peacock-data-public-datasets-idc-cronscript
/
lm-evaluation-harness
/tests
/models
/test_huggingface.py
from __future__ import annotations | |
import sys | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import lm_eval.tasks as tasks | |
from lm_eval.api.instance import Instance | |
from lm_eval.models.huggingface import HFLM | |
task_manager = tasks.TaskManager() | |
class Test_HFLM: | |
torch.use_deterministic_algorithms(True) | |
task_list = task_manager.load_task_or_group(["arc_easy", "gsm8k", "wikitext"]) | |
version_minor = sys.version_info.minor | |
multiple_choice_task = task_list["arc_easy"] # type: ignore | |
multiple_choice_task.build_all_requests(limit=10, rank=0, world_size=1) | |
MULTIPLE_CH: list[Instance] = multiple_choice_task.instances | |
generate_until_task = task_list["gsm8k"] # type: ignore | |
generate_until_task._config.generation_kwargs["max_gen_toks"] = 10 | |
generate_until_task.build_all_requests(limit=10, rank=0, world_size=1) | |
generate_until: list[Instance] = generate_until_task.instances | |
rolling_task = task_list["wikitext"] # type: ignore | |
rolling_task.build_all_requests(limit=10, rank=0, world_size=1) | |
ROLLING: list[Instance] = rolling_task.instances | |
MULTIPLE_CH_RES = [ | |
-41.902435302734375, | |
-42.939308166503906, | |
-33.914180755615234, | |
-37.07139205932617, | |
-22.95258331298828, | |
-20.342208862304688, | |
-14.818366050720215, | |
-27.942853927612305, | |
-15.80704116821289, | |
-15.936427116394043, | |
-13.052018165588379, | |
-18.04828453063965, | |
-13.345029830932617, | |
-13.366025924682617, | |
-12.127134323120117, | |
-11.872495651245117, | |
-47.10598373413086, | |
-47.76410675048828, | |
-36.4406852722168, | |
-50.0289421081543, | |
-16.72093963623047, | |
-18.535587310791016, | |
-26.46993637084961, | |
-20.355995178222656, | |
-17.757919311523438, | |
-21.80595588684082, | |
-33.1990852355957, | |
-39.28636932373047, | |
-14.759679794311523, | |
-16.753942489624023, | |
-11.486852645874023, | |
-15.42177677154541, | |
-13.15798282623291, | |
-15.887393951416016, | |
-15.28614616394043, | |
-12.339089393615723, | |
-44.59441375732422, | |
-55.40888214111328, | |
-52.70050811767578, | |
-56.25089645385742, | |
] | |
generate_until_RES = [ | |
" The average of $2.50 each is $", | |
" A robe takes 2 bolts of blue fiber and half", | |
" $50,000 in repairs.\n\nQuestion", | |
" He runs 1 sprint 3 times a week.", | |
" They feed each of her chickens three cups of mixed", | |
" The price of the glasses is $5, but", | |
" The total percentage of students who said they like to", | |
" Carla is downloading a 200 GB file. Normally", | |
" John drives for 3 hours at a speed of 60", | |
" Eliza sells 4 tickets to 5 friends so she", | |
] | |
ROLLING_RES = [ | |
-3603.6328125, | |
-19779.23974609375, | |
-8834.16455078125, | |
-27967.591796875, | |
-7636.794982910156, | |
-9491.93505859375, | |
-41043.4248046875, | |
-8397.689819335938, | |
-45969.47155761719, | |
-7158.90625, | |
] | |
LM = HFLM(pretrained="EleutherAI/pythia-70m", device="cpu", dtype="float32") | |
def test_logliklihood(self) -> None: | |
res = self.LM.loglikelihood(self.MULTIPLE_CH) | |
_RES, _res = self.MULTIPLE_CH_RES, [r[0] for r in res] | |
# log samples to CI | |
dir_path = Path("test_logs") | |
dir_path.mkdir(parents=True, exist_ok=True) | |
file_path = dir_path / f"outputs_log_{self.version_minor}.txt" | |
file_path = file_path.resolve() | |
with open(file_path, "w") as f: | |
f.write("\n".join(str(x) for x in _res)) | |
assert np.allclose(_res, _RES, atol=1e-2) | |
# check indices for Multiple Choice | |
argmax_RES, argmax_res = ( | |
np.argmax(np.array(_RES).reshape(-1, 4), axis=1), | |
np.argmax(np.array(_res).reshape(-1, 4), axis=1), | |
) | |
assert (argmax_RES == argmax_res).all() | |
def test_generate_until(self) -> None: | |
res = self.LM.generate_until(self.generate_until) | |
assert res == self.generate_until_RES | |
def test_logliklihood_rolling(self) -> None: | |
res = self.LM.loglikelihood_rolling(self.ROLLING) | |
assert np.allclose(res, self.ROLLING_RES, atol=1e-1) | |
def test_toc_encode(self) -> None: | |
res = self.LM.tok_encode("foo bar") | |
assert res == [12110, 2534] | |
def test_toc_decode(self) -> None: | |
res = self.LM.tok_decode([12110, 2534]) | |
assert res == "foo bar" | |
def test_batch_encode(self) -> None: | |
res = self.LM.tok_batch_encode(["foo bar", "bar foo"])[0].tolist() | |
assert res == [[12110, 2534], [2009, 17374]] | |
def test_model_generate(self) -> None: | |
context = self.LM.tok_batch_encode(["foo bar"])[0] | |
res = self.LM._model_generate(context, max_length=10, stop=["\n\n"]) | |
res = self.LM.tok_decode(res[0]) | |
assert res == "foo bar\n<bazhang>!info bar" | |