
msg += (': index 0 has length {}; index {} has length {}').format( | |
*details | |
) | |
super().__init__(msg) | |
def _zip_equal_generator(iterables): | |
for combo in zip_longest(*iterables, fillvalue=_marker): | |
for val in combo: | |
if val is _marker: | |
raise UnequalIterablesError() | |
yield combo | |
def _zip_equal(*iterables): | |
# Check whether the iterables are all the same size. | |
try: | |
first_size = len(iterables[0]) | |
for i, it in enumerate(iterables[1:], 1): | |
size = len(it) | |
if size != first_size: | |
raise UnequalIterablesError(details=(first_size, i, size)) | |
# All sizes are equal, we can use the built-in zip. | |
return zip(*iterables) | |
# If any one of the iterables didn't have a length, start reading | |
# them until one runs out. | |
except TypeError: | |
return _zip_equal_generator(iterables) | |
def grouper(iterable, n, incomplete='fill', fillvalue=None): | |
"""Group elements from *iterable* into fixed-length groups of length *n*. | |
>>> list(grouper('ABCDEF', 3)) | |
[('A', 'B', 'C'), ('D', 'E', 'F')] | |
The keyword arguments *incomplete* and *fillvalue* control what happens for | |
iterables whose length is not a multiple of *n*. | |
When *incomplete* is `'fill'`, the last group will contain instances of | |
*fillvalue*. | |
>>> list(grouper('ABCDEFG', 3, incomplete='fill', fillvalue='x')) | |
[('A', 'B', 'C'), ('D', 'E', 'F'), ('G', 'x', 'x')] | |
When *incomplete* is `'ignore'`, the last group will not be emitted. | |
>>> list(grouper('ABCDEFG', 3, incomplete='ignore', fillvalue='x')) | |
[('A', 'B', 'C'), ('D', 'E', 'F')] | |
When *incomplete* is `'strict'`, a subclass of `ValueError` will be raised. | |
>>> it = grouper('ABCDEFG', 3, incomplete='strict') | |
>>> list(it) # doctest: +IGNORE_EXCEPTION_DETAIL | |
Traceback (most recent call last): | |
... | |
UnequalIterablesError | |
""" | |
args = [iter(iterable)] * n | |
if incomplete == 'fill': | |
return zip_longest(*args, fillvalue=fillvalue) | |
if incomplete == 'strict': | |
return _zip_equal(*args) | |
if incomplete == 'ignore': | |
return zip(*args) | |
else: | |
raise ValueError('Expected fill, strict, or ignore') | |
def roundrobin(*iterables): | |
"""Yields an item from each iterable, alternating between them. | |
>>> list(roundrobin('ABC', 'D', 'EF')) | |
['A', 'D', 'E', 'B', 'F', 'C'] | |
This function produces the same output as :func:`interleave_longest`, but | |
may perform better for some inputs (in particular when the number of | |
iterables is small). | |
""" | |
# Recipe credited to George Sakkis | |
pending = len(iterables) | |
nexts = cycle(iter(it).__next__ for it in iterables) | |
while pending: | |
try: | |
for next in nexts: | |
yield next() | |
except StopIteration: | |
pending -= 1 | |
nexts = cycle(islice(nexts, pending)) | |
def partition(pred, iterable): | |
""" | |
Returns a 2-tuple of iterables derived from the input iterable. | |
The first yields the items that have ``pred(item) == False``. | |
The second yields the items that have ``pred(item) == True``. | |
>>> is_odd = lambda x: x % 2 != 0 | |
>>> iterable = range(10) | |
>>> even_items, odd_items = partition(is_odd, iterable) | |
>>> list(even_items), list(odd_items) | |
([0, 2, 4, 6, 8], [1, 3, 5, 7, 9]) | |
If *pred* is None, :func:`bool` is used. | |
>>> iterable = [0, 1, False, True, '', ' '] | |
>>> false_items, true_items = partition(None, iterable) | |
>>> list(false_items), list(true_items) | |
([0, False, ''], [1, True, ' ']) | |
""" | |
if pred is None: | |
pred = bool | |
t1, t2, p = tee(iterable, 3) | |
p1, p2 = tee(map(pred, p)) | |
return (compress(t1, map(operator.not_, p1)), compress(t2, p2)) | |
def powerset(iterable): | |
"""Yields all possible subsets of the iterable. | |
>>> list(powerset([1, 2, 3])) | |
[(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)] | |
:func:`powerset` will operate on iterables that aren't :class:`set` | |
instances, so repeated elements in the input will produce repeated elements | |
in the output. Use :func:`unique_everseen` on the input to avoid generating | |
duplicates: | |
>>> seq = [1, 1, 0] | |
>>> list(powerset(seq)) | |
[(), (1,), (1,), (0,), (1, 1), (1, 0), (1, 0), (1, 1, 0)] | |
>>> from more_itertools import unique_everseen | |
>>> list(powerset(unique_everseen(seq))) | |
[(), (1,), (0,), (1, 0)] | |
""" | |
s = list(iterable) | |
return chain.from_iterable(combinations(s, r) for r in range(len(s) + 1)) | |
def unique_everseen(iterable, key=None): | |
""" | |
Yield unique elements, preserving order. | |
>>> list(unique_everseen('AAAABBBCCDAABBB')) | |
['A', 'B', 'C', 'D'] | |
>>> list(unique_everseen('ABBCcAD', str.lower)) | |
['A', 'B', 'C', 'D'] | |
Sequences with a mix of hashable and unhashable items can be used. | |
The function will be slower (i.e., `O(n^2)`) for unhashable items. | |
Remember that ``list`` objects are unhashable - you can use the *key* | |
parameter to transform the list to a tuple (which is hashable) to | |
avoid a slowdown. | |
>>> iterable = ([1, 2], [2, 3], [1, 2]) | |
>>> list(unique_everseen(iterable)) # Slow | |
[[1, 2], [2, 3]] | |
>>> list(unique_everseen(iterable, key=tuple)) # Faster | |
[[1, 2], [2, 3]] | |
Similarly, you may want to convert unhashable ``set`` objects with | |
``key=frozenset``. For ``dict`` objects, | |
``key=lambda x: frozenset(x.items())`` can be used. | |
""" | |
seenset = set() | |
seenset_add = seenset.add | |
seenlist = [] | |
seenlist_add = seenlist.append | |
use_key = key is not None | |
for element in iterable: | |
k = key(element) if use_key else element | |
try: | |
if k not in seenset: | |
seenset_add(k) | |
yield element | |
except TypeError: | |
if k not in seenlist: | |
seenlist_add(k) | |
yield element | |
def unique_justseen(iterable, key=None): | |
"""Yields elements in order, ignoring serial duplicates | |
>>> list(unique_justseen('AAAABBBCCDAABBB')) | |
['A', 'B', 'C', 'D', 'A', 'B'] | |
>>> list(unique_justseen('ABBCcAD', str.lower)) | |
['A', 'B', 'C', 'A', 'D'] | |
""" | |
if key is None: | |
return map(operator.itemgetter(0), groupby(iterable)) | |
return map(next, map(operator.itemgetter(1), groupby(iterable, key))) | |
def iter_except(func, exception, first=None): | |
"""Yields results from a function repeatedly until an exception is raised. | |
Converts a call-until-exception interface to an iterator interface. | |
Like ``iter(func, sentinel)``, but uses an exception instead of a sentinel | |
to end the loop. | |
>>> l = [0, 1, 2] | |
>>> list(iter_except(l.pop, IndexError)) | |
[2, 1, 0] | |
Multiple exceptions can be specified as a stopping condition: | |
>>> l = [1, 2, 3, '...', 4, 5, 6] | |
>>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError))) | |
[7, 6, 5] | |
>>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError))) | |
[4, 3, 2] | |
>>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError))) | |
[] | |
""" | |
try: | |
if first is not None: | |
yield first() | |
while 1: | |
yield func() | |
except exception: | |
pass | |
def first_true(iterable, default=None, pred=None): | |
""" | |
Returns the first true value in the iterable. | |
If no true value is found, returns *default* | |
If *pred* is not None, returns the first item for which | |
``pred(item) == True`` . | |
>>> first_true(range(10)) | |
1 | |
>>> first_true(range(10), pred=lambda x: x > 5) | |
6 | |
>>> first_true(range(10), default='missing', pred=lambda x: x > 9) | |
'missing' | |
""" | |
return next(filter(pred, iterable), default) | |
def random_product(*args, repeat=1): | |
"""Draw an item at random from each of the input iterables. | |
>>> random_product('abc', range(4), 'XYZ') # doctest:+SKIP | |
('c', 3, 'Z') | |
If *repeat* is provided as a keyword argument, that many items will be | |
drawn from each iterable. | |
>>> random_product('abcd', range(4), repeat=2) # doctest:+SKIP | |
('a', 2, 'd', 3) | |
This equivalent to taking a random selection from | |
``itertools.product(*args, **kwarg)``. | |
""" | |
pools = [tuple(pool) for pool in args] * repeat | |
return tuple(choice(pool) for pool in pools) | |
def random_permutation(iterable, r=None): | |
"""Return a random *r* length permutation of the elements in *iterable*. | |
If *r* is not specified or is ``None``, then *r* defaults to the length of | |
*iterable*. | |
>>> random_permutation(range(5)) # doctest:+SKIP | |
(3, 4, 0, 1, 2) | |
This equivalent to taking a random selection from | |
``itertools.permutations(iterable, r)``. | |
""" | |
pool = tuple(iterable) | |
r = len(pool) if r is None else r | |
return tuple(sample(pool, r)) | |
def random_combination(iterable, r): | |
"""Return a random *r* length subsequence of the elements in *iterable*. | |
>>> random_combination(range(5), 3) # doctest:+SKIP | |
(2, 3, 4) | |
This equivalent to taking a random selection from | |
``itertools.combinations(iterable, r)``. | |
""" | |
pool = tuple(iterable) | |
n = len(pool) | |
indices = sorted(sample(range(n), r)) | |
return tuple(pool[i] for i in indices) | |
def random_combination_with_replacement(iterable, r): | |
"""Return a random *r* length subsequence of elements in *iterable*, | |
allowing individual elements to be repeated. | |
>>> random_combination_with_replacement(range(3), 5) # doctest:+SKIP | |
(0, 0, 1, 2, 2) | |
This equivalent to taking a random selection from | |
``itertools.combinations_with_replacement(iterable, r)``. | |
""" | |
pool = tuple(iterable) | |
n = len(pool) | |
indices = sorted(randrange(n) for i in range(r)) | |
return tuple(pool[i] for i in indices) | |
def nth_combination(iterable, r, index): | |
"""Equivalent to ``list(combinations(iterable, r))[index]``. | |
The subsequences of *iterable* that are of length *r* can be ordered | |
lexicographically. :func:`nth_combination` computes the subsequence at | |
sort position *index* directly, without computing the previous | |
subsequences. | |
>>> nth_combination(range(5), 3, 5) | |
(0, 3, 4) | |
``ValueError`` will be raised If *r* is negative or greater than the length | |
of *iterable*. | |
``IndexError`` will be raised if the given *index* is invalid. | |
""" | |
pool = tuple(iterable) | |
n = len(pool) | |
if (r < 0) or (r > n): | |
raise ValueError | |
c = 1 | |
k = min(r, n - r) | |
for i in range(1, k + 1): | |
c = c * (n - k + i) // i | |
if index < 0: | |
index += c | |
if (index < 0) or (index >= c): | |
raise IndexError | |
result = [] | |
while r: | |
c, n, r = c * r // n, n - 1, r - 1 | |
while index >= c: | |
index -= c | |
c, n = c * (n - r) // n, n - 1 | |
result.append(pool[-1 - n]) | |
return tuple(result) | |
def prepend(value, iterator): | |
"""Yield *value*, followed by the elements in *iterator*. | |
>>> value = '0' | |
>>> iterator = ['1', '2', '3'] | |
>>> list(prepend(value, iterator)) | |
['0', '1', '2', '3'] | |
To prepend multiple values, see :func:`itertools.chain` | |
or :func:`value_chain`. | |
""" | |
return chain([value], iterator) | |
def convolve(signal, kernel): | |
"""Convolve the iterable *signal* with the iterable *kernel*. | |
>>> signal = (1, 2, 3, 4, 5) | |
>>> kernel = [3, 2, 1] | |
>>> list(convolve(signal, kernel)) | |
[3, 8, 14, 20, 26, 14, 5] | |
Note: the input arguments are not interchangeable, as the *kernel* | |
is immediately consumed and stored. | |
""" | |
# This implementation intentionally doesn't match the one in the itertools | |
# documentation. | |
kernel = tuple(kernel)[::-1] | |
n = len(kernel) | |
window = deque([0], maxlen=n) * n | |
for x in chain(signal, repeat(0, n - 1)): | |
window.append(x) | |
yield _sumprod(kernel, window) | |
def before_and_after(predicate, it): | |
"""A variant of :func:`takewhile` that allows complete access to the | |
remainder of the iterator. | |
>>> it = iter('ABCdEfGhI') | |
>>> all_upper, remainder = before_and_after(str.isupper, it) | |
>>> ''.join(all_upper) | |
'ABC' | |
>>> ''.join(remainder) # takewhile() would lose the 'd' | |
'dEfGhI' | |
Note that the first iterator must be fully consumed before the second | |
iterator can generate valid results. | |
""" | |
it = iter(it) | |
transition = [] | |
def true_iterator(): | |
for elem in it: | |
if predicate(elem): | |
yield elem | |
else: | |
transition.append(elem) | |
return | |
# Note: this is different from itertools recipes to allow nesting | |
# before_and_after remainders into before_and_after again. See tests | |
# for an example. | |
remainder_iterator = chain(transition, it) | |
return true_iterator(), remainder_iterator | |
def triplewise(iterable): | |
"""Return overlapping triplets from *iterable*. | |
>>> list(triplewise('ABCDE')) | |
[('A', 'B', 'C'), ('B', 'C', 'D'), ('C', 'D', 'E')] | |
""" | |
for (a, _), (b, c) in pairwise(pairwise(iterable)): | |
yield a, b, c | |
def sliding_window(iterable, n): | |
"""Return a sliding window of width *n* over *iterable*. | |
>>> list(sliding_window(range(6), 4)) | |
[(0, 1, 2, 3), (1, 2, 3, 4), (2, 3, 4, 5)] | |
If *iterable* has fewer than *n* items, then nothing is yielded: | |
>>> list(sliding_window(range(3), 4)) | |
[] | |
For a variant with more features, see :func:`windowed`. | |
""" | |
it = iter(iterable) | |
window = deque(islice(it, n - 1), maxlen=n) | |
for x in it: | |
window.append(x) | |
yield tuple(window) | |
def subslices(iterable): | |
"""Return all contiguous non-empty subslices of *iterable*. | |
>>> list(subslices('ABC')) | |
[['A'], ['A', 'B'], ['A', 'B', 'C'], ['B'], ['B', 'C'], ['C']] | |
This is similar to :func:`substrings`, but emits items in a different | |
order. | |
""" | |
seq = list(iterable) | |
slices = starmap(slice, combinations(range(len(seq) + 1), 2)) | |
return map(operator.getitem, repeat(seq), slices) | |
def polynomial_from_roots(roots): | |
"""Compute a polynomial's coefficients from its roots. | |
>>> roots = [5, -4, 3] # (x - 5) * (x + 4) * (x - 3) | |
>>> polynomial_from_roots(roots) # x^3 - 4 * x^2 - 17 * x + 60 | |
[1, -4, -17, 60] | |
""" | |
factors = zip(repeat(1), map(operator.neg, roots)) | |
return list(reduce(convolve, factors, [1])) | |
def iter_index(iterable, value, start=0, stop=None): | |
"""Yield the index of each place in *iterable* that *value* occurs, | |
beginning with index *start* and ending before index *stop*. | |
See :func:`locate` for a more general means of finding the indexes | |
associated with particular values. | |
>>> list(iter_index('AABCADEAF', 'A')) | |
[0, 1, 4, 7] | |
>>> list(iter_index('AABCADEAF', 'A', 1)) # start index is inclusive | |
[1, 4, 7] | |
>>> list(iter_index('AABCADEAF', 'A', 1, 7)) # stop index is not inclusive | |
[1, 4] | |
""" | |
seq_index = getattr(iterable, 'index', None) | |
if seq_index is None: | |
# Slow path for general iterables | |
it = islice(iterable, start, stop) | |
for i, element in enumerate(it, start): | |
if element is value or element == value: | |
yield i | |
else: | |
# Fast path for sequences | |
stop = len(iterable) if stop is None else stop | |
i = start - 1 | |
try: | |
while True: | |
yield (i := seq_index(value, i + 1, stop)) | |
except ValueError: | |
pass | |
def sieve(n): | |
"""Yield the primes less than n. | |
>>> list(sieve(30)) | |
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29] | |
""" | |
if n > 2: | |
yield 2 | |
start = 3 | |
data = bytearray((0, 1)) * (n // 2) | |
limit = math.isqrt(n) + 1 | |
for p in iter_index(data, 1, start, limit): | |
yield from iter_index(data, 1, start, p * p) | |
data[p * p : n : p + p] = bytes(len(range(p * p, n, p + p))) | |
start = p * p | |
yield from iter_index(data, 1, start) | |
def _batched(iterable, n, *, strict=False): | |
"""Batch data into tuples of length *n*. If the number of items in | |
*iterable* is not divisible by *n*: | |
* The last batch will be shorter if *strict* is ``False``. | |
* :exc:`ValueError` will be raised if *strict* is ``True``. | |
>>> list(batched('ABCDEFG', 3)) | |
[('A', 'B', 'C'), ('D', 'E', 'F'), ('G',)] | |
On Python 3.13 and above, this is an alias for :func:`itertools.batched`. | |
""" | |
if n < 1: | |
raise ValueError('n must be at least one') | |
it = iter(iterable) | |
while batch := tuple(islice(it, n)): | |
if strict and len(batch) != n: | |
raise ValueError('batched(): incomplete batch') | |
yield batch | |
if hexversion >= 0x30D00A2: | |
from itertools import batched as itertools_batched | |
def batched(iterable, n, *, strict=False): | |
return itertools_batched(iterable, n, strict=strict) | |
else: | |
batched = _batched | |
batched.__doc__ = _batched.__doc__ | |
def transpose(it): | |
"""Swap the rows and columns of the input matrix. | |
>>> list(transpose([(1, 2, 3), (11, 22, 33)])) | |
[(1, 11), (2, 22), (3, 33)] | |
The caller should ensure that the dimensions of the input are compatible. | |
If the input is empty, no output will be produced. | |
""" | |
return _zip_strict(*it) | |
def reshape(matrix, cols): | |
"""Reshape the 2-D input *matrix* to have a column count given by *cols*. | |
>>> matrix = [(0, 1), (2, 3), (4, 5)] | |
>>> cols = 3 | |
>>> list(reshape(matrix, cols)) | |
[(0, 1, 2), (3, 4, 5)] | |
""" | |
return batched(chain.from_iterable(matrix), cols) | |
def matmul(m1, m2): | |
"""Multiply two matrices. | |
>>> list(matmul([(7, 5), (3, 5)], [(2, 5), (7, 9)])) | |
[(49, 80), (41, 60)] | |
The caller should ensure that the dimensions of the input matrices are | |
compatible with each other. | |
""" | |
n = len(m2[0]) | |
return batched(starmap(_sumprod, product(m1, transpose(m2))), n) | |
def factor(n): | |
"""Yield the prime factors of n. | |
>>> list(factor(360)) | |
[2, 2, 2, 3, 3, 5] | |
""" | |
for prime in sieve(math.isqrt(n) + 1): | |
while not n % prime: | |
yield prime | |
n //= prime | |
if n == 1: | |
return | |
if n > 1: | |
yield n | |
def polynomial_eval(coefficients, x): | |
"""Evaluate a polynomial at a specific value. | |
Example: evaluating x^3 - 4 * x^2 - 17 * x + 60 at x = 2.5: | |
>>> coefficients = [1, -4, -17, 60] | |
>>> x = 2.5 | |
>>> polynomial_eval(coefficients, x) | |
8.125 | |
""" | |
n = len(coefficients) | |
if n == 0: | |
return x * 0 # coerce zero to the type of x | |
powers = map(pow, repeat(x), reversed(range(n))) | |
return _sumprod(coefficients, powers) | |
def sum_of_squares(it): | |
"""Return the sum of the squares of the input values. | |
>>> sum_of_squares([10, 20, 30]) | |
1400 | |
""" | |
return _sumprod(*tee(it)) | |
def polynomial_derivative(coefficients): | |
"""Compute the first derivative of a polynomial. | |
Example: evaluating the derivative of x^3 - 4 * x^2 - 17 * x + 60 | |
>>> coefficients = [1, -4, -17, 60] | |
>>> derivative_coefficients = polynomial_derivative(coefficients) | |
>>> derivative_coefficients | |
[3, -8, -17] | |
""" | |
n = len(coefficients) | |
powers = reversed(range(1, n)) | |
return list(map(operator.mul, coefficients, powers)) | |
def totient(n): | |
"""Return the count of natural numbers up to *n* that are coprime with *n*. | |
>>> totient(9) | |
6 | |
>>> totient(12) | |
4 | |
""" | |
for p in unique_justseen(factor(n)): | |
n = n // p * (p - 1) | |
return n | |