peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/_parquet.pyx
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
# cython: profile=False | |
# distutils: language = c++ | |
from collections.abc import Sequence | |
from textwrap import indent | |
import warnings | |
from cython.operator cimport dereference as deref | |
from pyarrow.includes.common cimport * | |
from pyarrow.includes.libarrow cimport * | |
from pyarrow.includes.libarrow_python cimport * | |
from pyarrow.lib cimport (_Weakrefable, Buffer, Schema, | |
check_status, | |
MemoryPool, maybe_unbox_memory_pool, | |
Table, NativeFile, | |
pyarrow_wrap_chunked_array, | |
pyarrow_wrap_schema, | |
pyarrow_unwrap_schema, | |
pyarrow_wrap_table, | |
pyarrow_wrap_batch, | |
pyarrow_wrap_scalar, | |
NativeFile, get_reader, get_writer, | |
string_to_timeunit) | |
from pyarrow.lib import (ArrowException, NativeFile, BufferOutputStream, | |
_stringify_path, | |
tobytes, frombytes) | |
cimport cpython as cp | |
_DEFAULT_ROW_GROUP_SIZE = 1024*1024 | |
_MAX_ROW_GROUP_SIZE = 64*1024*1024 | |
cdef class Statistics(_Weakrefable): | |
"""Statistics for a single column in a single row group.""" | |
def __cinit__(self): | |
pass | |
def __repr__(self): | |
return """{} | |
has_min_max: {} | |
min: {} | |
max: {} | |
null_count: {} | |
distinct_count: {} | |
num_values: {} | |
physical_type: {} | |
logical_type: {} | |
converted_type (legacy): {}""".format(object.__repr__(self), | |
self.has_min_max, | |
self.min, | |
self.max, | |
self.null_count, | |
self.distinct_count, | |
self.num_values, | |
self.physical_type, | |
str(self.logical_type), | |
self.converted_type) | |
def to_dict(self): | |
""" | |
Get dictionary representation of statistics. | |
Returns | |
------- | |
dict | |
Dictionary with a key for each attribute of this class. | |
""" | |
d = dict( | |
has_min_max=self.has_min_max, | |
min=self.min, | |
max=self.max, | |
null_count=self.null_count, | |
distinct_count=self.distinct_count, | |
num_values=self.num_values, | |
physical_type=self.physical_type | |
) | |
return d | |
def __eq__(self, other): | |
try: | |
return self.equals(other) | |
except TypeError: | |
return NotImplemented | |
def equals(self, Statistics other): | |
""" | |
Return whether the two column statistics objects are equal. | |
Parameters | |
---------- | |
other : Statistics | |
Statistics to compare against. | |
Returns | |
------- | |
are_equal : bool | |
""" | |
return self.statistics.get().Equals(deref(other.statistics.get())) | |
@property | |
def has_min_max(self): | |
"""Whether min and max are present (bool).""" | |
return self.statistics.get().HasMinMax() | |
@property | |
def has_null_count(self): | |
"""Whether null count is present (bool).""" | |
return self.statistics.get().HasNullCount() | |
@property | |
def has_distinct_count(self): | |
"""Whether distinct count is preset (bool).""" | |
return self.statistics.get().HasDistinctCount() | |
@property | |
def min_raw(self): | |
"""Min value as physical type (bool, int, float, or bytes).""" | |
if self.has_min_max: | |
return _cast_statistic_raw_min(self.statistics.get()) | |
else: | |
return None | |
@property | |
def max_raw(self): | |
"""Max value as physical type (bool, int, float, or bytes).""" | |
if self.has_min_max: | |
return _cast_statistic_raw_max(self.statistics.get()) | |
else: | |
return None | |
@property | |
def min(self): | |
""" | |
Min value as logical type. | |
Returned as the Python equivalent of logical type, such as datetime.date | |
for dates and decimal.Decimal for decimals. | |
""" | |
if self.has_min_max: | |
min_scalar, _ = _cast_statistics(self.statistics.get()) | |
return min_scalar.as_py() | |
else: | |
return None | |
@property | |
def max(self): | |
""" | |
Max value as logical type. | |
Returned as the Python equivalent of logical type, such as datetime.date | |
for dates and decimal.Decimal for decimals. | |
""" | |
if self.has_min_max: | |
_, max_scalar = _cast_statistics(self.statistics.get()) | |
return max_scalar.as_py() | |
else: | |
return None | |
@property | |
def null_count(self): | |
"""Number of null values in chunk (int).""" | |
if self.has_null_count: | |
return self.statistics.get().null_count() | |
else: | |
return None | |
@property | |
def distinct_count(self): | |
"""Distinct number of values in chunk (int).""" | |
if self.has_distinct_count: | |
return self.statistics.get().distinct_count() | |
else: | |
return None | |
@property | |
def num_values(self): | |
"""Number of non-null values (int).""" | |
return self.statistics.get().num_values() | |
@property | |
def physical_type(self): | |
"""Physical type of column (str).""" | |
raw_physical_type = self.statistics.get().physical_type() | |
return physical_type_name_from_enum(raw_physical_type) | |
@property | |
def logical_type(self): | |
"""Logical type of column (:class:`ParquetLogicalType`).""" | |
return wrap_logical_type(self.statistics.get().descr().logical_type()) | |
@property | |
def converted_type(self): | |
"""Legacy converted type (str or None).""" | |
raw_converted_type = self.statistics.get().descr().converted_type() | |
return converted_type_name_from_enum(raw_converted_type) | |
cdef class ParquetLogicalType(_Weakrefable): | |
"""Logical type of parquet type.""" | |
cdef: | |
shared_ptr[const CParquetLogicalType] type | |
def __cinit__(self): | |
pass | |
cdef init(self, const shared_ptr[const CParquetLogicalType]& type): | |
self.type = type | |
def __repr__(self): | |
return "{}\n {}".format(object.__repr__(self), str(self)) | |
def __str__(self): | |
return frombytes(self.type.get().ToString(), safe=True) | |
def to_json(self): | |
""" | |
Get a JSON string containing type and type parameters. | |
Returns | |
------- | |
json : str | |
JSON representation of type, with at least a field called 'Type' | |
which contains the type name. If the type is parameterized, such | |
as a decimal with scale and precision, will contain those as fields | |
as well. | |
""" | |
return frombytes(self.type.get().ToJSON()) | |
@property | |
def type(self): | |
"""Name of the logical type (str).""" | |
return logical_type_name_from_enum(self.type.get().type()) | |
cdef wrap_logical_type(const shared_ptr[const CParquetLogicalType]& type): | |
cdef ParquetLogicalType out = ParquetLogicalType() | |
out.init(type) | |
return out | |
cdef _cast_statistic_raw_min(CStatistics* statistics): | |
cdef ParquetType physical_type = statistics.physical_type() | |
cdef uint32_t type_length = statistics.descr().type_length() | |
if physical_type == ParquetType_BOOLEAN: | |
return (<CBoolStatistics*> statistics).min() | |
elif physical_type == ParquetType_INT32: | |
return (<CInt32Statistics*> statistics).min() | |
elif physical_type == ParquetType_INT64: | |
return (<CInt64Statistics*> statistics).min() | |
elif physical_type == ParquetType_FLOAT: | |
return (<CFloatStatistics*> statistics).min() | |
elif physical_type == ParquetType_DOUBLE: | |
return (<CDoubleStatistics*> statistics).min() | |
elif physical_type == ParquetType_BYTE_ARRAY: | |
return _box_byte_array((<CByteArrayStatistics*> statistics).min()) | |
elif physical_type == ParquetType_FIXED_LEN_BYTE_ARRAY: | |
return _box_flba((<CFLBAStatistics*> statistics).min(), type_length) | |
cdef _cast_statistic_raw_max(CStatistics* statistics): | |
cdef ParquetType physical_type = statistics.physical_type() | |
cdef uint32_t type_length = statistics.descr().type_length() | |
if physical_type == ParquetType_BOOLEAN: | |
return (<CBoolStatistics*> statistics).max() | |
elif physical_type == ParquetType_INT32: | |
return (<CInt32Statistics*> statistics).max() | |
elif physical_type == ParquetType_INT64: | |
return (<CInt64Statistics*> statistics).max() | |
elif physical_type == ParquetType_FLOAT: | |
return (<CFloatStatistics*> statistics).max() | |
elif physical_type == ParquetType_DOUBLE: | |
return (<CDoubleStatistics*> statistics).max() | |
elif physical_type == ParquetType_BYTE_ARRAY: | |
return _box_byte_array((<CByteArrayStatistics*> statistics).max()) | |
elif physical_type == ParquetType_FIXED_LEN_BYTE_ARRAY: | |
return _box_flba((<CFLBAStatistics*> statistics).max(), type_length) | |
cdef _cast_statistics(CStatistics* statistics): | |
cdef: | |
shared_ptr[CScalar] c_min | |
shared_ptr[CScalar] c_max | |
check_status(StatisticsAsScalars(statistics[0], &c_min, &c_max)) | |
return (pyarrow_wrap_scalar(c_min), pyarrow_wrap_scalar(c_max)) | |
cdef _box_byte_array(ParquetByteArray val): | |
return cp.PyBytes_FromStringAndSize(<char*> val.ptr, <Py_ssize_t> val.len) | |
cdef _box_flba(ParquetFLBA val, uint32_t len): | |
return cp.PyBytes_FromStringAndSize(<char*> val.ptr, <Py_ssize_t> len) | |
cdef class ColumnChunkMetaData(_Weakrefable): | |
"""Column metadata for a single row group.""" | |
def __cinit__(self): | |
pass | |
def __repr__(self): | |
statistics = indent(repr(self.statistics), 4 * ' ') | |
return """{0} | |
file_offset: {1} | |
file_path: {2} | |
physical_type: {3} | |
num_values: {4} | |
path_in_schema: {5} | |
is_stats_set: {6} | |
statistics: | |
{7} | |
compression: {8} | |
encodings: {9} | |
has_dictionary_page: {10} | |
dictionary_page_offset: {11} | |
data_page_offset: {12} | |
total_compressed_size: {13} | |
total_uncompressed_size: {14}""".format(object.__repr__(self), | |
self.file_offset, | |
self.file_path, | |
self.physical_type, | |
self.num_values, | |
self.path_in_schema, | |
self.is_stats_set, | |
statistics, | |
self.compression, | |
self.encodings, | |
self.has_dictionary_page, | |
self.dictionary_page_offset, | |
self.data_page_offset, | |
self.total_compressed_size, | |
self.total_uncompressed_size) | |
def to_dict(self): | |
""" | |
Get dictionary representation of the column chunk metadata. | |
Returns | |
------- | |
dict | |
Dictionary with a key for each attribute of this class. | |
""" | |
statistics = self.statistics.to_dict() if self.is_stats_set else None | |
d = dict( | |
file_offset=self.file_offset, | |
file_path=self.file_path, | |
physical_type=self.physical_type, | |
num_values=self.num_values, | |
path_in_schema=self.path_in_schema, | |
is_stats_set=self.is_stats_set, | |
statistics=statistics, | |
compression=self.compression, | |
encodings=self.encodings, | |
has_dictionary_page=self.has_dictionary_page, | |
dictionary_page_offset=self.dictionary_page_offset, | |
data_page_offset=self.data_page_offset, | |
total_compressed_size=self.total_compressed_size, | |
total_uncompressed_size=self.total_uncompressed_size | |
) | |
return d | |
def __eq__(self, other): | |
try: | |
return self.equals(other) | |
except TypeError: | |
return NotImplemented | |
def equals(self, ColumnChunkMetaData other): | |
""" | |
Return whether the two column chunk metadata objects are equal. | |
Parameters | |
---------- | |
other : ColumnChunkMetaData | |
Metadata to compare against. | |
Returns | |
------- | |
are_equal : bool | |
""" | |
return self.metadata.Equals(deref(other.metadata)) | |
@property | |
def file_offset(self): | |
"""Offset into file where column chunk is located (int).""" | |
return self.metadata.file_offset() | |
@property | |
def file_path(self): | |
"""Optional file path if set (str or None).""" | |
return frombytes(self.metadata.file_path()) | |
@property | |
def physical_type(self): | |
"""Physical type of column (str).""" | |
return physical_type_name_from_enum(self.metadata.type()) | |
@property | |
def num_values(self): | |
"""Total number of values (int).""" | |
return self.metadata.num_values() | |
@property | |
def path_in_schema(self): | |
"""Nested path to field, separated by periods (str).""" | |
path = self.metadata.path_in_schema().get().ToDotString() | |
return frombytes(path) | |
@property | |
def is_stats_set(self): | |
"""Whether or not statistics are present in metadata (bool).""" | |
return self.metadata.is_stats_set() | |
@property | |
def statistics(self): | |
"""Statistics for column chunk (:class:`Statistics`).""" | |
if not self.metadata.is_stats_set(): | |
return None | |
statistics = Statistics() | |
statistics.init(self.metadata.statistics(), self) | |
return statistics | |
@property | |
def compression(self): | |
""" | |
Type of compression used for column (str). | |
One of 'UNCOMPRESSED', 'SNAPPY', 'GZIP', 'LZO', 'BROTLI', 'LZ4', 'ZSTD', | |
or 'UNKNOWN'. | |
""" | |
return compression_name_from_enum(self.metadata.compression()) | |
@property | |
def encodings(self): | |
""" | |
Encodings used for column (tuple of str). | |
One of 'PLAIN', 'BIT_PACKED', 'RLE', 'BYTE_STREAM_SPLIT', 'DELTA_BINARY_PACKED', | |
'DELTA_LENGTH_BYTE_ARRAY', 'DELTA_BYTE_ARRAY'. | |
""" | |
return tuple(map(encoding_name_from_enum, self.metadata.encodings())) | |
@property | |
def has_dictionary_page(self): | |
"""Whether there is dictionary data present in the column chunk (bool).""" | |
return bool(self.metadata.has_dictionary_page()) | |
@property | |
def dictionary_page_offset(self): | |
"""Offset of dictionary page relative to column chunk offset (int).""" | |
if self.has_dictionary_page: | |
return self.metadata.dictionary_page_offset() | |
else: | |
return None | |
@property | |
def data_page_offset(self): | |
"""Offset of data page relative to column chunk offset (int).""" | |
return self.metadata.data_page_offset() | |
@property | |
def has_index_page(self): | |
"""Not yet supported.""" | |
raise NotImplementedError('not supported in parquet-cpp') | |
@property | |
def index_page_offset(self): | |
"""Not yet supported.""" | |
raise NotImplementedError("parquet-cpp doesn't return valid values") | |
@property | |
def total_compressed_size(self): | |
"""Compressed size in bytes (int).""" | |
return self.metadata.total_compressed_size() | |
@property | |
def total_uncompressed_size(self): | |
"""Uncompressed size in bytes (int).""" | |
return self.metadata.total_uncompressed_size() | |
@property | |
def has_offset_index(self): | |
"""Whether the column chunk has an offset index""" | |
return self.metadata.GetOffsetIndexLocation().has_value() | |
@property | |
def has_column_index(self): | |
"""Whether the column chunk has a column index""" | |
return self.metadata.GetColumnIndexLocation().has_value() | |
cdef class SortingColumn: | |
""" | |
Sorting specification for a single column. | |
Returned by :meth:`RowGroupMetaData.sorting_columns` and used in | |
:class:`ParquetWriter` to specify the sort order of the data. | |
Parameters | |
---------- | |
column_index : int | |
Index of column that data is sorted by. | |
descending : bool, default False | |
Whether column is sorted in descending order. | |
nulls_first : bool, default False | |
Whether null values appear before valid values. | |
Notes | |
----- | |
Column indices are zero-based, refer only to leaf fields, and are in | |
depth-first order. This may make the column indices for nested schemas | |
different from what you expect. In most cases, it will be easier to | |
specify the sort order using column names instead of column indices | |
and converting using the ``from_ordering`` method. | |
Examples | |
-------- | |
In other APIs, sort order is specified by names, such as: | |
>>> sort_order = [('id', 'ascending'), ('timestamp', 'descending')] | |
For Parquet, the column index must be used instead: | |
>>> import pyarrow.parquet as pq | |
>>> [pq.SortingColumn(0), pq.SortingColumn(1, descending=True)] | |
[SortingColumn(column_index=0, descending=False, nulls_first=False), SortingColumn(column_index=1, descending=True, nulls_first=False)] | |
Convert the sort_order into the list of sorting columns with | |
``from_ordering`` (note that the schema must be provided as well): | |
>>> import pyarrow as pa | |
>>> schema = pa.schema([('id', pa.int64()), ('timestamp', pa.timestamp('ms'))]) | |
>>> sorting_columns = pq.SortingColumn.from_ordering(schema, sort_order) | |
>>> sorting_columns | |
(SortingColumn(column_index=0, descending=False, nulls_first=False), SortingColumn(column_index=1, descending=True, nulls_first=False)) | |
Convert back to the sort order with ``to_ordering``: | |
>>> pq.SortingColumn.to_ordering(schema, sorting_columns) | |
((('id', 'ascending'), ('timestamp', 'descending')), 'at_end') | |
See Also | |
-------- | |
RowGroupMetaData.sorting_columns | |
""" | |
cdef int column_index | |
cdef c_bool descending | |
cdef c_bool nulls_first | |
def __init__(self, int column_index, c_bool descending=False, c_bool nulls_first=False): | |
self.column_index = column_index | |
self.descending = descending | |
self.nulls_first = nulls_first | |
@classmethod | |
def from_ordering(cls, Schema schema, sort_keys, null_placement='at_end'): | |
""" | |
Create a tuple of SortingColumn objects from the same arguments as | |
:class:`pyarrow.compute.SortOptions`. | |
Parameters | |
---------- | |
schema : Schema | |
Schema of the input data. | |
sort_keys : Sequence of (name, order) tuples | |
Names of field/column keys (str) to sort the input on, | |
along with the order each field/column is sorted in. | |
Accepted values for `order` are "ascending", "descending". | |
null_placement : {'at_start', 'at_end'}, default 'at_end' | |
Where null values should appear in the sort order. | |
Returns | |
------- | |
sorting_columns : tuple of SortingColumn | |
""" | |
if null_placement == 'at_start': | |
nulls_first = True | |
elif null_placement == 'at_end': | |
nulls_first = False | |
else: | |
raise ValueError('null_placement must be "at_start" or "at_end"') | |
col_map = _name_to_index_map(schema) | |
sorting_columns = [] | |
for sort_key in sort_keys: | |
if isinstance(sort_key, str): | |
name = sort_key | |
descending = False | |
elif (isinstance(sort_key, tuple) and len(sort_key) == 2 and | |
isinstance(sort_key[0], str) and | |
isinstance(sort_key[1], str)): | |
name, descending = sort_key | |
if descending == "descending": | |
descending = True | |
elif descending == "ascending": | |
descending = False | |
else: | |
raise ValueError("Invalid sort key direction: {0}" | |
.format(descending)) | |
else: | |
raise ValueError("Invalid sort key: {0}".format(sort_key)) | |
try: | |
column_index = col_map[name] | |
except KeyError: | |
raise ValueError("Sort key name '{0}' not found in schema:\n{1}" | |
.format(name, schema)) | |
sorting_columns.append( | |
cls(column_index, descending=descending, nulls_first=nulls_first) | |
) | |
return tuple(sorting_columns) | |
@staticmethod | |
def to_ordering(Schema schema, sorting_columns): | |
""" | |
Convert a tuple of SortingColumn objects to the same format as | |
:class:`pyarrow.compute.SortOptions`. | |
Parameters | |
---------- | |
schema : Schema | |
Schema of the input data. | |
sorting_columns : tuple of SortingColumn | |
Columns to sort the input on. | |
Returns | |
------- | |
sort_keys : tuple of (name, order) tuples | |
null_placement : {'at_start', 'at_end'} | |
""" | |
col_map = {i: name for name, i in _name_to_index_map(schema).items()} | |
sort_keys = [] | |
nulls_first = None | |
for sorting_column in sorting_columns: | |
name = col_map[sorting_column.column_index] | |
if sorting_column.descending: | |
order = "descending" | |
else: | |
order = "ascending" | |
sort_keys.append((name, order)) | |
if nulls_first is None: | |
nulls_first = sorting_column.nulls_first | |
elif nulls_first != sorting_column.nulls_first: | |
raise ValueError("Sorting columns have inconsistent null placement") | |
if nulls_first: | |
null_placement = "at_start" | |
else: | |
null_placement = "at_end" | |
return tuple(sort_keys), null_placement | |
def __repr__(self): | |
return """{}(column_index={}, descending={}, nulls_first={})""".format( | |
self.__class__.__name__, | |
self.column_index, self.descending, self.nulls_first) | |
def __eq__(self, SortingColumn other): | |
return (self.column_index == other.column_index and | |
self.descending == other.descending and | |
self.nulls_first == other.nulls_first) | |
def __hash__(self): | |
return hash((self.column_index, self.descending, self.nulls_first)) | |
@property | |
def column_index(self): | |
""""Index of column data is sorted by (int).""" | |
return self.column_index | |
@property | |
def descending(self): | |
"""Whether column is sorted in descending order (bool).""" | |
return self.descending | |
@property | |
def nulls_first(self): | |
"""Whether null values appear before valid values (bool).""" | |
return self.nulls_first | |
cdef class RowGroupMetaData(_Weakrefable): | |
"""Metadata for a single row group.""" | |
def __cinit__(self, FileMetaData parent, int index): | |
if index < 0 or index >= parent.num_row_groups: | |
raise IndexError('{0} out of bounds'.format(index)) | |
self.up_metadata = parent._metadata.RowGroup(index) | |
self.metadata = self.up_metadata.get() | |
self.parent = parent | |
self.index = index | |
def __reduce__(self): | |
return RowGroupMetaData, (self.parent, self.index) | |
def __eq__(self, other): | |
try: | |
return self.equals(other) | |
except TypeError: | |
return NotImplemented | |
def equals(self, RowGroupMetaData other): | |
""" | |
Return whether the two row group metadata objects are equal. | |
Parameters | |
---------- | |
other : RowGroupMetaData | |
Metadata to compare against. | |
Returns | |
------- | |
are_equal : bool | |
""" | |
return self.metadata.Equals(deref(other.metadata)) | |
def column(self, int i): | |
""" | |
Get column metadata at given index. | |
Parameters | |
---------- | |
i : int | |
Index of column to get metadata for. | |
Returns | |
------- | |
ColumnChunkMetaData | |
Metadata for column within this chunk. | |
""" | |
if i < 0 or i >= self.num_columns: | |
raise IndexError('{0} out of bounds'.format(i)) | |
chunk = ColumnChunkMetaData() | |
chunk.init(self, i) | |
return chunk | |
def __repr__(self): | |
return """{0} | |
num_columns: {1} | |
num_rows: {2} | |
total_byte_size: {3} | |
sorting_columns: {4}""".format(object.__repr__(self), | |
self.num_columns, | |
self.num_rows, | |
self.total_byte_size, | |
self.sorting_columns) | |
def to_dict(self): | |
""" | |
Get dictionary representation of the row group metadata. | |
Returns | |
------- | |
dict | |
Dictionary with a key for each attribute of this class. | |
""" | |
columns = [] | |
d = dict( | |
num_columns=self.num_columns, | |
num_rows=self.num_rows, | |
total_byte_size=self.total_byte_size, | |
columns=columns, | |
sorting_columns=[col.to_dict() for col in self.sorting_columns] | |
) | |
for i in range(self.num_columns): | |
columns.append(self.column(i).to_dict()) | |
return d | |
@property | |
def num_columns(self): | |
"""Number of columns in this row group (int).""" | |
return self.metadata.num_columns() | |
@property | |
def num_rows(self): | |
"""Number of rows in this row group (int).""" | |
return self.metadata.num_rows() | |
@property | |
def total_byte_size(self): | |
"""Total byte size of all the uncompressed column data in this row group (int).""" | |
return self.metadata.total_byte_size() | |
@property | |
def sorting_columns(self): | |
"""Columns the row group is sorted by (tuple of :class:`SortingColumn`)).""" | |
out = [] | |
cdef vector[CSortingColumn] sorting_columns = self.metadata.sorting_columns() | |
for sorting_col in sorting_columns: | |
out.append(SortingColumn( | |
sorting_col.column_idx, | |
sorting_col.descending, | |
sorting_col.nulls_first | |
)) | |
return tuple(out) | |
def _reconstruct_filemetadata(Buffer serialized): | |
cdef: | |
FileMetaData metadata = FileMetaData.__new__(FileMetaData) | |
CBuffer *buffer = serialized.buffer.get() | |
uint32_t metadata_len = <uint32_t>buffer.size() | |
metadata.init(CFileMetaData_Make(buffer.data(), &metadata_len)) | |
return metadata | |
cdef class FileMetaData(_Weakrefable): | |
"""Parquet metadata for a single file.""" | |
def __cinit__(self): | |
pass | |
def __reduce__(self): | |
cdef: | |
NativeFile sink = BufferOutputStream() | |
COutputStream* c_sink = sink.get_output_stream().get() | |
with nogil: | |
self._metadata.WriteTo(c_sink) | |
cdef Buffer buffer = sink.getvalue() | |
return _reconstruct_filemetadata, (buffer,) | |
def __hash__(self): | |
return hash((self.schema, | |
self.num_rows, | |
self.num_row_groups, | |
self.format_version, | |
self.serialized_size)) | |
def __repr__(self): | |
return """{0} | |
created_by: {1} | |
num_columns: {2} | |
num_rows: {3} | |
num_row_groups: {4} | |
format_version: {5} | |
serialized_size: {6}""".format(object.__repr__(self), | |
self.created_by, self.num_columns, | |
self.num_rows, self.num_row_groups, | |
self.format_version, | |
self.serialized_size) | |
def to_dict(self): | |
""" | |
Get dictionary representation of the file metadata. | |
Returns | |
------- | |
dict | |
Dictionary with a key for each attribute of this class. | |
""" | |
row_groups = [] | |
d = dict( | |
created_by=self.created_by, | |
num_columns=self.num_columns, | |
num_rows=self.num_rows, | |
num_row_groups=self.num_row_groups, | |
row_groups=row_groups, | |
format_version=self.format_version, | |
serialized_size=self.serialized_size | |
) | |
for i in range(self.num_row_groups): | |
row_groups.append(self.row_group(i).to_dict()) | |
return d | |
def __eq__(self, other): | |
try: | |
return self.equals(other) | |
except TypeError: | |
return NotImplemented | |
def equals(self, FileMetaData other not None): | |
""" | |
Return whether the two file metadata objects are equal. | |
Parameters | |
---------- | |
other : FileMetaData | |
Metadata to compare against. | |
Returns | |
------- | |
are_equal : bool | |
""" | |
return self._metadata.Equals(deref(other._metadata)) | |
@property | |
def schema(self): | |
"""Schema of the file (:class:`ParquetSchema`).""" | |
if self._schema is None: | |
self._schema = ParquetSchema(self) | |
return self._schema | |
@property | |
def serialized_size(self): | |
"""Size of the original thrift encoded metadata footer (int).""" | |
return self._metadata.size() | |
@property | |
def num_columns(self): | |
"""Number of columns in file (int).""" | |
return self._metadata.num_columns() | |
@property | |
def num_rows(self): | |
"""Total number of rows in file (int).""" | |
return self._metadata.num_rows() | |
@property | |
def num_row_groups(self): | |
"""Number of row groups in file (int).""" | |
return self._metadata.num_row_groups() | |
@property | |
def format_version(self): | |
""" | |
Parquet format version used in file (str, such as '1.0', '2.4'). | |
If version is missing or unparsable, will default to assuming '2.6'. | |
""" | |
cdef ParquetVersion version = self._metadata.version() | |
if version == ParquetVersion_V1: | |
return '1.0' | |
elif version == ParquetVersion_V2_0: | |
return 'pseudo-2.0' | |
elif version == ParquetVersion_V2_4: | |
return '2.4' | |
elif version == ParquetVersion_V2_6: | |
return '2.6' | |
else: | |
warnings.warn('Unrecognized file version, assuming 2.6: {}' | |
.format(version)) | |
return '2.6' | |
@property | |
def created_by(self): | |
""" | |
String describing source of the parquet file (str). | |
This typically includes library name and version number. For example, Arrow 7.0's | |
writer returns 'parquet-cpp-arrow version 7.0.0'. | |
""" | |
return frombytes(self._metadata.created_by()) | |
@property | |
def metadata(self): | |
"""Additional metadata as key value pairs (dict[bytes, bytes]).""" | |
cdef: | |
unordered_map[c_string, c_string] metadata | |
const CKeyValueMetadata* underlying_metadata | |
underlying_metadata = self._metadata.key_value_metadata().get() | |
if underlying_metadata != NULL: | |
underlying_metadata.ToUnorderedMap(&metadata) | |
return metadata | |
else: | |
return None | |
def row_group(self, int i): | |
""" | |
Get metadata for row group at index i. | |
Parameters | |
---------- | |
i : int | |
Row group index to get. | |
Returns | |
------- | |
row_group_metadata : RowGroupMetaData | |
""" | |
return RowGroupMetaData(self, i) | |
def set_file_path(self, path): | |
""" | |
Set ColumnChunk file paths to the given value. | |
This method modifies the ``file_path`` field of each ColumnChunk | |
in the FileMetaData to be a particular value. | |
Parameters | |
---------- | |
path : str | |
The file path to set on all ColumnChunks. | |
""" | |
cdef: | |
c_string c_path = tobytes(path) | |
self._metadata.set_file_path(c_path) | |
def append_row_groups(self, FileMetaData other): | |
""" | |
Append row groups from other FileMetaData object. | |
Parameters | |
---------- | |
other : FileMetaData | |
Other metadata to append row groups from. | |
""" | |
cdef shared_ptr[CFileMetaData] c_metadata | |
c_metadata = other.sp_metadata | |
self._metadata.AppendRowGroups(deref(c_metadata)) | |
def write_metadata_file(self, where): | |
""" | |
Write the metadata to a metadata-only Parquet file. | |
Parameters | |
---------- | |
where : path or file-like object | |
Where to write the metadata. Should be a writable path on | |
the local filesystem, or a writable file-like object. | |
""" | |
cdef: | |
shared_ptr[COutputStream] sink | |
c_string c_where | |
try: | |
where = _stringify_path(where) | |
except TypeError: | |
get_writer(where, &sink) | |
else: | |
c_where = tobytes(where) | |
with nogil: | |
sink = GetResultValue(FileOutputStream.Open(c_where)) | |
with nogil: | |
check_status( | |
WriteMetaDataFile(deref(self._metadata), sink.get())) | |
cdef class ParquetSchema(_Weakrefable): | |
"""A Parquet schema.""" | |
def __cinit__(self, FileMetaData container): | |
self.parent = container | |
self.schema = container._metadata.schema() | |
def __repr__(self): | |
return "{0}\n{1}".format( | |
object.__repr__(self), | |
frombytes(self.schema.ToString(), safe=True)) | |
def __reduce__(self): | |
return ParquetSchema, (self.parent,) | |
def __len__(self): | |
return self.schema.num_columns() | |
def __getitem__(self, i): | |
return self.column(i) | |
def __hash__(self): | |
return hash(self.schema.ToString()) | |
@property | |
def names(self): | |
"""Name of each field (list of str).""" | |
return [self[i].name for i in range(len(self))] | |
def to_arrow_schema(self): | |
""" | |
Convert Parquet schema to effective Arrow schema. | |
Returns | |
------- | |
schema : Schema | |
""" | |
cdef shared_ptr[CSchema] sp_arrow_schema | |
with nogil: | |
check_status(FromParquetSchema( | |
self.schema, default_arrow_reader_properties(), | |
self.parent._metadata.key_value_metadata(), | |
&sp_arrow_schema)) | |
return pyarrow_wrap_schema(sp_arrow_schema) | |
def __eq__(self, other): | |
try: | |
return self.equals(other) | |
except TypeError: | |
return NotImplemented | |
def equals(self, ParquetSchema other): | |
""" | |
Return whether the two schemas are equal. | |
Parameters | |
---------- | |
other : ParquetSchema | |
Schema to compare against. | |
Returns | |
------- | |
are_equal : bool | |
""" | |
return self.schema.Equals(deref(other.schema)) | |
def column(self, i): | |
""" | |
Return the schema for a single column. | |
Parameters | |
---------- | |
i : int | |
Index of column in schema. | |
Returns | |
------- | |
column_schema : ColumnSchema | |
""" | |
if i < 0 or i >= len(self): | |
raise IndexError('{0} out of bounds'.format(i)) | |
return ColumnSchema(self, i) | |
cdef class ColumnSchema(_Weakrefable): | |
"""Schema for a single column.""" | |
cdef: | |
int index | |
ParquetSchema parent | |
const ColumnDescriptor* descr | |
def __cinit__(self, ParquetSchema schema, int index): | |
self.parent = schema | |
self.index = index # for pickling support | |
self.descr = schema.schema.Column(index) | |
def __eq__(self, other): | |
try: | |
return self.equals(other) | |
except TypeError: | |
return NotImplemented | |
def __reduce__(self): | |
return ColumnSchema, (self.parent, self.index) | |
def equals(self, ColumnSchema other): | |
""" | |
Return whether the two column schemas are equal. | |
Parameters | |
---------- | |
other : ColumnSchema | |
Schema to compare against. | |
Returns | |
------- | |
are_equal : bool | |
""" | |
return self.descr.Equals(deref(other.descr)) | |
def __repr__(self): | |
physical_type = self.physical_type | |
converted_type = self.converted_type | |
if converted_type == 'DECIMAL': | |
converted_type = 'DECIMAL({0}, {1})'.format(self.precision, | |
self.scale) | |
elif physical_type == 'FIXED_LEN_BYTE_ARRAY': | |
converted_type = ('FIXED_LEN_BYTE_ARRAY(length={0})' | |
.format(self.length)) | |
return """<ParquetColumnSchema> | |
name: {0} | |
path: {1} | |
max_definition_level: {2} | |
max_repetition_level: {3} | |
physical_type: {4} | |
logical_type: {5} | |
converted_type (legacy): {6}""".format(self.name, self.path, | |
self.max_definition_level, | |
self.max_repetition_level, | |
physical_type, | |
str(self.logical_type), | |
converted_type) | |
@property | |
def name(self): | |
"""Name of field (str).""" | |
return frombytes(self.descr.name()) | |
@property | |
def path(self): | |
"""Nested path to field, separated by periods (str).""" | |
return frombytes(self.descr.path().get().ToDotString()) | |
@property | |
def max_definition_level(self): | |
"""Maximum definition level (int).""" | |
return self.descr.max_definition_level() | |
@property | |
def max_repetition_level(self): | |
"""Maximum repetition level (int).""" | |
return self.descr.max_repetition_level() | |
@property | |
def physical_type(self): | |
"""Name of physical type (str).""" | |
return physical_type_name_from_enum(self.descr.physical_type()) | |
@property | |
def logical_type(self): | |
"""Logical type of column (:class:`ParquetLogicalType`).""" | |
return wrap_logical_type(self.descr.logical_type()) | |
@property | |
def converted_type(self): | |
"""Legacy converted type (str or None).""" | |
return converted_type_name_from_enum(self.descr.converted_type()) | |
# FIXED_LEN_BYTE_ARRAY attribute | |
@property | |
def length(self): | |
"""Array length if fixed length byte array type, None otherwise (int or None).""" | |
return self.descr.type_length() | |
# Decimal attributes | |
@property | |
def precision(self): | |
"""Precision if decimal type, None otherwise (int or None).""" | |
return self.descr.type_precision() | |
@property | |
def scale(self): | |
"""Scale if decimal type, None otherwise (int or None).""" | |
return self.descr.type_scale() | |
cdef physical_type_name_from_enum(ParquetType type_): | |
return { | |
ParquetType_BOOLEAN: 'BOOLEAN', | |
ParquetType_INT32: 'INT32', | |
ParquetType_INT64: 'INT64', | |
ParquetType_INT96: 'INT96', | |
ParquetType_FLOAT: 'FLOAT', | |
ParquetType_DOUBLE: 'DOUBLE', | |
ParquetType_BYTE_ARRAY: 'BYTE_ARRAY', | |
ParquetType_FIXED_LEN_BYTE_ARRAY: 'FIXED_LEN_BYTE_ARRAY', | |
}.get(type_, 'UNKNOWN') | |
cdef logical_type_name_from_enum(ParquetLogicalTypeId type_): | |
return { | |
ParquetLogicalType_UNDEFINED: 'UNDEFINED', | |
ParquetLogicalType_STRING: 'STRING', | |
ParquetLogicalType_MAP: 'MAP', | |
ParquetLogicalType_LIST: 'LIST', | |
ParquetLogicalType_ENUM: 'ENUM', | |
ParquetLogicalType_DECIMAL: 'DECIMAL', | |
ParquetLogicalType_DATE: 'DATE', | |
ParquetLogicalType_TIME: 'TIME', | |
ParquetLogicalType_TIMESTAMP: 'TIMESTAMP', | |
ParquetLogicalType_INT: 'INT', | |
ParquetLogicalType_JSON: 'JSON', | |
ParquetLogicalType_BSON: 'BSON', | |
ParquetLogicalType_UUID: 'UUID', | |
ParquetLogicalType_NONE: 'NONE', | |
}.get(type_, 'UNKNOWN') | |
cdef converted_type_name_from_enum(ParquetConvertedType type_): | |
return { | |
ParquetConvertedType_NONE: 'NONE', | |
ParquetConvertedType_UTF8: 'UTF8', | |
ParquetConvertedType_MAP: 'MAP', | |
ParquetConvertedType_MAP_KEY_VALUE: 'MAP_KEY_VALUE', | |
ParquetConvertedType_LIST: 'LIST', | |
ParquetConvertedType_ENUM: 'ENUM', | |
ParquetConvertedType_DECIMAL: 'DECIMAL', | |
ParquetConvertedType_DATE: 'DATE', | |
ParquetConvertedType_TIME_MILLIS: 'TIME_MILLIS', | |
ParquetConvertedType_TIME_MICROS: 'TIME_MICROS', | |
ParquetConvertedType_TIMESTAMP_MILLIS: 'TIMESTAMP_MILLIS', | |
ParquetConvertedType_TIMESTAMP_MICROS: 'TIMESTAMP_MICROS', | |
ParquetConvertedType_UINT_8: 'UINT_8', | |
ParquetConvertedType_UINT_16: 'UINT_16', | |
ParquetConvertedType_UINT_32: 'UINT_32', | |
ParquetConvertedType_UINT_64: 'UINT_64', | |
ParquetConvertedType_INT_8: 'INT_8', | |
ParquetConvertedType_INT_16: 'INT_16', | |
ParquetConvertedType_INT_32: 'INT_32', | |
ParquetConvertedType_INT_64: 'INT_64', | |
ParquetConvertedType_JSON: 'JSON', | |
ParquetConvertedType_BSON: 'BSON', | |
ParquetConvertedType_INTERVAL: 'INTERVAL', | |
}.get(type_, 'UNKNOWN') | |
cdef encoding_name_from_enum(ParquetEncoding encoding_): | |
return { | |
ParquetEncoding_PLAIN: 'PLAIN', | |
ParquetEncoding_PLAIN_DICTIONARY: 'PLAIN_DICTIONARY', | |
ParquetEncoding_RLE: 'RLE', | |
ParquetEncoding_BIT_PACKED: 'BIT_PACKED', | |
ParquetEncoding_DELTA_BINARY_PACKED: 'DELTA_BINARY_PACKED', | |
ParquetEncoding_DELTA_LENGTH_BYTE_ARRAY: 'DELTA_LENGTH_BYTE_ARRAY', | |
ParquetEncoding_DELTA_BYTE_ARRAY: 'DELTA_BYTE_ARRAY', | |
ParquetEncoding_RLE_DICTIONARY: 'RLE_DICTIONARY', | |
ParquetEncoding_BYTE_STREAM_SPLIT: 'BYTE_STREAM_SPLIT', | |
}.get(encoding_, 'UNKNOWN') | |
cdef encoding_enum_from_name(str encoding_name): | |
enc = { | |
'PLAIN': ParquetEncoding_PLAIN, | |
'BIT_PACKED': ParquetEncoding_BIT_PACKED, | |
'RLE': ParquetEncoding_RLE, | |
'BYTE_STREAM_SPLIT': ParquetEncoding_BYTE_STREAM_SPLIT, | |
'DELTA_BINARY_PACKED': ParquetEncoding_DELTA_BINARY_PACKED, | |
'DELTA_LENGTH_BYTE_ARRAY': ParquetEncoding_DELTA_LENGTH_BYTE_ARRAY, | |
'DELTA_BYTE_ARRAY': ParquetEncoding_DELTA_BYTE_ARRAY, | |
'RLE_DICTIONARY': 'dict', | |
'PLAIN_DICTIONARY': 'dict', | |
}.get(encoding_name, None) | |
if enc is None: | |
raise ValueError(f"Unsupported column encoding: {encoding_name!r}") | |
elif enc == 'dict': | |
raise ValueError(f"{encoding_name!r} is already used by default.") | |
else: | |
return enc | |
cdef compression_name_from_enum(ParquetCompression compression_): | |
return { | |
ParquetCompression_UNCOMPRESSED: 'UNCOMPRESSED', | |
ParquetCompression_SNAPPY: 'SNAPPY', | |
ParquetCompression_GZIP: 'GZIP', | |
ParquetCompression_LZO: 'LZO', | |
ParquetCompression_BROTLI: 'BROTLI', | |
ParquetCompression_LZ4: 'LZ4', | |
ParquetCompression_ZSTD: 'ZSTD', | |
}.get(compression_, 'UNKNOWN') | |
cdef int check_compression_name(name) except -1: | |
if name.upper() not in {'NONE', 'SNAPPY', 'GZIP', 'LZO', 'BROTLI', 'LZ4', | |
'ZSTD'}: | |
raise ArrowException("Unsupported compression: " + name) | |
return 0 | |
cdef ParquetCompression compression_from_name(name): | |
name = name.upper() | |
if name == 'SNAPPY': | |
return ParquetCompression_SNAPPY | |
elif name == 'GZIP': | |
return ParquetCompression_GZIP | |
elif name == 'LZO': | |
return ParquetCompression_LZO | |
elif name == 'BROTLI': | |
return ParquetCompression_BROTLI | |
elif name == 'LZ4': | |
return ParquetCompression_LZ4 | |
elif name == 'ZSTD': | |
return ParquetCompression_ZSTD | |
else: | |
return ParquetCompression_UNCOMPRESSED | |
cdef class ParquetReader(_Weakrefable): | |
cdef: | |
object source | |
CMemoryPool* pool | |
UniquePtrNoGIL[FileReader] reader | |
FileMetaData _metadata | |
shared_ptr[CRandomAccessFile] rd_handle | |
cdef public: | |
_column_idx_map | |
def __cinit__(self, MemoryPool memory_pool=None): | |
self.pool = maybe_unbox_memory_pool(memory_pool) | |
self._metadata = None | |
def open(self, object source not None, *, bint use_memory_map=False, | |
read_dictionary=None, FileMetaData metadata=None, | |
int buffer_size=0, bint pre_buffer=False, | |
coerce_int96_timestamp_unit=None, | |
FileDecryptionProperties decryption_properties=None, | |
thrift_string_size_limit=None, | |
thrift_container_size_limit=None, | |
page_checksum_verification=False): | |
""" | |
Open a parquet file for reading. | |
Parameters | |
---------- | |
source : str, pathlib.Path, pyarrow.NativeFile, or file-like object | |
use_memory_map : bool, default False | |
read_dictionary : iterable[int or str], optional | |
metadata : FileMetaData, optional | |
buffer_size : int, default 0 | |
pre_buffer : bool, default False | |
coerce_int96_timestamp_unit : str, optional | |
decryption_properties : FileDecryptionProperties, optional | |
thrift_string_size_limit : int, optional | |
thrift_container_size_limit : int, optional | |
page_checksum_verification : bool, default False | |
""" | |
cdef: | |
shared_ptr[CFileMetaData] c_metadata | |
CReaderProperties properties = default_reader_properties() | |
ArrowReaderProperties arrow_props = ( | |
default_arrow_reader_properties()) | |
FileReaderBuilder builder | |
if metadata is not None: | |
c_metadata = metadata.sp_metadata | |
if buffer_size > 0: | |
properties.enable_buffered_stream() | |
properties.set_buffer_size(buffer_size) | |
elif buffer_size == 0: | |
properties.disable_buffered_stream() | |
else: | |
raise ValueError('Buffer size must be larger than zero') | |
if thrift_string_size_limit is not None: | |
if thrift_string_size_limit <= 0: | |
raise ValueError("thrift_string_size_limit " | |
"must be larger than zero") | |
properties.set_thrift_string_size_limit(thrift_string_size_limit) | |
if thrift_container_size_limit is not None: | |
if thrift_container_size_limit <= 0: | |
raise ValueError("thrift_container_size_limit " | |
"must be larger than zero") | |
properties.set_thrift_container_size_limit( | |
thrift_container_size_limit) | |
if decryption_properties is not None: | |
properties.file_decryption_properties( | |
decryption_properties.unwrap()) | |
arrow_props.set_pre_buffer(pre_buffer) | |
properties.set_page_checksum_verification(page_checksum_verification) | |
if coerce_int96_timestamp_unit is None: | |
# use the default defined in default_arrow_reader_properties() | |
pass | |
else: | |
arrow_props.set_coerce_int96_timestamp_unit( | |
string_to_timeunit(coerce_int96_timestamp_unit)) | |
self.source = source | |
get_reader(source, use_memory_map, &self.rd_handle) | |
with nogil: | |
check_status(builder.Open(self.rd_handle, properties, c_metadata)) | |
# Set up metadata | |
with nogil: | |
c_metadata = builder.raw_reader().metadata() | |
self._metadata = result = FileMetaData() | |
result.init(c_metadata) | |
if read_dictionary is not None: | |
self._set_read_dictionary(read_dictionary, &arrow_props) | |
with nogil: | |
check_status(builder.memory_pool(self.pool) | |
.properties(arrow_props) | |
.Build(&self.reader)) | |
cdef _set_read_dictionary(self, read_dictionary, | |
ArrowReaderProperties* props): | |
for column in read_dictionary: | |
if not isinstance(column, int): | |
column = self.column_name_idx(column) | |
props.set_read_dictionary(column, True) | |
@property | |
def column_paths(self): | |
cdef: | |
FileMetaData container = self.metadata | |
const CFileMetaData* metadata = container._metadata | |
vector[c_string] path | |
int i = 0 | |
paths = [] | |
for i in range(0, metadata.num_columns()): | |
path = (metadata.schema().Column(i) | |
.path().get().ToDotVector()) | |
paths.append([frombytes(x) for x in path]) | |
return paths | |
@property | |
def metadata(self): | |
return self._metadata | |
@property | |
def schema_arrow(self): | |
cdef shared_ptr[CSchema] out | |
with nogil: | |
check_status(self.reader.get().GetSchema(&out)) | |
return pyarrow_wrap_schema(out) | |
@property | |
def num_row_groups(self): | |
return self.reader.get().num_row_groups() | |
def set_use_threads(self, bint use_threads): | |
""" | |
Parameters | |
---------- | |
use_threads : bool | |
""" | |
self.reader.get().set_use_threads(use_threads) | |
def set_batch_size(self, int64_t batch_size): | |
""" | |
Parameters | |
---------- | |
batch_size : int64 | |
""" | |
self.reader.get().set_batch_size(batch_size) | |
def iter_batches(self, int64_t batch_size, row_groups, column_indices=None, | |
bint use_threads=True): | |
""" | |
Parameters | |
---------- | |
batch_size : int64 | |
row_groups : list[int] | |
column_indices : list[int], optional | |
use_threads : bool, default True | |
Yields | |
------ | |
next : RecordBatch | |
""" | |
cdef: | |
vector[int] c_row_groups | |
vector[int] c_column_indices | |
shared_ptr[CRecordBatch] record_batch | |
UniquePtrNoGIL[CRecordBatchReader] recordbatchreader | |
self.set_batch_size(batch_size) | |
if use_threads: | |
self.set_use_threads(use_threads) | |
for row_group in row_groups: | |
c_row_groups.push_back(row_group) | |
if column_indices is not None: | |
for index in column_indices: | |
c_column_indices.push_back(index) | |
with nogil: | |
check_status( | |
self.reader.get().GetRecordBatchReader( | |
c_row_groups, c_column_indices, &recordbatchreader | |
) | |
) | |
else: | |
with nogil: | |
check_status( | |
self.reader.get().GetRecordBatchReader( | |
c_row_groups, &recordbatchreader | |
) | |
) | |
while True: | |
with nogil: | |
check_status( | |
recordbatchreader.get().ReadNext(&record_batch) | |
) | |
if record_batch.get() == NULL: | |
break | |
yield pyarrow_wrap_batch(record_batch) | |
def read_row_group(self, int i, column_indices=None, | |
bint use_threads=True): | |
""" | |
Parameters | |
---------- | |
i : int | |
column_indices : list[int], optional | |
use_threads : bool, default True | |
Returns | |
------- | |
table : pyarrow.Table | |
""" | |
return self.read_row_groups([i], column_indices, use_threads) | |
def read_row_groups(self, row_groups not None, column_indices=None, | |
bint use_threads=True): | |
""" | |
Parameters | |
---------- | |
row_groups : list[int] | |
column_indices : list[int], optional | |
use_threads : bool, default True | |
Returns | |
------- | |
table : pyarrow.Table | |
""" | |
cdef: | |
shared_ptr[CTable] ctable | |
vector[int] c_row_groups | |
vector[int] c_column_indices | |
self.set_use_threads(use_threads) | |
for row_group in row_groups: | |
c_row_groups.push_back(row_group) | |
if column_indices is not None: | |
for index in column_indices: | |
c_column_indices.push_back(index) | |
with nogil: | |
check_status(self.reader.get() | |
.ReadRowGroups(c_row_groups, c_column_indices, | |
&ctable)) | |
else: | |
# Read all columns | |
with nogil: | |
check_status(self.reader.get() | |
.ReadRowGroups(c_row_groups, &ctable)) | |
return pyarrow_wrap_table(ctable) | |
def read_all(self, column_indices=None, bint use_threads=True): | |
""" | |
Parameters | |
---------- | |
column_indices : list[int], optional | |
use_threads : bool, default True | |
Returns | |
------- | |
table : pyarrow.Table | |
""" | |
cdef: | |
shared_ptr[CTable] ctable | |
vector[int] c_column_indices | |
self.set_use_threads(use_threads) | |
if column_indices is not None: | |
for index in column_indices: | |
c_column_indices.push_back(index) | |
with nogil: | |
check_status(self.reader.get() | |
.ReadTable(c_column_indices, &ctable)) | |
else: | |
# Read all columns | |
with nogil: | |
check_status(self.reader.get() | |
.ReadTable(&ctable)) | |
return pyarrow_wrap_table(ctable) | |
def scan_contents(self, column_indices=None, batch_size=65536): | |
""" | |
Parameters | |
---------- | |
column_indices : list[int], optional | |
batch_size : int32, default 65536 | |
Returns | |
------- | |
num_rows : int64 | |
""" | |
cdef: | |
vector[int] c_column_indices | |
int32_t c_batch_size | |
int64_t c_num_rows | |
if column_indices is not None: | |
for index in column_indices: | |
c_column_indices.push_back(index) | |
c_batch_size = batch_size | |
with nogil: | |
check_status(self.reader.get() | |
.ScanContents(c_column_indices, c_batch_size, | |
&c_num_rows)) | |
return c_num_rows | |
def column_name_idx(self, column_name): | |
""" | |
Find the index of a column by its name. | |
Parameters | |
---------- | |
column_name : str | |
Name of the column; separation of nesting levels is done via ".". | |
Returns | |
------- | |
column_idx : int | |
Integer index of the column in the schema. | |
""" | |
cdef: | |
FileMetaData container = self.metadata | |
const CFileMetaData* metadata = container._metadata | |
int i = 0 | |
if self._column_idx_map is None: | |
self._column_idx_map = {} | |
for i in range(0, metadata.num_columns()): | |
col_bytes = tobytes(metadata.schema().Column(i) | |
.path().get().ToDotString()) | |
self._column_idx_map[col_bytes] = i | |
return self._column_idx_map[tobytes(column_name)] | |
def read_column(self, int column_index): | |
""" | |
Read the column at the specified index. | |
Parameters | |
---------- | |
column_index : int | |
Index of the column. | |
Returns | |
------- | |
column : pyarrow.ChunkedArray | |
""" | |
cdef shared_ptr[CChunkedArray] out | |
with nogil: | |
check_status(self.reader.get() | |
.ReadColumn(column_index, &out)) | |
return pyarrow_wrap_chunked_array(out) | |
def close(self): | |
if not self.closed: | |
with nogil: | |
check_status(self.rd_handle.get().Close()) | |
@property | |
def closed(self): | |
if self.rd_handle == NULL: | |
return True | |
with nogil: | |
closed = self.rd_handle.get().closed() | |
return closed | |
cdef CSortingColumn _convert_sorting_column(SortingColumn sorting_column): | |
cdef CSortingColumn c_sorting_column | |
c_sorting_column.column_idx = sorting_column.column_index | |
c_sorting_column.descending = sorting_column.descending | |
c_sorting_column.nulls_first = sorting_column.nulls_first | |
return c_sorting_column | |
cdef vector[CSortingColumn] _convert_sorting_columns(sorting_columns) except *: | |
if not (isinstance(sorting_columns, Sequence) | |
and all(isinstance(col, SortingColumn) for col in sorting_columns)): | |
raise ValueError( | |
"'sorting_columns' must be a list of `SortingColumn`") | |
cdef vector[CSortingColumn] c_sorting_columns = [_convert_sorting_column(col) | |
for col in sorting_columns] | |
return c_sorting_columns | |
cdef shared_ptr[WriterProperties] _create_writer_properties( | |
use_dictionary=None, | |
compression=None, | |
version=None, | |
write_statistics=None, | |
data_page_size=None, | |
compression_level=None, | |
use_byte_stream_split=False, | |
column_encoding=None, | |
data_page_version=None, | |
FileEncryptionProperties encryption_properties=None, | |
write_batch_size=None, | |
dictionary_pagesize_limit=None, | |
write_page_index=False, | |
write_page_checksum=False, | |
sorting_columns=None) except *: | |
"""General writer properties""" | |
cdef: | |
shared_ptr[WriterProperties] properties | |
WriterProperties.Builder props | |
# data_page_version | |
if data_page_version is not None: | |
if data_page_version == "1.0": | |
props.data_page_version(ParquetDataPageVersion_V1) | |
elif data_page_version == "2.0": | |
props.data_page_version(ParquetDataPageVersion_V2) | |
else: | |
raise ValueError("Unsupported Parquet data page version: {0}" | |
.format(data_page_version)) | |
# version | |
if version is not None: | |
if version == "1.0": | |
props.version(ParquetVersion_V1) | |
elif version in ("2.0", "pseudo-2.0"): | |
warnings.warn( | |
"Parquet format '2.0' pseudo version is deprecated, use " | |
"'2.4' or '2.6' for fine-grained feature selection", | |
FutureWarning, stacklevel=2) | |
props.version(ParquetVersion_V2_0) | |
elif version == "2.4": | |
props.version(ParquetVersion_V2_4) | |
elif version == "2.6": | |
props.version(ParquetVersion_V2_6) | |
else: | |
raise ValueError("Unsupported Parquet format version: {0}" | |
.format(version)) | |
# compression | |
if isinstance(compression, basestring): | |
check_compression_name(compression) | |
props.compression(compression_from_name(compression)) | |
elif compression is not None: | |
for column, codec in compression.iteritems(): | |
check_compression_name(codec) | |
props.compression(tobytes(column), compression_from_name(codec)) | |
if isinstance(compression_level, int): | |
props.compression_level(compression_level) | |
elif compression_level is not None: | |
for column, level in compression_level.iteritems(): | |
props.compression_level(tobytes(column), level) | |
# use_dictionary | |
if isinstance(use_dictionary, bool): | |
if use_dictionary: | |
props.enable_dictionary() | |
if column_encoding is not None: | |
raise ValueError( | |
"To use 'column_encoding' set 'use_dictionary' to False") | |
else: | |
props.disable_dictionary() | |
elif use_dictionary is not None: | |
# Deactivate dictionary encoding by default | |
props.disable_dictionary() | |
for column in use_dictionary: | |
props.enable_dictionary(tobytes(column)) | |
if (column_encoding is not None and | |
column_encoding.get(column) is not None): | |
raise ValueError( | |
"To use 'column_encoding' set 'use_dictionary' to False") | |
# write_statistics | |
if isinstance(write_statistics, bool): | |
if write_statistics: | |
props.enable_statistics() | |
else: | |
props.disable_statistics() | |
elif write_statistics is not None: | |
# Deactivate statistics by default and enable for specified columns | |
props.disable_statistics() | |
for column in write_statistics: | |
props.enable_statistics(tobytes(column)) | |
# sorting_columns | |
if sorting_columns is not None: | |
props.set_sorting_columns(_convert_sorting_columns(sorting_columns)) | |
# use_byte_stream_split | |
if isinstance(use_byte_stream_split, bool): | |
if use_byte_stream_split: | |
if column_encoding is not None: | |
raise ValueError( | |
"'use_byte_stream_split' cannot be passed" | |
"together with 'column_encoding'") | |
else: | |
props.encoding(ParquetEncoding_BYTE_STREAM_SPLIT) | |
elif use_byte_stream_split is not None: | |
for column in use_byte_stream_split: | |
if column_encoding is None: | |
column_encoding = {column: 'BYTE_STREAM_SPLIT'} | |
elif column_encoding.get(column, None) is None: | |
column_encoding[column] = 'BYTE_STREAM_SPLIT' | |
else: | |
raise ValueError( | |
"'use_byte_stream_split' cannot be passed" | |
"together with 'column_encoding'") | |
# column_encoding | |
# encoding map - encode individual columns | |
if column_encoding is not None: | |
if isinstance(column_encoding, dict): | |
for column, _encoding in column_encoding.items(): | |
props.encoding(tobytes(column), | |
encoding_enum_from_name(_encoding)) | |
elif isinstance(column_encoding, str): | |
props.encoding(encoding_enum_from_name(column_encoding)) | |
else: | |
raise TypeError( | |
"'column_encoding' should be a dictionary or a string") | |
if data_page_size is not None: | |
props.data_pagesize(data_page_size) | |
if write_batch_size is not None: | |
props.write_batch_size(write_batch_size) | |
if dictionary_pagesize_limit is not None: | |
props.dictionary_pagesize_limit(dictionary_pagesize_limit) | |
# encryption | |
if encryption_properties is not None: | |
props.encryption( | |
(<FileEncryptionProperties>encryption_properties).unwrap()) | |
# For backwards compatibility reasons we cap the maximum row group size | |
# at 64Mi rows. This could be changed in the future, though it would be | |
# a breaking change. | |
# | |
# The user can always specify a smaller row group size (and the default | |
# is smaller) when calling write_table. If the call to write_table uses | |
# a size larger than this then it will be latched to this value. | |
props.max_row_group_length(_MAX_ROW_GROUP_SIZE) | |
# checksum | |
if write_page_checksum: | |
props.enable_page_checksum() | |
else: | |
props.disable_page_checksum() | |
# page index | |
if write_page_index: | |
props.enable_write_page_index() | |
else: | |
props.disable_write_page_index() | |
properties = props.build() | |
return properties | |
cdef shared_ptr[ArrowWriterProperties] _create_arrow_writer_properties( | |
use_deprecated_int96_timestamps=False, | |
coerce_timestamps=None, | |
allow_truncated_timestamps=False, | |
writer_engine_version=None, | |
use_compliant_nested_type=True, | |
store_schema=True) except *: | |
"""Arrow writer properties""" | |
cdef: | |
shared_ptr[ArrowWriterProperties] arrow_properties | |
ArrowWriterProperties.Builder arrow_props | |
# Store the original Arrow schema so things like dictionary types can | |
# be automatically reconstructed | |
if store_schema: | |
arrow_props.store_schema() | |
# int96 support | |
if use_deprecated_int96_timestamps: | |
arrow_props.enable_deprecated_int96_timestamps() | |
else: | |
arrow_props.disable_deprecated_int96_timestamps() | |
# coerce_timestamps | |
if coerce_timestamps == 'ms': | |
arrow_props.coerce_timestamps(TimeUnit_MILLI) | |
elif coerce_timestamps == 'us': | |
arrow_props.coerce_timestamps(TimeUnit_MICRO) | |
elif coerce_timestamps is not None: | |
raise ValueError('Invalid value for coerce_timestamps: {0}' | |
.format(coerce_timestamps)) | |
# allow_truncated_timestamps | |
if allow_truncated_timestamps: | |
arrow_props.allow_truncated_timestamps() | |
else: | |
arrow_props.disallow_truncated_timestamps() | |
# use_compliant_nested_type | |
if use_compliant_nested_type: | |
arrow_props.enable_compliant_nested_types() | |
else: | |
arrow_props.disable_compliant_nested_types() | |
# writer_engine_version | |
if writer_engine_version == "V1": | |
warnings.warn("V1 parquet writer engine is a no-op. Use V2.") | |
arrow_props.set_engine_version(ArrowWriterEngineVersion.V1) | |
elif writer_engine_version != "V2": | |
raise ValueError("Unsupported Writer Engine Version: {0}" | |
.format(writer_engine_version)) | |
arrow_properties = arrow_props.build() | |
return arrow_properties | |
cdef _name_to_index_map(Schema arrow_schema): | |
cdef: | |
shared_ptr[CSchema] sp_arrow_schema | |
shared_ptr[SchemaDescriptor] sp_parquet_schema | |
shared_ptr[WriterProperties] props = _create_writer_properties() | |
shared_ptr[ArrowWriterProperties] arrow_props = _create_arrow_writer_properties( | |
use_deprecated_int96_timestamps=False, | |
coerce_timestamps=None, | |
allow_truncated_timestamps=False, | |
writer_engine_version="V2" | |
) | |
sp_arrow_schema = pyarrow_unwrap_schema(arrow_schema) | |
with nogil: | |
check_status(ToParquetSchema( | |
sp_arrow_schema.get(), deref(props.get()), deref(arrow_props.get()), &sp_parquet_schema)) | |
out = dict() | |
cdef SchemaDescriptor* parquet_schema = sp_parquet_schema.get() | |
for i in range(parquet_schema.num_columns()): | |
name = frombytes(parquet_schema.Column(i).path().get().ToDotString()) | |
out[name] = i | |
return out | |
cdef class ParquetWriter(_Weakrefable): | |
cdef: | |
unique_ptr[FileWriter] writer | |
shared_ptr[COutputStream] sink | |
bint own_sink | |
cdef readonly: | |
object use_dictionary | |
object use_deprecated_int96_timestamps | |
object use_byte_stream_split | |
object column_encoding | |
object coerce_timestamps | |
object allow_truncated_timestamps | |
object compression | |
object compression_level | |
object data_page_version | |
object use_compliant_nested_type | |
object version | |
object write_statistics | |
object writer_engine_version | |
int row_group_size | |
int64_t data_page_size | |
FileEncryptionProperties encryption_properties | |
int64_t write_batch_size | |
int64_t dictionary_pagesize_limit | |
object store_schema | |
def __cinit__(self, where, Schema schema not None, use_dictionary=None, | |
compression=None, version=None, | |
write_statistics=None, | |
MemoryPool memory_pool=None, | |
use_deprecated_int96_timestamps=False, | |
coerce_timestamps=None, | |
data_page_size=None, | |
allow_truncated_timestamps=False, | |
compression_level=None, | |
use_byte_stream_split=False, | |
column_encoding=None, | |
writer_engine_version=None, | |
data_page_version=None, | |
use_compliant_nested_type=True, | |
encryption_properties=None, | |
write_batch_size=None, | |
dictionary_pagesize_limit=None, | |
store_schema=True, | |
write_page_index=False, | |
write_page_checksum=False, | |
sorting_columns=None): | |
cdef: | |
shared_ptr[WriterProperties] properties | |
shared_ptr[ArrowWriterProperties] arrow_properties | |
c_string c_where | |
CMemoryPool* pool | |
try: | |
where = _stringify_path(where) | |
except TypeError: | |
get_writer(where, &self.sink) | |
self.own_sink = False | |
else: | |
c_where = tobytes(where) | |
with nogil: | |
self.sink = GetResultValue(FileOutputStream.Open(c_where)) | |
self.own_sink = True | |
properties = _create_writer_properties( | |
use_dictionary=use_dictionary, | |
compression=compression, | |
version=version, | |
write_statistics=write_statistics, | |
data_page_size=data_page_size, | |
compression_level=compression_level, | |
use_byte_stream_split=use_byte_stream_split, | |
column_encoding=column_encoding, | |
data_page_version=data_page_version, | |
encryption_properties=encryption_properties, | |
write_batch_size=write_batch_size, | |
dictionary_pagesize_limit=dictionary_pagesize_limit, | |
write_page_index=write_page_index, | |
write_page_checksum=write_page_checksum, | |
sorting_columns=sorting_columns, | |
) | |
arrow_properties = _create_arrow_writer_properties( | |
use_deprecated_int96_timestamps=use_deprecated_int96_timestamps, | |
coerce_timestamps=coerce_timestamps, | |
allow_truncated_timestamps=allow_truncated_timestamps, | |
writer_engine_version=writer_engine_version, | |
use_compliant_nested_type=use_compliant_nested_type, | |
store_schema=store_schema, | |
) | |
pool = maybe_unbox_memory_pool(memory_pool) | |
with nogil: | |
self.writer = move(GetResultValue( | |
FileWriter.Open(deref(schema.schema), pool, | |
self.sink, properties, arrow_properties))) | |
def close(self): | |
with nogil: | |
check_status(self.writer.get().Close()) | |
if self.own_sink: | |
check_status(self.sink.get().Close()) | |
def write_table(self, Table table, row_group_size=None): | |
cdef: | |
CTable* ctable = table.table | |
int64_t c_row_group_size | |
if row_group_size is None or row_group_size == -1: | |
c_row_group_size = min(ctable.num_rows(), _DEFAULT_ROW_GROUP_SIZE) | |
elif row_group_size == 0: | |
raise ValueError('Row group size cannot be 0') | |
else: | |
c_row_group_size = row_group_size | |
with nogil: | |
check_status(self.writer.get() | |
.WriteTable(deref(ctable), c_row_group_size)) | |
@property | |
def metadata(self): | |
cdef: | |
shared_ptr[CFileMetaData] metadata | |
FileMetaData result | |
with nogil: | |
metadata = self.writer.get().metadata() | |
if metadata: | |
result = FileMetaData() | |
result.init(metadata) | |
return result | |
raise RuntimeError( | |
'file metadata is only available after writer close') | |