|
import html |
|
import re |
|
|
|
from datasets import load_metric |
|
|
|
|
|
def general_detokenize(string): |
|
string = re.sub(r"\s+([.,;:!?)])", r"\1", string) |
|
string = re.sub(r"(\s+|^)\(\s+([^)]+)\s+\)", r"\1(\2)", string) |
|
string = re.sub(r"(\s+|^)\[\s+([^)]+)\s+\]", r"\1[\2]", string) |
|
string = re.sub(r'(\s+|^)"\s+([^"]+)\s+"', r'\1"\2"', string) |
|
string = re.sub(r"(\s+|^)'\s+([^']+)\s+'", r"\1'\2'", string) |
|
return string |
|
|
|
|
|
def process_doc(string): |
|
string = html.unescape(string) |
|
string = general_detokenize(string) |
|
return string |
|
|
|
|
|
def process_wic_docs(dataset): |
|
def _helper(doc): |
|
|
|
doc["sentence1"] = ( |
|
process_doc(doc["sentence1"]).encode("latin-1").decode("utf-8") |
|
) |
|
doc["sentence2"] = ( |
|
process_doc(doc["sentence2"]).encode("latin-1").decode("utf-8") |
|
) |
|
return doc |
|
|
|
return dataset.map(_helper) |
|
|
|
|
|
def coref_doc_to_text(x): |
|
def _span_in_context(span_index, span_text): |
|
span_start = span_index |
|
span_end = span_start + len(span_text.split(" ")) - 1 |
|
tokens[span_start] = f"*{tokens[span_start]}" |
|
tokens[span_end] = f"{tokens[span_end]}*" |
|
|
|
tokens = x["text"].split(" ") |
|
_span_in_context(x["span1_index"], x["span1_text"]) |
|
_span_in_context( |
|
x["span2_index"] - 1, x["span2_text"] |
|
) |
|
context = process_doc(" ".join(tokens)) |
|
span_1 = process_doc(x["span1_text"]) |
|
span_2 = process_doc(x["span2_text"]) |
|
text = ( |
|
f"Testua: {context}\n" |
|
+ f'Galdera: Aurreko testuan, "*{span_1}*" eta "*{span_2}*" gauza bera dira?\n' |
|
+ "Erantzuna:" |
|
) |
|
return text |
|
|
|
|
|
|
|
|
|
|
|
def micro_f1_score(items): |
|
f1_metric = load_metric("f1") |
|
golds, preds = list(zip(*items)) |
|
f1_score = f1_metric.compute(references=golds, predictions=preds, average="micro")[ |
|
"f1" |
|
] |
|
return f1_score |
|
|
|
|
|
def vaxx_f1_score(items): |
|
f1_metric = load_metric("f1") |
|
golds, preds = list(zip(*items)) |
|
f1_class = f1_metric.compute( |
|
references=golds, predictions=preds, labels=[0, 2], average=None |
|
)["f1"] |
|
f1_score = sum(f1_class) / len(f1_class) |
|
return f1_score |
|
|