peacock-data-public-datasets-idc-cronscript
/
lm-evaluation-harness
/lm_eval
/models
/openai_completions.py
import copy | |
import os | |
from collections import defaultdict | |
from importlib.util import find_spec | |
from typing import List, Literal, Optional, Tuple | |
from tqdm import tqdm | |
import lm_eval.models.utils | |
from lm_eval import utils | |
from lm_eval.api.model import LM, TemplateLM | |
from lm_eval.api.registry import register_model | |
from lm_eval.models.utils import retry_on_specific_exceptions | |
from lm_eval.utils import eval_logger | |
def get_result(response, ctxlen: int) -> Tuple[float, bool]: | |
"""Process results from OpenAI API response. | |
:param response: dict | |
OpenAI API Response | |
:param ctxlen: int | |
Length of context (so we can slice them away and only keep the predictions) | |
:return: | |
continuation_logprobs: np.array | |
Log probabilities of continuation tokens | |
is_greedy: bool | |
whether argmax matches given continuation exactly | |
""" | |
is_greedy = True | |
logprobs = response.logprobs.token_logprobs | |
continuation_logprobs = sum(logprobs[ctxlen:]) | |
for i in range(ctxlen, len(response.logprobs.token_logprobs)): | |
token = response.logprobs.token_logprobs[i] | |
top_tokens = response.logprobs.top_logprobs[i] | |
top_token = max(top_tokens.keys(), key=lambda x: top_tokens[x]) | |
if top_token != token: | |
is_greedy = False | |
break | |
return continuation_logprobs, is_greedy | |
def oa_completion(client, chat: bool = False, **kwargs): | |
"""Query OpenAI API for completion. | |
Retry with back-off until they respond | |
""" | |
if not find_spec("openai") or not find_spec("tiktoken"): | |
raise Exception( | |
"attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. " | |
"Please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`" | |
) | |
else: | |
import openai | |
def _exception_callback(e: Exception, sleep_time: float) -> None: | |
import traceback | |
traceback.print_exc() | |
def completion(): | |
if chat: | |
return client.chat.completions.create(**kwargs) | |
else: | |
return client.completions.create(**kwargs) | |
return completion() | |
class OpenaiCompletionsLM(TemplateLM): | |
_DEFAULT_MAX_LENGTH = 2048 | |
def __init__( | |
self, | |
model: str, | |
base_url: str = None, | |
tokenizer: Optional[str] = None, | |
tokenizer_backend: Literal["tiktoken", "huggingface"] = "tiktoken", | |
truncate: bool = False, | |
max_gen_toks: int = 256, | |
batch_size: int = 1, | |
seed: int = 1234, | |
max_length: Optional[int] = None, | |
) -> None: | |
""" | |
:param engine: str | |
OpenAI API engine (e.g. gpt-3.5-turbo-instruct) | |
:param truncate: bool | |
Truncate input if too long (if False and input is too long, throw error) | |
""" | |
super().__init__() | |
self.seed = seed | |
try: | |
import openai # noqa: E401 | |
import tiktoken | |
except ModuleNotFoundError: | |
raise Exception( | |
"attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \ | |
please install these via `pip install lm-eval[openai]` or `pip install -e .\"[openai]\"`", | |
) | |
self.model = model | |
self.base_url = base_url | |
self.tokenizer_backend = tokenizer_backend | |
self.truncate = truncate | |
self._batch_size = int(batch_size) | |
self._max_gen_toks = max_gen_toks | |
self._max_length = max_length | |
# if we have a local model, use HF tokenizer over tiktoken | |
if self.tokenizer_backend == "huggingface": | |
import transformers # noqa: E401 | |
self.tokenizer = transformers.AutoTokenizer.from_pretrained( | |
tokenizer if tokenizer else self.model | |
) | |
self.vocab_size = self.tokenizer.vocab | |
self.end_of_text_token_id = self.tokenizer.eos_token | |
elif self.tokenizer_backend == "tiktoken": | |
if self.base_url: | |
eval_logger.warning( | |
f"Passed `base_url={self.base_url}` but using Tiktoken tokenizer backend. " | |
"Pass `tokenizer_backend=huggingface` and provide the HF tokenizer name if your model does not use Tiktoken." | |
) | |
self.tokenizer = tiktoken.encoding_for_model(self.model) | |
self.vocab_size = self.tokenizer.n_vocab | |
self.end_of_text_token_id = self.tokenizer.eot_token | |
else: | |
raise ValueError( | |
f"Expected tokenizer_backend to be one of ['tiktoken', 'huggingface'] but got {self.tokenizer_backend}" | |
) | |
# Read from environment variable OPENAI_API_KEY | |
# Set to EMPTY for local | |
openai.api_key = os.environ["OPENAI_API_KEY"] | |
if self.base_url: | |
self.client = openai.OpenAI(base_url=self.base_url) | |
else: | |
self.client = openai.OpenAI() | |
def eot_token_id(self): | |
return self.end_of_text_token_id | |
def max_length(self) -> int: | |
if self._max_length: | |
return self._max_length | |
else: | |
return self._DEFAULT_MAX_LENGTH | |
def max_gen_toks(self) -> int: | |
return self._max_gen_toks | |
def batch_size(self) -> int: | |
return self._batch_size | |
def device(self): | |
# Isn't used because we override _loglikelihood_tokens | |
raise NotImplementedError() | |
def tok_encode(self, string: str, **kwargs) -> List[int]: | |
return self.tokenizer.encode(string) | |
def tok_decode(self, tokens: List[int]) -> str: | |
return self.tokenizer.decode(tokens) | |
def _loglikelihood_tokens( | |
self, requests, disable_tqdm: bool = False | |
) -> List[Tuple[float, bool]]: | |
res = [] | |
def _collate(x): | |
# this doesn't efficiently handle last-token differences yet, but those are kinda annoying because | |
# it's not guaranteed that the 100 or so logprobs we get to see actually contain all the continuations | |
# we care about, and so we need some kind of backup for when it isn't | |
toks = x[1] + x[2] | |
return -len(toks), tuple(toks) | |
re_ord = utils.Reorderer(requests, _collate) | |
for chunk in tqdm( | |
list(lm_eval.models.utils.chunks(re_ord.get_reordered(), self.batch_size)), | |
disable=disable_tqdm, | |
): | |
inps = [] | |
ctxlens = [] | |
for cache_key, context_enc, continuation_enc in chunk: | |
# max_length+1 because the API takes up to 2049 tokens, including the first context token | |
inp = (context_enc + continuation_enc)[-(self.max_length + 1) :] | |
# TODO: the logic is much simpler if we just look at the length of continuation tokens | |
ctxlen = len(context_enc) - max( | |
0, len(context_enc) + len(continuation_enc) - (self.max_length + 1) | |
) | |
inps.append(inp) | |
ctxlens.append(ctxlen) | |
response = oa_completion( | |
client=self.client, | |
model=self.model, | |
prompt=inps, | |
echo=True, | |
max_tokens=0, | |
temperature=0.0, | |
logprobs=10, | |
seed=self.seed, | |
) | |
for resp, ctxlen, (cache_key, context_enc, continuation_enc) in zip( | |
response.choices, ctxlens, chunk | |
): | |
answer = get_result(resp, ctxlen) | |
res.append(answer) | |
# partial caching | |
if cache_key is not None: | |
self.cache_hook.add_partial("loglikelihood", cache_key, answer) | |
return re_ord.get_original(res) | |
def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]: | |
if not requests: | |
return [] | |
res = [] | |
requests = [req.args for req in requests] | |
def _collate(x): | |
toks = self.tok_encode(x[0]) | |
return len(toks), x[0] | |
re_ord = utils.Reorderer(requests, _collate) | |
def sameuntil_chunks(xs, size): | |
ret = [] | |
lastuntil = xs[0][1] | |
for x in xs: | |
if len(ret) >= size or x[1] != lastuntil: | |
yield ret, lastuntil | |
ret = [] | |
lastuntil = x[1] | |
ret.append(x) | |
if ret: | |
yield ret, lastuntil | |
# todo: more intelligent batching for heterogeneous `until` | |
for chunk, request_args in tqdm( | |
list(sameuntil_chunks(re_ord.get_reordered(), self.batch_size)), | |
disable=disable_tqdm, | |
): | |
inps = [] | |
self._max_gen_toks = request_args.get("max_gen_toks", self.max_gen_toks) | |
for context, _ in chunk: | |
context_enc = self.tok_encode(context) | |
inp = context_enc[-(self.max_length - self.max_gen_toks) :] | |
inps.append(inp) | |
until = request_args.get("until", ["<|endoftext|>"]) | |
request_args["temperature"] = request_args.get("temperature", 0) | |
response = oa_completion( | |
client=self.client, | |
model=self.model, | |
prompt=inps, | |
max_tokens=self.max_gen_toks, | |
stop=until, | |
seed=self.seed, | |
**{ | |
k: v | |
for k, v in request_args.items() | |
if k not in {"do_sample", "max_gen_toks", "until"} | |
}, | |
) | |
for resp, (context, args_) in zip(response.choices, chunk): | |
s = getattr(resp, "text") | |
until_ = until | |
for term in until_: | |
if len(term) > 0: | |
s = s.split(term)[0] | |
# partial caching | |
self.cache_hook.add_partial( | |
"generate_until", (context, {"until": until_}), s | |
) | |
res.append(s) | |
return re_ord.get_original(res) | |
def _model_call(self, inps): | |
# Isn't used because we override _loglikelihood_tokens | |
raise NotImplementedError() | |
def _model_generate(self, context, max_length, eos_token_id): | |
# Isn't used because we override generate_until | |
raise NotImplementedError() | |
def loglikelihood_rolling( | |
self, requests, disable_tqdm: bool = False | |
) -> List[float]: | |
loglikelihoods = [] | |
for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm): | |
rolling_token_windows = list( | |
map( | |
utils.make_disjoint_window, | |
utils.get_rolling_token_windows( | |
token_list=self.tok_encode(string), | |
prefix_token=self.eot_token_id, | |
max_seq_len=self.max_length, | |
context_len=1, | |
), | |
) | |
) | |
# TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case | |
rolling_token_windows = [(None,) + x for x in rolling_token_windows] | |
string_nll = self._loglikelihood_tokens( | |
rolling_token_windows, | |
disable_tqdm=True, | |
) | |
# discard is_greedy | |
string_nll = [x[0] for x in string_nll] | |
string_nll = sum(string_nll) | |
loglikelihoods.append(string_nll) | |
return loglikelihoods | |
class OpenaiChatCompletionsLM(LM): | |
def __init__( | |
self, | |
model: str = "gpt-3.5-turbo", # GPT model or Local model using HuggingFace model paths | |
base_url: str = None, | |
truncate: bool = False, | |
**kwargs, | |
) -> None: | |
""" | |
:param model: str | |
Implements an OpenAI-style chat completion API for | |
accessing both OpenAI OR locally-hosted models using | |
HuggingFace Tokenizer | |
OpenAI API model (e.g. gpt-3.5-turbo) | |
using the **gen_kwargs passed on init | |
:param truncate: bool | |
Truncate input if too long (if False and input is too long, throw error) | |
""" | |
super().__init__() | |
try: | |
import openai # noqa: E401 | |
except ModuleNotFoundError: | |
raise Exception( | |
"attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \ | |
please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`", | |
) | |
self.model = model | |
self.base_url = base_url | |
self.truncate = truncate | |
# Read from environment variable OPENAI_API_KEY | |
# Set to EMPTY for local | |
if self.base_url: | |
self.client = openai.OpenAI(base_url=self.base_url) | |
else: | |
self.client = openai.OpenAI() # openai.AsyncOpenAI() | |
def max_length(self) -> int: | |
# Note: the OpenAI API supports up to 2049 tokens, with the first token being the first input token | |
return 2048 | |
def max_gen_toks(self) -> int: | |
return 256 | |
def batch_size(self): | |
# Isn't used because we override _loglikelihood_tokens | |
raise NotImplementedError() | |
def device(self): | |
# Isn't used because we override _loglikelihood_tokens | |
raise NotImplementedError() | |
def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]: | |
res = defaultdict(list) | |
re_ords = {} | |
# we group requests by their generation_kwargs, | |
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling | |
# in the same batch. | |
grouper = lm_eval.models.utils.Grouper(requests, lambda x: str(x.args[1])) | |
for key, reqs in grouper.get_grouped().items(): | |
# within each set of reqs for given kwargs, we reorder by token length, descending. | |
re_ords[key] = utils.Reorderer( | |
[req.args for req in reqs], lambda x: (-len(x[0]), x[0]) | |
) | |
pbar = tqdm(total=len(requests), disable=(disable_tqdm or (self.rank != 0))) | |
for key, re_ord in re_ords.items(): | |
# n needs to be 1 because messages in | |
# chat completion are not batch but | |
# is regarded as a single conversation. | |
chunks = lm_eval.models.utils.chunks(re_ord.get_reordered(), n=1) | |
for chunk in chunks: | |
contexts, all_gen_kwargs = zip(*chunk) | |
inps = [{"role": "user", "content": context} for context in contexts] | |
gen_kwargs = all_gen_kwargs[0] | |
until = None | |
if isinstance(kwargs := copy.deepcopy(gen_kwargs), dict): | |
if "do_sample" in kwargs.keys(): | |
kwargs.pop("do_sample") | |
if "until" in kwargs.keys(): | |
until = kwargs.pop("until") | |
if isinstance(until, str): | |
until = [kwargs] | |
elif not isinstance(until, list): | |
raise ValueError( | |
f"Expected repr(kwargs['until']) to be of type Union[str, list] but got {until}" | |
) | |
kwargs["stop"] = until | |
kwargs["max_tokens"] = kwargs.pop("max_gen_toks", self.max_gen_toks) | |
else: | |
raise ValueError( | |
f"Expected repr(kwargs) to be of type repr(dict) but got {kwargs}" | |
) | |
response = oa_completion( | |
client=self.client, | |
chat=True, | |
messages=inps, | |
model=self.model, | |
**kwargs, | |
) | |
for resp, (context, args_) in zip(response.choices, chunk): | |
s = resp.message.content | |
if until is not None: | |
for term in until: | |
if len(term) > 0: | |
s = s.split(term)[0] | |
res[key].append(s) | |
self.cache_hook.add_partial( | |
"generate_until", (context, {"until": until}), s | |
) | |
pbar.update(1) | |
# reorder this group of results back to original unsorted form | |
res[key] = re_ord.get_original(res[key]) | |
pbar.close() | |
return grouper.get_original(res) | |
def loglikelihood(self, requests, disable_tqdm: bool = False): | |
raise NotImplementedError("No support for logits.") | |
def loglikelihood_rolling(self, requests, disable_tqdm: bool = False): | |
raise NotImplementedError("No support for logits.") | |