peacock-data-public-datasets-idc-cronscript
/
lm-evaluation-harness
/tests
/models
/test_neuron_optimum.py
import pytest | |
import torch | |
from lm_eval.models.neuron_optimum import wrap_constant_batch_size | |
def test_wrap_constant_batch_size(): | |
class Tester: | |
def __init__(self, batch_size): | |
self.batch_size = batch_size | |
def test_constant_batch_size(self, inputs): | |
assert len(inputs) == self.batch_size | |
return inputs | |
batch_size_test = 8 | |
for i in range(1, batch_size_test + 1): | |
tensor = torch.ones([i, 2, 2]) | |
out = Tester(batch_size=batch_size_test).test_constant_batch_size(tensor) | |
torch.testing.assert_allclose(out, tensor) | |
with pytest.raises(ValueError): | |
Tester(batch_size=batch_size_test).test_constant_batch_size( | |
torch.ones([batch_size_test + 1, 2, 2]) | |
) | |