peacock-data-public-datasets-idc-cronscript
/
lm-evaluation-harness
/tests
/models
/test_openvino.py
import random | |
import tempfile | |
import pytest | |
from optimum.intel import OVModelForCausalLM | |
from transformers import AutoTokenizer | |
import lm_eval.evaluator as evaluator | |
from lm_eval.api.registry import get_model | |
SUPPORTED_ARCHITECTURES_TASKS = { | |
"facebook/opt-125m": "lambada_openai", | |
"hf-internal-testing/tiny-random-gpt2": "wikitext", | |
} | |
def test_evaluator(model_id, task): | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model = OVModelForCausalLM.from_pretrained( | |
model_id, export=True, use_cache=True | |
) | |
model.save_pretrained(tmpdirname) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.save_pretrained(tmpdirname) | |
lm = get_model("openvino").create_from_arg_string( | |
f"pretrained={tmpdirname}", | |
{ | |
"batch_size": 1, | |
"device": "cpu", | |
}, | |
) | |
def ll_fn(reqs): | |
for ctx, cont in [req.args for req in reqs]: | |
if len(ctx) == 0: | |
continue | |
# space convention | |
assert ctx[-1] != " " | |
assert cont[0] == " " or ctx[-1] == "\n" | |
res = [] | |
random.seed(42) | |
for _ in reqs: | |
res.append((-random.random(), False)) | |
return res | |
def ll_perp_fn(reqs): | |
for (string,) in [req.args for req in reqs]: | |
assert isinstance(string, str) | |
res = [] | |
random.seed(42) | |
for _ in reqs: | |
res.append(-random.random()) | |
return res | |
lm.loglikelihood = ll_fn | |
lm.loglikelihood_rolling = ll_perp_fn | |
limit = 10 | |
evaluator.simple_evaluate( | |
model=lm, | |
tasks=[task], | |
num_fewshot=0, | |
limit=limit, | |
bootstrap_iters=10, | |
) | |