peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/tree
/probabilistic.py
# Natural Language Toolkit: Text Trees | |
# | |
# Copyright (C) 2001-2023 NLTK Project | |
# Author: Edward Loper <[email protected]> | |
# Steven Bird <[email protected]> | |
# Peter Ljunglöf <[email protected]> | |
# Tom Aarsen <> | |
# URL: <https://www.nltk.org/> | |
# For license information, see LICENSE.TXT | |
from nltk.internals import raise_unorderable_types | |
from nltk.probability import ProbabilisticMixIn | |
from nltk.tree.immutable import ImmutableProbabilisticTree | |
from nltk.tree.tree import Tree | |
###################################################################### | |
## Probabilistic trees | |
###################################################################### | |
class ProbabilisticTree(Tree, ProbabilisticMixIn): | |
def __init__(self, node, children=None, **prob_kwargs): | |
Tree.__init__(self, node, children) | |
ProbabilisticMixIn.__init__(self, **prob_kwargs) | |
# We have to patch up these methods to make them work right: | |
def _frozen_class(self): | |
return ImmutableProbabilisticTree | |
def __repr__(self): | |
return f"{Tree.__repr__(self)} (p={self.prob()!r})" | |
def __str__(self): | |
return f"{self.pformat(margin=60)} (p={self.prob():.6g})" | |
def copy(self, deep=False): | |
if not deep: | |
return type(self)(self._label, self, prob=self.prob()) | |
else: | |
return type(self).convert(self) | |
def convert(cls, val): | |
if isinstance(val, Tree): | |
children = [cls.convert(child) for child in val] | |
if isinstance(val, ProbabilisticMixIn): | |
return cls(val._label, children, prob=val.prob()) | |
else: | |
return cls(val._label, children, prob=1.0) | |
else: | |
return val | |
def __eq__(self, other): | |
return self.__class__ is other.__class__ and ( | |
self._label, | |
list(self), | |
self.prob(), | |
) == (other._label, list(other), other.prob()) | |
def __lt__(self, other): | |
if not isinstance(other, Tree): | |
raise_unorderable_types("<", self, other) | |
if self.__class__ is other.__class__: | |
return (self._label, list(self), self.prob()) < ( | |
other._label, | |
list(other), | |
other.prob(), | |
) | |
else: | |
return self.__class__.__name__ < other.__class__.__name__ | |
__all__ = ["ProbabilisticTree"] | |